Growth of needle and plate shaped particles:
theory for small supersaturations, maximum
velocity hypothesis

P. E. J. Rivera-Diaz-del-Castillo and H. K. D. H. Bhadeshia

A solution to the diffusion controlled growth of needle and plate shaped particles is presented as their shape
approaches respectively a paraboloid of revolution or a parabolic cylinder, under small supersaturation values, when
capillarity and interface kinetic effects are present. The solutions show that as supersaturation decreases, the growth
rate and needle tip radius approach a common value regardless of interfacial kinetics effects as capillarity is the
main factor that retards particle growth. Simple asymptotic expressions are thus obtained to predict the growth rate
and tip radius at low supersaturations, assuming a maximum velocity hypothesis. These represent the circumstances

during solid state precipitation reactions which lead to secondary hardening in steels.
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Introduction

There are various models dealing with the diffusion
controlled growth of precipitates with shapes approximat-
ing to those of needles or plates. These models have been
reviewed by Christian.! The most comprehensive theory is
due to Trivedi,>? in which the needle is assumed to be in the
form of a paraboloid of revolution and the plate a parabolic
cylinder (Fig. la and b). The solutions he obtained for
specified conditions are shape preserving when the tip
radius is several times the critical value' and in this context
they allow rigorously for changes in capillarity and interface
kinetics effects as the curvature of the interface varies along
the parabolic surfaces.

Consistent with many experimental observations, the
theory predicts constant lengthening rates because the
needle or plate tip advances into fresh parent phase as solute
is partitioned. However, the numerical components of the
solutions obtained by Trivedi*? are limited to large values
of supersaturation. In practice, many precipitation reac-
tions in technologically important applications occur at
small supersaturations.*> The purpose of the present work
was to obtain the solution of the diffusion equations at
small supersaturations, assuming that the precipitate adopts
a tip radius which is consistent with the maximum rate of
growth. In a future publication, the extension of the growth
models to multicomponent alloys will be considered.
Trivedi’s theory is first summarised in the sections below.

NEEDLES

The equation relating the Péclet number p=vp/2D to the
dimensionless supersaturation Q is
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where v is the lengthening rate, p is the radius of curvature
at the tip of the paraboloid, and D is the diffusion
coefficient of the solute in the matrix phase. The radius of
curvature p=2f, where f is the focal distance (Fig. l¢),
which is defined uniquely for a parabola lengthening along
the Z direction, and thickening along the X direction.® The

term E|{p} represents the exponential integralf and the
dimensionless supersaturation Q is given by
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where ¢ is the average solute concentration of the alloy, ¢*
is the solute concentration of the matrix («) in equilibrium
with the precipitate (f), and ¢** is the solute concentration
of the precipitate (ff) in equilibrium with the matrix ().
These concentrations are presented schematically in Fig. 2,
where Z represents a distance perpendicular to a flat
interface located at Z=Z*. In equation (1), v. is the velocity
of a flat interface during interface controlled growth (i.e.
when almost all the free energy is dissipated in the transfer
of atoms across the interface, so that the concentration
difference in the matrix vanishes) and is given by

ve=p(c— cmﬁ)

where u is the interface kinetics coefficient.

For curved interfaces, the growth rate is a function of the
interface curvature via the Gibbs—Thomson effect. The
curvature at which the growth rate becomes zero is 1/p.. The
functions

1
Ri=— 1
=3, Ni{p}

and

1
Ro=— No{pt—1
=2 2{r}
were evaluated numerically by Trivedi® to deal with the fact
that the curvature of the interface varies along the surface of
the paraboloid of revolution.
The values of N,{p} and N,{p} are?

“T{n+1/2}
32 12
Ni{p}=2p"" exp{p} ;071"{114-1} by, erfc{p'/*}
U{n+1;2;p}
* U{n+1;1;p} 3)

fBraces are used throughout to indicate the argument of a function.
Thus, E;{p} means that the exponential integral is evaluated at the
value p.
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a paraboloid of revolution; b parabolic cylinder; ¢ radius of the
parabola tip

1 Shapes used to represent needle and plate shaped
precipitates
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where I, I, erfc, and WV are the gamma, normalised integral
error,” and confluent hypergeometric function of the second
type.® respectively, and erfc represents the error function.

Referring to equation (1), the term a is the Ivanstov
solution’ where interface kinetics and capillarity are
neglected; terms b and ¢ account respectively for those
effects.

Equation (1) does not give a unique answer for the
growth rate v which depends on the tip radius p. For solid
state transformations, Zener’s assumption'®~!> that the
radius of curvature can be taken to be that which gives rise
to the maximum growth rate, can be adopted. This is
obtained by differentiating equation (1) with respect to p
and setting dv/0p=0, which gives

oqﬂﬂf%@%«@%%&@wmm)
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where g*{p}=p exp{p}E\{p} and ¢*, a parameter which
indicates the relative magnitudes of the interface kinetics
and the diffusion effect, is given by

g =[ue—c"]/2D/pe)
Equation (1) can also be expressed using the parameter ¢*

Q=g {p} |1+2 % qﬁ QRl{pH% QR {p} (6)

The values of the functions R, R, and R{, R) were given by

4
oBal.
c
cob
| ~
zZ* z
2 Concentrations at precipitate boundary (Z=Z*) for flat
interface

Trivedi® for p>0-1; they are used to solve simultaneously
equations (5) and (6), which give in turn a unique solution
for p and p/p. as a function of Q.

PLATES

Trivedi’s model for a parabolic cylinder takes a similar form

Q=(xp)'/* exp{p} erfc{p'/*}
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where

&m=$M@%1

and

52{17}=$ My{p}—1

account for the change in curvature along the parabolic
cylinder.? The terms d, e, and f account for the boundary
isoconcentrate solution, interface kinetics, and capillarity
effects respectively.

The functions M, {p} and M,{p} can be expressed as
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Similarly, equation (7) is differentiated with respect to p,
allowing 0v/0p=0 to account for maximum growth rate.
The resulting equation is

1
0=(glp}? 2 {‘—’ SH{p}—- Sz{P}vLSé{P}}
P4 P
g{r} B
HE el )
where g{p} =(mp)"”? exp{p} erfc{p"?} and ¢g=2¢*. Equa-
tion (7) can be expressed in terms of ¢ to give

172
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3 Values of functions a N,, N,, Ml;,, M, and b R;, R, S,,
S, for Péclet numbers p<0-1

The values of the functions Sy, S, and Si, S5 were provided
by Trivedi® for p>0-1 and are used to solve simultaneously
equations (10) and (11) from which p and p/p. are obtained.

Method

To solve simultaneously equations (5) and (6), and (10) and
(11) for small supersaturations, the functions R;, R;, S|, and
S, must be evaluated for p <0-1. Thus, a numerical method
was developed to obtain Ny, N,, My, and M, for p<0-1, the
resulting values are shown graphically in Fig. 3a; the
functions R;, R,, S;, and S, can now be evaluated and
are shown in Fig. 3b.

Trivedi’s solution for p and p/p. can now be extended to
small supersaturation values of Q <0-2 for needles (Figs. 4a
and b) and Q<04 for plates (Figs. 4c and d). The results
show that as the supersaturation decreases, the values of p
and p/p. approach asymptotically to a curve; this effect is
shown for very small supersaturation values in Figs. 54 and
b for needles and in Figs. 5¢ and d for plates.

As demonstrated in the Appendix, at very small super-
saturations, the values of p and p/p. approach asymptoti-
cally to simple relationships between p and Q. For needles

_ 2p(In{kp})*
Q_ m . . . . . . . . . . . (12)
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4 Péclet number p and tip radius p/p. for maximum
growth rate of a, b needles and ¢, d plates

where k=exp{—y}, 7 being the Euler constant (y=
057722 ...)." For plates

p=— D (19
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5 Péclet number p and tip radius p/p. for maximum
growth rate of a, b needles and ¢, d plates as func-
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tions of (very small) supersaturation

and
p_32
pe 3

Discussion and summary

The analysis presented here provides the values of p and p/p.
for small supersaturations, when the interface kinetics
and capillarity effects are present. The results reveal the
influence of each effect and provide useful values for further
calculations.

Equations (12)—(15) are useful in computing the growth
rate and tip radius for needles or plates for small
supersaturations, e.g. the precipitation of needle shaped
particles in secondary hardened steels. Some of these
calculations were performed by Fujita and Bhadeshia,!3
and Robson and Bhadeshia;*> they used the Zener theory'#
reviewed by Christian,! which predicts the growth rate for
needle precipitates in which a hemispherical needle tip
controls the particle growth, but without equilibrium
along the interface as the curvature changes. Such theory
predicts a constant value of p/p.=2 regardless of the
magnitude of Q, and p=Q/4. Figure 5b shows a difference
of one order of magnitude compared to that model, while
Fig. 5a shows a value of p~2-5 bigger than the previous
approximation.

To summarise, it is now possible to apply Trivedi’s
models to the precipitation of plates or needles in
circumstances where the supersaturation is quite small.
Simple asymptotic relationships have been obtained to
calculate the growth rate and tip radius at small super-
saturations, and have been shown not to depend on the
magnitude of the interface kinetics effect.

Appendix

Equations (6) and (5) can be expressed as follows

p_ g (,r
pe Q—g'{p} (2 g+ Rl{p}+R2{p}> oo 10
P (g"{r}))’
pe (g {p}/p+g{r}—1
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The asymptotic expansion of E| is expressed as’

H'p"
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thus, for p— 0, E\{p}~—In{kp}, so g*{p} ~—p In{kp}.
Furthermore, as p—0, N;{p}—14050 and N,{p}—
3-8410.? Equations (16) and (17) can be equated, and for
p—0

g} —p In{kp}Q
Q—g{p} Q+p In{kp}
€ {r)’ —p* In{kp}

P p+et—1 1+ (Infkp)) !

P 3-8410
2 o Rl{p}+R2{p}—> 4p

3-8410
2p?

1
-2 qﬁ Rifp}+ ) Rofp} = Re{p}-

Thus, the dominant factor is the capillarity effect (term ¢ in
equation (1)). After some algebra, the resulting equation
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can be expressed as

_ 2p(In{kp})’
1— In{kp}
while from equation (16), in the limit of p — 0, the needle tip
radius expression becomes
p 38410 Q In{kp}
Pe 4 Q+p In{kp}
For plate shaped precipitates, equations (11) and (10) can
be expressed as

Lo B Psppest] - ay)
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The asymptotic expansion of erfc is expressed as’

erfc{p'/?} =1 —erf{p'/?} =1— % exp{—p}
T
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thus, for p—0, erfc{p'?} — 1—(2/z"*)p"", so g{p} ~ (np)"*.
Furthermore, as p—0, M,{p} —2/n and M,{p} —4/n>
Equations (18) and (19) can be equated, and for p—0
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Thus, the dominant factor is the capillarity effect (term f in
equation (7)). After some algebra, the resulting equation
can be expressed as

9 o2

P=T6r

while from equation (16), in the limit of p — 0, the plate tip
radius expression becomes

p_321
pe 3@
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