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curvature on local equilibrium at the interface, and the behaviour of the solution is examined.
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Introduction

Steels used in the energy industries are strengthened by
precipitation. There is usually a combination of many types
of particle with a variety of shapes, ranging from needles to
plates to spheres. Many of the precipitates approximate to a
spherical shape. Although attempts have been made to
estimate the kinetics of spherical particle precipitation in
power plant steels, > there is no analytical solution for the
growth of a sphere with capillarity included, since for
spheres the radius of curvature also defines the size of the
particle.>~> The Gibbs — Thomson capillarity effect is due to
the curvature of the interface, which influences the
equilibrium compositions at the particle/matrix boundary.
A consequence is that small particles will grow less rapidly
than large particles even when the far field concentration
is identical for all particles. Some quite elegant work by
Miyazaki and co-workers®” has shown experimentally that
the capillarity effect is seminal in the development of
precipitation reactions in composition gradients.

Thus, although Zener® recognised the importance of
capillarity, and even though capillarity features strongly in
the theories for the growth of needles and plates,”!® the
authors are not aware of any corresponding theory for
spherical precipitates; the aim of this work was to develop
the necessary theory.

Analysis

For spherical particles, Fick’s second law can be written in
the spherical coordinate system asf
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where c is the concentration gradient around the particle, D
is the diffusion coefficient, assumed to be independent of
concentration, ¢ is time, and r is the radial coordinate. Since
c=c{tr},
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where ¢ is the average concentration of solute in the alloy, p
is the precipitate radius, ¢’ is the concentration of solute in
the matrix () in equilibrium with the precipitate (y), and I
is the capillarity constant given by*
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FBraces are used throughout to indicate the argument of a function.
Thus, (8/00){(1/r*)(dc/dr)} means that the partial derivative is
evaluated at (1/+%)(d¢/or).

where ¢ is the surface energy per unit area, v is the volume
per atom in the precipitate phase 7, k is Boltzmann’s
constant, 7 is the temperature, and &P is the solute
concentration of the precipitate (y) in equilibrium with f.

The boundary condition of equation (2) indicates that, as
the precipitation starts at =0, the concentration every-
where will be equal to the average concentration of the
alloy; equation (3), which has been defined in analogy to
capillarity corrected concentrations of needle and plate
shaped precipitates’ '! accounts for the concentration
change as the particle approaches to a critical radius p.
which can be expressed as
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As the particle radius approaches the critical radius p = p,,
the concentration in the matrix at the boundary tends
towards the average concentration so that growth becomes
impossible.* This is shown schematically in Fig. 1, where
Fig. la represents the flat interface condition, Fig. 1
represents p=2p., and Fig. 1¢ represents p=p..

Following Zener,* it can be shown that p varies with time
parabolically according to the equation

p=auDnV? . . . (6

where o is a dimensionless growth parameter. The
concentration c{z,r} that satisfies equation (1) and the
boundary conditions given by equations (2) and (3) is then
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where erfc is the error function.

The rate at which solute is incorporated into the growing
precipitate must equal that arriving by diffusion to the
interface. Therefore
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where g=0p/dt is the particle growth rate. The concentra-
tion gradient given by equation (7) can now be substituted
in equation (9), from which an expression for o can be
obtained. After some algebra, the following equation is
obtained
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where f'is a complex function of o given by
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30 Materials Science and Technology January 2001

Vol. 17

ISSN 0267 -0836



Rivera-Diaz-del-Castillo and Bhadeshia Growth of spherical precipitates with capillarity effects 31

P

Ol

cft.py=cP|—

(a)

P

c
clt,P)— /’__—

ol

cit.py

P >
(©)

a flat interface; b curved interface, p=2p.; ¢ curved interface,
P=Pc

1 Schematic representation of concentration gradient
illustrating effect of capillarity

and the dimensionless supersaturation is

Provided that the phase diagram is known, equation (10) is
now a function of o only, which can be expressed as

o /
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which can be solved numerically as shown in Fig. 2a and b
for large and small growth parameters, respectively.

Approximately spherical particles precipitate at small
values of supersaturation in many alloys, such as secondary
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2 Effect of supersaturation Q and normalised radius p/p.
on growth parameter o: in b emphasis is on small
values of Q

hardened steels.!? It is desirable therefore to obtain a simple
asymptotic relationship for equation (11) with Q«1.
Figure 2b shows that «—0 as Q—0. Using the Taylor
series expansion of exp{(1/2)o*} around zero, and expand-
ing erfc{(1/2)0*} as «—0,'2 it can be seen that f{a} ~(1/2)e.
Thus

_ 12
“:(%ZETW) forQ«cl . . . . . (12)

In order to assess the effect of particle radius on growth
rate, the value of o against the tip radius for given values of
Q is plotted in Fig. 3¢ and b at large and small super-
saturations respectively. The solid lines adjacent to each
dotted line in Fig. 3b represent the values calculated using
equation (12) for the respective supersaturation.

The capillarity correction on the parabolic growth
parameter o is shown in Fig. 2. It can be seen that for
small values of p/p., there are differences of up to an order
of magnitude when compared with a model without the
correction. When p> p,, equation (11) reduces to Zener’s
equation as expressed by Coates.!3!4
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3 Variation of growth parameter o with normalised par-

ticle radius p/p. for a large and b small values of
supersaturation Q

Summary

Equations taking into account the capillarity effect have
been derived for the growth of spherical precipitates. The
results obtained using this model are significantly different
from the corresponding theory without capillarity at low
values of supersaturation. A simple asymptotical expression
for the growth rate parameter has been obtained for small
values of supersaturation (Q<0-01).
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