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Abstract

Creep resistant welding alloys must be reliable over long periods of time in severe environ-
ments. Their microstructures have to be very stable, both in the wrought and in the welded
states. This paper deals with quantitative methods for the design of steel weld metals for
elevated temperature applications. A methodology is described for the calculation of complex
precipitation reactions over periods extending many tens of years. However, microstructure
alone is clearly not enough in the design of alloys. The complex mechanical properties, such as
the creep rupture strength, can be estimated quantitatively using the neural network technique
which interprets the vast quantities of experimental data that are now available.

Introduction

Typical operating parameters for steels used in the manufacture of power plant are compared
against corresponding parameters for nickel alloys in aeroengines, in Table 1. In both cases, the
service conditions are severe. But this is especially so for steels where the service life is many
decades. The degree of reliability demanded of heat resistant steels is therefore extraordinary,
and must represent one of the highest achievements of technology. By contrast, computers
(which are frequently identified with advanced technology) seldom last for more than two
years and are usually obsolete when installed!

With the benefit of this knowledge, it should not be surprising that the number of variables
involved in the design of creep–resistant steels is very large – in fact, we shall show later that
there are at least thirty variables which need to be controlled in any experiment or calculation
of creep properties. These variables determine the microstructure and mechanical properties,
the key components of any design process.

Property Aeroengine Power Plant

Temperature > 1000 ◦C 540-750 ◦C

Pressure ' 3 bar 160–370 bar

Design life 104 h 2.5× 105 h

σ100,000 h 10 MPa 100 MPa

Coating Yes No

Forced cooling Yes No

Single crystal Yes No

Table 1: Service conditions for a component in the hot part of an aeroengine

and one in the hottest part of a power plant. The lower limits for the power

plant component are representative of current technology. The stress is a

100,000 h creep rupture strength.
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The variables can ideally be taken into account using what scientists like to call “physical
models”, i.e. theories which explain a large class of observations, which contain few arbitrary
elements and which make verifiable predictions. The first part of this paper deals with such
physical models in the prediction of microstructure.

There is no adequate theory to deal with the second task, which is the estimation of creep
rupture strength as a function of the steel composition and heat treatment. Difficult problems
like this, where the general concepts might be understood but which are not as yet amenable
to fundamental treatment, are common in metallurgy. To form a complete story it is necessary
in such circumstances to resort to learned empiricism. The second part of this paper deals with
a semi–empirical method implemented to achieve useful results. The combination of physical
and empirical models can then be used to attempt the design of welding alloys!

Before proceeding to a description of models, it is worth pointing out that there is little
distinction made here between steel plate and weld metal. This apparent anomaly is justified
towards the end of the paper.

The Microstructure

There is a large range of heat–resistant steels and welding alloys (Table 2). The ones with
the lowest solute concentrations might contain substantial quantities of allotriomorphic ferrite
and some pearlite, but the vast majority have bainitic or martensitic microstructures in the
normalised condition. After normalising the steels are severely tempered to produce a “stable”
microstructure consisting of a variety of alloy carbides in a ferritic matrix. The task is therefore
to model the evolution of precipitation and dissolution reactions.

The results of equilibrium calculations which give the phase fractions of the carbides as a
function of the overall alloy composition and temperature, are given in Table 3 for the common
power plant steels. The calculations have been done using the MTDATA [1] computer program
and SGTE database, taking into account the carbide phases and Laves phase listed, together
with cementite. The chemical elements considered are carbon, silicon, manganese, chromium,
nickel, molybdenum, vanadium, niobium and nitrogen. M5C2 has recently been identified in
1Cr–0.5Mo steels [2] but along with graphite, has not been included in the analysis.

The equilibrium calculations presented in Table 3 are useful in specifying the ultimate mi-
crostructure but the results are far removed from the metastable microstructures that exist
during service. It is in fact necessary to be able to calculate time–temperature–transformation
diagrams for tempering reactions, as a function of steel chemical composition and tempering
temperature. In order to do this, a theory capable of handling several simultaneous precipi-
tation reactions has been developed [3,4], where the different phases influence each other, for
example by drawing the same solute from the matrix ferrite.

Overall transformation kinetics A model for a single transformation begins with the
calculation of the nucleation and growth rates using classical theory, but an estimation of
the volume fraction requires impingement between particles to be taken into account. This is
generally done using the extended volume concept of Johnson, Mehl, Avrami, and Kolmogorov
[5] as illustrated in Fig. 1. Suppose that two particles exist at time t; a small interval δt later,
new regions marked a, b, c & d are formed assuming that they are able to grow unrestricted
in extended space whether or not the region into which they grow is already transformed.
However, only those components of a, b, c & d which lie in previously untransformed matrix
can contribute to a change in the real volume of the product phase (identified by the subscript
‘1’) so that :

dV1 = (1− V1

V
)dV e1 (1)

2



      

Designation C Si Mn Ni Mo Cr V

1Cr
1
2 Mo 0.15 0.25 0.50 – 0.6 0.95

1
4 CrMoV 0.15 0.25 0.50 0.05 0.50 0.30 0.25

1
2 Cr

1
2 Mo

1
4 V 0.12 0.25 0.50 – 0.6 0.45 0.25

1CrMoV 0.25 0.25 0.75 0.70 1.00 1.10 0.35

2
1
4 Cr1Mo 0.15 0.25 0.50 0.10 1.00 2.30 0.00

Mod. 2
1
4 Cr1Mo 0.1 0.05 0.5 0.16 1.00 2.30 0.25

Ti=0.03 B=0.0024

3.0Cr1.5Mo 0.1 0.2 1.0 0.1 1.5 3.0 0.1

3.5NiCrMoV 0.24 0.01 0.20 3.50 0.45 1.70 0.10

9Cr1Mo 0.10 0.60 0.40 – 1.00 9.00 –

Mod. 9Cr1Mo 0.1 0.35 0.40 0.05 0.95 8.75 0.22

Nb=0.08 N=0.05 Al <0.04

9Cr
1
2 MoWV 0.11 0.04 0.45 0.05 0.50 9.00 0.20

W=1.84 Nb=0.07 N=0.05

12CrMoV 0.20 0.25 0.50 0.50 1.00 11.25 0.30

12CrMoVW 0.20 0.25 0.50 0.50 1.00 11.25 0.30

W=0.35

12CrMoVNb 0.15 0.20 0.80 0.75 0.55 11.50 0.28

Nb 0.30 N 0.06

Table 2: Typical compositions (wt.% ) of creep–resistant steels.

Designation M2X M7C3 M23C6 M6C Laves NbC NbN VN

1
4 CrMoV 0.53 2.47

1CrMoV 0.89 4.12

2
1
4 Cr1Mo 3.35

Mod. 2
1
4 Cr1Mo 2.11 0.19

3.0Cr1.5Mo 1.85 0.57

3.5NiCrMoV 0.09 1.61 2.85

9Cr1Mo 2.22

Mod. 9Cr1Mo 2.22 0.09 0.30

9Cr
1
2 MoWV 2.48 1.35 0.08 0.32

12CrMoV 4.43

12CrMoVW 4.44 0.07

12CrMoVNb 3.18 0.06 0.29 0.18

Table 3: The mole percentages of precipitate phases in power plant steels

which are in equilibrium at 565 ◦C (838 K). Notice that cementite is not an

equilibrium phase in any alloy.

where it is assumed that the microstructure develops randomly. The superscript e refers to
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extended volume, V1 is the volume of phase 1 and V is the total volume. Multiplying the
change in extended volume by the probability of finding untransformed regions has the effect
of excluding regions such as b, which clearly cannot contribute to the real change in volume of
the product. This equation can easily be integrated to obtain the real volume fraction,

V1

V
= 1− exp

{
−V

e
1

V

}
(2)

Nucleation and growth rates can readily be substituted into V e1 , leading to the familiar Avrami
equation.

Fig. 1: The concept of extended volume. Two precipitate particles have

nucleated and grown to a finite size in the time t. New regions c and d are

formed as the original particles grow, but a & b are new particles, of which b

has formed in a region which is already transformed.

In practice, there are many cases where several transformations occur together. The different
reactions interfere with each other in a way which is seminal to the development of power plant
microstructures. The principles involved are first illustrated with an example in which β and
θ precipitate at the same time from the parent phase which is designated α. For the sake of
discussion it is assumed that the nucleation and growth rates do not change with time and
that the particles grow isotropically.

The increase in the extended volume due to particles nucleated in a time interval t = τ to
t = τ + dτ is, therefore, given by

dV eβ =
4

3
πG3

β(t− τ)3Iβ(V ) dτ (3)

dV eθ =
4

3
πG3

θ(t− τ)3Iθ(V ) dτ (4)

where Gβ , Gθ, Iβ and Iθ are the growth and nucleation rates of β and θ respectively, all of
which are assumed here to be independent of time. V is the total volume of the system. For
each phase, the increase in extended volume will consist of three separate parts. Thus, for β:

(i) β which has formed in untransformed α.

(ii) β which has formed in regions which are already β.
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(iii) β which has formed in regions which are already θ.

Only β formed in untransformed α will contribute to the real volume of β. On average a

fraction
(

1− Vβ+Vθ
V

)
of the extended volume will be in previously untransformed material. It

follows that the increase in real volume of β is given by

dVβ =

(
1−

Vβ + Vθ
V

)
dV eβ (5)

and similarly for θ,

dVθ =

(
1−

Vβ + Vθ
V

)
dV eθ (6)

Generally Vβ will be some complicated function of Vθ and it is not possible to integrate these
expressions analytically to find the relationship between the real and extended volumes. Nu-
merical integration is straightforward and offers the opportunity to change the boundary con-
ditions for nucleation and growth as transformation proceeds, to account for the change in the
matrix composition during the course of reaction. The method can in principle be applied to
any number of simultaneous reactions.

Complex reactions The multiple reactions found in power plant steels have important
complications which can all be dealt with in the scheme of simultaneous transformations as
presented above. The phases interfere with each other not only by reducing the volume available
for transformation, but also by removing solute from the matrix and thereby changing its
composition. This change in matrix composition affects the growth and nucleation rates of the
phases. The main features of the application of the theory to power plant steels are summarised
below; a full description is given in references [3,4].

• The model allows for the simultaneous precipitation of M2X, M23C6, M7C3, M6C
and Laves phase. M3C is assumed to nucleate instantaneously with the paraequilib-
rium composition [6]. Subsequent enrichment of M3C as it approaches its equilibrium
composition is accounted for.

• All the phases, except M3C, form close to their equilibrium composition. The driving
forces and compositions of the precipitating phases are calculated using MTDATA
[1].

• The interaction between the precipitating phases is accounted for by considering the
change in the average solute level in the matrix as each phase forms.

• The model does not require prior knowledge of the precipitation sequence.

• Dissolution of non–equilibrium phases is incorporated as a natural event.

• A single set of fitting parameters for the nucleation equations (site densities and
surface energies) has been found which is applicable to a wide range of power plant
steels.

The compositions of three power plant alloys used here for illustration purposes, are shown
in Table 4. These three alloys, whilst of quite different chemical compositions, show similar
precipitation sequences [3,7,8] but with vastly different rates. For example, at 600 ◦C the time
taken before M23C6 is observed is 1 h in the 10CrMoV steel [3], 10 h in the 3Cr1.5Mo alloy
[7] and in excess of 1000 h in the 2 1

4Cr1Mo steel [8]. These differences have never before been
explained [3,4].
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C N Mn Cr Mo Ni V Nb

2
1
4 Cr1Mo 0.15 – 0.50 2.12 0.9 0.17 – –

3Cr1.5Mo 0.1 – 1.0 3.0 1.5 0.1 0.1 –

10CrMoV 0.11 0.056 0.50 10.22 1.42 0.55 0.20 0.50

Table 4: Concentration (in weight%) of the major alloying elements in the

steels used to demonstrate the model.

Microstructure Calculations

A plot showing the predicted variation of volume fraction of each precipitate as a function
of time at 600 ◦C is shown in Fig. 2. Consistent with experiments, the precipitation kinetics
of M23C6 are predicted to be much slower in the 2 1

4Cr1Mo steel compared to the 10CrMoV
and 3Cr1.5Mo alloys. One contributing factor is that in the 2 1

4Cr1Mo steel a relatively large
volume fraction of M2X and M7C3 form prior to M23C6. These deplete the matrix and therefore
suppress M23C6 precipitation. The volume fraction of M2X which forms in the 10CrMoV steel
is relatively small, and there remains a considerable excess of solute in the matrix, allowing
M23C6 to precipitate rapidly. Similarly, in the 3Cr1.5Mo steel the volume fractions of M2X and
M7C3 are insufficient to suppress M23C6 precipitation to the same extent as in the 2 1

4Cr1Mo
steel.

M23C6 is frequently observed in the form of coarse particles which are less effective in hindering
creep deformation. Delaying its precipitation would have the effect of stabilising the finer
dispersions of M2X and MX to longer times with a possible enhancement of creep strength.

Calculations like these can be used to design microstructures exploiting knowledge built up
over decades concerning what is good and bad for creep strength. It is often argued that Laves
phase formation is bad for creep resistance – it leads to a reduction in the concentration of
solid solution strengthening elements; since the Laves precipitates are few and coarse, they do
not themselves contribute significantly to strength. The model presented here can be used to
design against Laves phase formation. This will be illustrated in later examples.

We note for the moment, that this is as far as microstructure modelling has progressed. The
models are not yet capable of giving size distributions and even if that were to be possible,
there are no physical models of creep deformation which have sufficient precision to make use
of this information. We shall not be discouraged by this since good empirical methods are
available. The work described below originates from work by Brun et al. [9] and Cole and
Bhadeshia [10].

Creep Rupture Strength – the Variables

The basic principles of alloy design for creep resistance are well–established and well–founded
on experience. The steels must have a stable microstructure which contains fine alloy carbides
to resist the motion of dislocations; however, changes are inevitable over the long service time so
that there must be sufficient solid solution strengthening to ensure long term creep resistance.
There may be other requirements such as weldability, corrosion and oxidation resistance. It
is nevertheless difficult to express the design process quantitatively given the large number of
interacting variables.

These variables are described later in the context of calculations in Table 5. For the moment
we note that the entire information about microstructure and properties is in principle locked
up in this set of parameters since chemical composition and heat treatment are comprehensively
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Fig. 2: The predicted evolution of precipitate volume fractions at 600 ◦C for

three power plant materials (a) 2 1
4Cr1Mo (b) 3Cr1.5Mo and (c) 10CrMoV.
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included. There may, of course, be many other independent variables that might be considered
important in creep analysis, but these are for the moment neglected for two reasons. Firstly, an
empirical analysis requires experimental data; an over ambitious list would simply reduce the
dataset since publications frequently do not report all of the necessary parameters. Secondly,
the effect of any missing variables would simply be reflected in the uncertainties of prediction.
If the predictions are noisy then they can be improved with carefully designed experiments at
a future date. Bearing this in mind, the results to be presented are based on some 2000 sets
of experiments obtained from the published literature. We now proceed to describe briefly the
methodology.

The Neural Network Method

Most people are familiar with regression analysis where data are best–fitted to a specified
relationship which is usually linear. The result is an equation in which each of the inputs xj
is multiplied by a weight wj ; the sum of all such products and a constant θ then gives an
estimate of the output y =

∑
j wjxj + θ. It is well understood that there are dangers in using

such relationships beyond the range of fitted data.

A more general method of regression is neural network analysis. As before, the input data xj
are multiplied by weights, but the sum of all these products forms the argument of a hyperbolic
tangent. The output y is therefore a non–linear function of xj , the function usually chosen
being the hyperbolic tangent because of its flexibility. The exact shape of the hyperbolic
tangent can be varied by altering the weights (Fig. 3a). Further degrees of non–linearity can
be introduced by combining several of these hyperbolic tangents (Fig. 3b), so that the neural
network method is able to capture almost arbitrarily non–linear relationships. For example, it
is well known that the effect of chromium on the microstructure of steels is quite different at
large concentrations than in dilute alloys. Ordinary regression analysis cannot cope with such
changes in the form of relationships.

Fig. 3: (a) Three different hyperbolic tangent functions; the “strength” of

each depends on the weights. (b) A combination of two hyperbolic tangents

to produce a more complex model.

A potential difficulty with the use of powerful regression methods is the possibility of over-
fitting data (Fig. 4). For example, one can produce a neural network model for a completely
random set of data. To avoid this difficulty, the experimental data can be divided into two
sets, a training dataset and a test dataset. The model is produced using only the training
data. The test data are then used to check that the model behaves itself when presented with
previously unseen data.

Neural network models in many ways mimic human experience and are capable of learning
or being trained to recognise the correct science rather than nonsensical trends. Unlike human
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Fig. 4: A complicated model may overfit the data. In this case, a linear

relationship is all that is justified by the noise in the data.

experience, these models can be transferred readily between generations and steadily developed
to make design tools of lasting value. These models also impose a discipline on the digital
storage of valuable experimental data, which may otherwise be lost with the passage of time.

The technique is extremely powerful and useful. Its application to creep rupture strength
analysis is presented below. The details can be found elsewhere [11] but it is important to note
that the generalisation of the model on unseen data has been tested extensively against large
quantities of information.

Calculations of Creep Rupture Strength

Fig. 5 shows the variation in the creep rupture strength (105 h) of a modern “10CrMoW” creep
resistant steel (Table 5) as a function of the temperature, carbon, chromium and molybdenum
concentrations. The error bounds represent the uncertainty in fitting the non–linear function
to the training data, as 65% confidence limits. There is an additional error associated with
each calculation, which is the noise in the experimental data, which is perceived to be of the
order of ±2%. The engineering design of power plant is based on the ability to support a
stress of 100 MPa for 105 h at the service temperature. The apparent insensitivity of the creep
rupture strength to the molybdenum or chromium concentrations for 105 h is not surprising
given that the carbides will all be extremely coarse at that stage of life.

Similar data for the classical 2 1
4Cr1Mo steel are illustrated in Fig. 6. The fitting uncertainties

are smaller in this case because of the larger quantity of available data since this alloy has been
available and studied for a much longer time.

Calculations like these can now be routinely carried out. Furthermore, the models can be
improved both as more data become available and as creep deformation becomes better under-
stood. The model can be used in a variety of ways. The combined application of the physical
models presented earlier, and the neural network model has led to predictions (see appendix)
of novel alloys which ought to have much better creep resistance than any comparable com-
mercial alloy [9]. Another way is to apply the models to welding alloys, for which there are
much fewer data when compared with wrought steels.

Welding Alloys

Weld metals and steels of matching composition seem to have similar creep rupture prop-
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Fig. 5: Creep rupture stress at 600 ◦C and 100,000 h for 10Cr–0.5Mo type

steel
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STEEL 2 1
4 CrMo 10CrMoW

Normalising temperature / K 1203 1338

Duration / h 6 2

Cooling rate water quenched air cooled

Tempering temperature / K 908 1043

Duration / h 6 4

Cooling rate air cooled air cooled

Annealing temperature / K 873 1013

Duration / h 2 4

Cooling rate air cooled air cooled

C wt% 0.15 0.12

Si 0.21 0.05

Mn 0.53 0.64

P 0.012 0.016

S 0.012 0.001

Cr 2.4 10.61

Mo 1.01 0.44

W 0.01 1.87

Ni 0.14 0.32

Cu 0.16 0.86

V 0.01 0.21

Nb 0.005 0.01

N 0.0108 0.064

Al 0.018 0.022

B 0.0003 0.0022

Co 0.05 0.015

Ta 0.0003 0.0003

O 0.01 0.01

Table 5: The standard set of input parameters for two alloys used to examine

trends predicted by the neural network. The chemical compositions are all in

wt.%

erties. In fact, the chemical compositions of weld metals and corresponding steel plates are
not very different (Table 6). Of course, weld metal will have a higher oxygen and nitrogen
concentration but the former should not affect creep resistance. Although differences in the
nitrogen concentration are important, they can easily be taken into account both in predicting
carbonitride formation and in the neural network model where nitrogen is an input.

The microstructure of an as–deposited weld metal is naturally radically different from that of
a wrought steel. However, even this is unimportant because of the severe tempering heat treat-
ments used following the welding procedure, essentially wipe out the original microstructure
and replace it with one which is tempered and similar to that of the steel plate. It is probably
for this reason that the welding process itself is found not to influence the creep rupture life
[12].
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Fig. 6: Creep rupture stress at 600 ◦C and 100,000 h for 2.25Cr–1Mo type

steel
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2.25Cr1Mo 9Cr1Mo

wt.% Plate Weld Plate Weld

C 0.110 0.091 0.110 0.090

Mn 0.390 0.590 0.040 0.480

Si 0.290 0.300 0.460 0.500

Cu 0.150 0.024

Ni 0.150 0.033 0.050 0.050

Cr 2.070 2.480 8.960 8.700

Mo 0.900 1.170 0.470 0.980

Nb 0.069 0.040

V 0.004 0.015 0.200 0.200

S 0.022 0.014

P 0.011 0.010

N 0.005 0.010 0.051 0.040

O 0.005 0.030 0.005 0.030

Table 6: Chemical compositions, wt%.

The hypothesis can be proved by examining the data on all–weld metal tests in the published
literature [12], again for a stress rupture life of 105 h. Such data are most reliable for the
2 1

4Cr1Mo type weld metals; the calculations are therefore presented for the 2 1
4Cr1Mo weld

metal listed in Table 6.

Fig. 7 shows the very encouraging agreement between the calculated [9,10] and measured [12]
creep rupture lives of 2 1

4Cr1Mo welds. The predictions are made without any adjustment of
the models, which did not interrogate any weld metal data during their creation. The results
confirm that it is reasonable to assume that weld metal creep rupture life can be modelled on
the basis of wrought steels. Of course, other properties such as creep ductility may be more
sensitive to inclusion content in which case the weld metals should exhibit a lower ductility
relative to the wrought steel.

Composition (wt%) C Si Mn P S Ni Cr Mo W V Nb N

Weld Metal 0.07 0.20 1.01 0.006 0.004 0.36 8.94 0.48 1.62 0.09 0.04 0.032

Table 6: Chemical composition of gas tungsten arc weld metal, wt% [13]

Fig. 7 shows that the model is also capable of predicting the creep rupture life of modified
9CrMoW weld metals. The ability to predict the creep properties of these welds has direct
industrial implications.

The method can now be used to generate creep–rupture diagrams such as that illustrated in
Fig. 8.
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Fig. 7: Calculated (filled circles with error bars) and measured (open circles)

stress rupture data for 2.25Cr1Mo weld metal.

Fig. 7: Calculated creep rupture strength at 873 K for the 9Cr weld deposit

specified in Table 6. The experimental data are due to Naoi et al. [13]

Case Study: Vanadium–Containing Ferritic–Steel Welds

At this 5th conference on Mathematical Modelling of Weld Phenomena, Sobotka et al. [14]
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Fig. 7: Calculated creep rupture strength at 923 K for the 9Cr weld deposit

specified in Table 6. The experimental data are due to Naoi et al. [13]

Fig. 8: Calculated stress rupture data for 2.25Cr1Mo weld metal.

reported a study in which a variety of low–alloy ferritic steel welds were studied for their creep
strength, with a particular focus on the role of vanadium. The chemical compositions of the
weld metals are reported in Table 7. The heat treatments and other details can be found in
[14]. These results provide a further source of data which can be exploited to illustrate how
the neural network model can be used to minimise experimental work.

Fig. 9 shows the experimental creep rupture stress data as reported in [14] against our predic-
tions using the neural network model. Not only is the agreement excellent for weld E, but the
uncertainties in the predictions are small; this means that these particular experiments need
not have been conducted at all. There are large uncertainties (large error bars) associated
with the predictions for welds C and D. This means that reliance on the calculations involves
a risk. This is well illustrated by the fact that the mean prediction for Weld C is excellent, but
not so for Weld D where the experimental data all fall on the calculated upper error bound
curve. The large uncertainty for Welds C and D arises from their unusually large vanadium
concentration but the results nevertheless show that accurate predicitions can be made for
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C Mn Si P S Cr Mo V Ni

Weld C 0 .12 0 .61 0 .23 0 .009 0 .003 0 .61 0 .42 0 .28 0 .14

Weld D 0 .15 0 .53 0 .32 0 .012 0 .004 0 .72 0 .46 0 .60 0 .06

Weld E 0 .10 0 .49 0 .28 0 .009 0 .010 2 .17 0 .92 0 .01 0 .18

Cu Al Ti As Sb Sn N O

Weld C 0 .06 0 .009 0 .01 0 .002 0 .003 0 .005 0 .010 0 .0080

Weld D 0 .04 0 .016 0 .01 0 .005 0 .005 0 .005 0 .016 0 .0054

Weld E 0 .08 0 .008 ¡0 .01 0 .002 0 .004 0 .006 0 .012 0 .0100

Table 7: Chemical compositions (wt%) of weld metals studied by Sobotaka

et al. [14].

Weld C which has a small vanadium concentration of 0.28 wt%. More work is necessary on
vanadium containing steels to reinforce the database on which the neural network model was
trained before reliable predictions can be made on the low–alloy ferritic steel welds which are
rich in vanadium.

Conclusions

It is now possible to attempt a quantitative design of heat resistant steels and welding alloys.
This is true both with respect to the kinetics of microstructural evolution and in the estimation
of creep rupture strength. The combined models provide for the first time an ability to predict
new alloys. It would now be interesting for industry to set some challenges, which would
stimulate theoretical predictions and finally experimental verification. The whole process from
the conception of an alloy to its verification should take much less time than has previously
been the case.

In the longer term it is necessary for the microstructure models to predict particle size and
spatial distributions, and the effect of stress and strain on transformation kinetics. Such
information can then be an input to a more sophisticated mechanical model, perhaps based on
dislocation and recovery theory.
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