
Introduction

The formation of austenite is an important component in
the heat treatment of steels. The temperature at which
austenite begins to form during the continuous heating of
steel is termed the Ac1 temperature, and that at which the
steel becomes fully austenitic is the Ac3 temperature. The
corresponding equilibrium temperatures (i.e. those for
an infinitesimally small heating rate) are Ae1 and Ae3,
respectively, with Ac1�Ae1 and Ac3�Ae3 . In previous
work (hereafter referred to as GBMS),1 a neural network
was used to model the variation in these transformation
start and finish temperatures as a function of the steel
chemical composition and the heating rate (the ‘inputs’).
The analysis was conducted on a large data set compiled
from the published literature, taking into account a total
of 21 different alloying elements.

Generally, the trained neural network was demonstrated
to be largely consistent with phase transformation theory,
and its predicted trends (i.e. the variation of Ac1 and Ac3
with the inputs) agreed with established metallurgical
understanding. However, in some cases the trends were
found to be uncertain ( large error bars) and hence difficult
to interpret, and in a few cases the trends differed
considerably from what was expected. Subsequent use of
the model has also revealed that the analysis may have
been over ambitious in the number of composition terms
included as input variables: many of the trace elements
showed little or no significant variation within the data set
used to develop the network. Thus, the model was unable
to learn the dependence of Ac1 and Ac3 on these trace
elements, and as a consequence the model tended, not
surprisingly, to give uncertain predictions when the trace
element concentrations were varied.

The present work has two aims. The first is to repeat the
analysis using a reduced set of variables by eliminating
those variables which (a) show very little variation, (b) are
believed not to influence significantly the austenite forma-
tion process at the concentrations involved, or (c) are likely
to have been inaccurately determined.

The second aim is to introduce a more general method
of data modelling, the Gaussian process model.2,3 The
neural network method in the original work involved the
creation of a large set of models, each with a different level
of complexity. Those models that were too simple, and
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hence unable to capture the trends in the data, were
rejected, as were over complex models which did not
generalise well. Thus, considerable effort was expended in
determining the required complexity of the function
(network) describing the relationship between the input
and output variables. The Gaussian process model, on the
other hand, avoids the explicit parameterisation of the
input–output function. One of the advantages of this is
that it does not require an often ad hoc decision regarding
the complexity of the model (i.e. the number of hidden
nodes and layers in the network). It has been shown that
the Gaussian process is a generalisation of many standard
interpolation methods, including neural networks and
splines.4 In metallurgy, Gaussian processes have been
applied to the problem of modelling recrystallisation in
aluminium alloys.5,6

In the present work, a Gaussian process model is trained
on the reduced data set, and the results compared with
those from the neural network in GBMS. To ascertain
whether the differences arise from the use of a new type of
model or the reduced data set, another Gaussian process
model is trained on the full data set (i.e. all 22 input
variables) used in GBMS.

Data

The original data set consisted of 22 input variables and
two output variables, namely, the Ac1 and Ac3 temperatures
which describe the onset and completion, respectively, of
austenite formation during continuous heating from ambi-
ent temperature. A total of 788 cases (input–output pairs)
were used in the analysis.

In addition to the heating rate, the input variables
consisted of the elements C, Si, Mn, Cu, Ni, Cr, Mo, Nb,
V, W, and Co, together with the trace elements S, P, Ti,
Al, B, As, Sn, Zr, N, and O. However, a close examination
of the dataset indicated that the variation in concentration
for the trace elements was rather small (zero in the cases
of As, Sn, Zr, and O) and possibly insignificant compared
with the estimated precision of the chemical analysis.
Furthermore, in the majority of cases, the trace elements
are in such small concentrations that they are not expected
to have a great influence on the transformation behaviour.
They were therefore eliminated from the list of inputs. The
reduced data set is presented in Table 1.
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Table 1 Reduced data set: the 12 input variables consist
of 11 element concentrations (wt-%) and heating
rate; the two output variables are Ac

1
and Ac

3temperatures

Standard
Variable Range Mean deviation

C 0–0·96 0·30 0·17
Si 0–2·13 0·39 0·41
Mn 0–3·06 0·82 0·38
Cu 0–2·01 0·05 0·13
Ni 0–9·12 1·01 1·48
Cr 0–17·98 1·23 2·38
Mo 0–4·80 0·32 0·37
Nb 0–0·17 0·003 0·013
V 0–2·45 0·05 0·13
W 0–8·59 0·06 0·48
Co 0–4·07 0·06 0·42
Heating rate, K s−1 0·03–50 1·0 11·6
Ac

1
, °C 530–921 724 52

Ac
3
, °C 651–1060 819 55

Data modelling

The problem addressed is one of obtaining a model of
the dependence of an ‘output’ variable, such as the Ac1
temperature, on several input variables, such as the mass
fractions of the different alloying elements. A general
approach to this type of problem is to formulate a
physically motivated, parameterised model which describes
the relationship between the inputs and the output. The
parameters of the model can then be inferred using a set of
measured inputs and outputs (the training data), i.e. these
data are interpolated. This can be done with standard
regression methods such as least squares minimisation.
Once the parameters have been determined, predictions of
the output can be made for any values of the inputs.
However, such an approach is limited to those simple
problems for which a physical model can be devised that
still models the data with sufficient accuracy. To obtain
accurate predictions in more complex situations, it is often
necessary to take an empirical approach, in which the
input–output relationship is determined from the data
without reference to a simplified physical model.

One such approach is neural network modelling. Neural
networks are a flexible approach to data modelling as they
can provide an arbitrarily complex, non-linear mapping
between one or more inputs and an output. This mapping
is parameterised by a set of ‘weights’, the optimum values
of which are determined by training the network.

Gaussian process model

In modelling complex problems empirically, it is not
known what the parameterised form of the input–output
relationship should be. The Gaussian process model is
a way of avoiding having to parameterise this relationship
explicitly by instead parameterising a probability model
over the data.2,3

Let the training data set consist of N input vectors
{x1 , x2 , . . . , xN} and the corresponding set of known outputs
or ‘targets’ be {t1 , t2 , . . . , tN}. A prediction tN+1 can then be
made at any new input value xN+1 , based on these training
data. For brevity, let XN represent the set of input vectors
and tN be the vector of corresponding outputs.

The approach of the Gaussian process model is as
follows. Let P(tN |xN ) be the joint probability distribution
over the N output values in the training data set. This is a
probability distribution in an N-dimensional space.
Similarly, the joint probability distribution of both the
N training data points and the single new point is
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P(tN+1 , tN |xN+1 , XN). In making predictions based on the
training data, it is necessary to find P(tN+1 |xN+1 , D), that
is, the probability distribution over the predicted point
given that the corresponding input xN+1 and all of the
training data D={tN, XN} are known. The relationship
between these quantities comes from the simple rule
of probability, P(A, B)=P(A |B)P(B), which in this case
translates to

P(tN+1 |xN+1 , D)=
P(tN+1 , tN |xN+1 , XN )

P(tN |XN)
. . . . (1)

To evaluate this, it is necessary to choose the form of these
probability distributions. The Gaussian process model
specifies that the joint prior probability distribution of any
N output values is a multivariate Gaussian

P(tN |XN , H)3exp C− 1

2
(tN−m)∞C−1N (tN−m)D (2)

where m is the mean and CN is a covariance matrix which
is a function of XN and H, the latter being a set of
parameters that are discussed below. A similar equation
holds for tN+1 , where tN+1= (tN , tN+1 ). Thus, it can be seen
that the numerator and denominator in equation (1) are
multivariate Gaussians of dimension N+1 and N, respect-
ively, in which case it can be shown that P(tN+1 |xN+1 , D)
is a univariate Gaussian

P(tN+1 |xN+1 , D)=
1

(2p)1/2st̂
exp C− (tN+1− t̂ )2

2s2
t̂

D (3)

with mean t̂ and standard deviation st̂ . This is the desired
probability distribution over the output value for the given
input xN+1 . (Note that this does not indicate that the
input–output function itself is a Gaussian.) As this is an
entire probability distribution, not only can a prediction
be made, but confidence intervals can also be assigned to
this prediction. Typically, a prediction would be reported
as t̂±st̂ , where st̂ is the 1s error determined by the model.

The values of t̂ and st̂ depend on the covariance matrix
CN of the Gaussian process model in equation (2) (see
Appendix). The elements of this matrix Cij are given by the
covariance function C. The form of the covariance function
is central to the Gaussian process model, and embodies the
assumptions about the nature of the underlying input–
output function to be modelled. It is through the covariance
function that the predictions depend upon the inputs in the
training data.

The covariance function used is

C=h1 exp C− 1

2
∑
l=L
l=1

(x(l)i −x(l)j )2
r2l D+h2+s2ndij (4)

This gives the covariance between any two ouput values ti
and tj , with corresponding L dimensional input vectors xi
and xj , respectively. The first term in C specifies the belief
that the underlying function being modelled is smoothly
varying: rl is the characteristic length scale over which the
function varies in the lth input dimension. Examining the
form of this term, it can be seen that when two inputs are
‘close’ (with respect to their length scales) the exponent is
small, so this term makes a large contribution to the
covariance. In other words, if two input vectors are close,
their corresponding outputs are highly correlated, making
it probable that they have similar values. This form of C
places relatively few constraints on the function, and
permits the modelling of non-linear functions.

The second term in equation (4) simply allows functions
to have a constant offset, i.e. have a mean different from
zero. (This could also be done by setting the mean in
equation (2) to m=(1, 1, . . . , 1)c, where c is a hyperparameter
that must be inferred. Instead, it has been chosen to set
m=0 and have all of the hyperparameters in the covariance
function.) The final term is the noise model: dij is the delta
function, so this term gives a contribution to the covariance
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a Ac
1

model predictions of training data, E=11·3°C; b Ac
1

model predictions of test data, E=20·9°C; c Ac
3

model predictions of training data,
E=15·4°C; d Ac

3
model predictions of test data, E=22·7°C

1 Predicted versus target outputs for Ac
1

and Ac
3

Gaussian process models trained on reduced data set: E is root
mean square (rms) value of predictions in each case, i.e. scatter of points about the overplotted predicted=target
line; the error bars s

t̂
are the modelling uncertainties predicted by the Gaussian process model (equation (3))

only when i= j. This case is a constant (input independent)
noise model; the variance of the noise is s2n . Note that this
noise model is for the outputs only: the inputs are assumed
to be noise free.

The set of parameters rl (l=1 . .. L ), h1 , h2 , and sn in
equation (4) are termed hyperparameters because they
explicitly parameterise a probability distribution over the
input–output function rather than the function itself. They
will be denoted H for brevity, as in equation (2). Along
with xN+1 and the training data, the hyperparameters
completely specify the elements of the covariance matrix
and hence the values of t̂ and st̂ (see Appendix).

If enough is known about the problem, these hyperpara-
meters can be set by hand. More commonly, however, their
optimum values must be inferred from the training data.
This is done by maximizing P(H |D), the probability of
the hyperparameters given the training data, with respect
to H. This is related to P(tN |XN , H) in equation (2) via
Bayes’s theorem

P(H |D)=
P(tN |XN , H)P(H)

P(tN |XN)
. . . . . . . . . (5)

The optimisation must usually be done numerically.
The second term in the numerator of equation (5) is the
prior probability distribution over the hyperparameters.
The hyperparameter priors are an important method for
introducing any prior knowledge of the values of the length
scales, or the magnitude of the noise variance. This
approach of maximising the evidence for the hyperpara-
meters is a Bayesian one which automatically embodies
complexity control, even if the prior on the hyperparameters
is uniform (uninformative).7

Results

MODEL PERFORMANCE
In developing a Gaussian process model, the data set was
randomly divided into two halves, each consisting of 394
input–output pairs. The first half (training data) was used
to train the model, and the second half (test data) was then
used to test the ability of the model to generalise its
predictions. To aid interpretation of the model, each input
and output variable was linearly scaled into the range −0·5
to +0·5, using the range values given in Table 1.

Two separate Gaussian process models were developed
in this fashion, one to model each of Ac1 and Ac3 as a
function of the reduced input data set (Table 1). The
performance of these models on the training and the test
data is shown in Fig. 1, by plotting the predicted value t̂
against the target value T . Figure 1 clearly demonstrates
that both models have generalised well, and therefore have
captured the underlying relationships in the training data.
These plots also show the modelling uncertainties st̂
determined by the model (equation (3)). The size of these
uncertainties is commensurate with the scatter of the
predictions about the target values, giving confidence that
the model is making good predictions of its own error.
This can be better seen in Fig. 2, which shows histograms
of the z values. The z value is the number of standard
deviations from which the predicted value differs from the
target value, i.e. z= ( t̂−T )/st̂ . Figure 2 indicates that the
model is predicting reasonable uncertainties, with 94%
(68%) of both Ac1 and Ac3 predicted temperatures lying
within 2st̂(1st̂) of the target value.
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Figure 3 shows the inverses of the length scale hyperpara-
meters for the two Gaussian process models. As can be
seen from equation (4), the inverse square of the length
scale rl gives the scale of the lth input over which the
output varies by a significant amount. Thus, r−1l is a
measure of the ‘relevance’ of the lth input in determining
the output: if rl is small, the output varies considerably as
xl does, so its relevance is large. Note that the relevance is
not quite the same as ‘sensitivity’ of the output t to an
input xl . (This latter quantity would be ∂t/∂xl , which
depends on the value of xl .) Rather, the relevance is an
overall measure of the significance of that input variable in
determining the output. The relevance parameters can be
compared directly with the sw values in GBMS, and show
similar overall results.

According to Fig. 3, the models predict that carbon
explains less of the variation in Ac1 than in Ac3 . This can
be understood physically because the carbon is, in the start-
ing microstructure, present as carbides, with very little of
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it in solution. The average carbon concentration is therefore
of secondary importance for the start of austenite formation.

It is important to note that the length scales reported in
Fig. 3 are in units of the scaled input variable. As the
inputs were scaled to lie in the range −0·5 to +0·5, the
size of the length scale depends on the range of the inputs.
Thus, the reported length scale of 1·68 for carbon in the
Ac1 problem corresponds to a length scale in units of
concentration of 1·61 wt-%, whereas the almost identical
reported length scale of 1·69 for silicon corresponds to a
concentration length scale of 3·60 wt-%, on account of the
larger range of concentrations of silicon in the data set
(Table 1). None the less, it is useful to report length scales
in terms of the scaled variable, as this takes into account
the differences in the typical concentration ranges of the
different alloying elements.

The standard deviation of the noise in the data sn is
one of the hyperparameters learned by the model during
training (see equation (4)). This was found to be sn=
14·0°C and sn=17·5°C for the Ac1 and Ac3 models,
respectively. The noise, along with some additional ‘fitting
uncertainty’, comprises the modelling uncertainty st̂ at a
given point (the error bars in Fig. 1). The average value of
st̂ for the test data is 17·3°C and 19·7°C for Ac1 and Ac3 ,
respectively. Assuming that the fitting uncertainty and
noise add in quadrature, it can be seen that the noise
typically contributes ~85% of the total modelling uncer-
tainty. In other words, the intrinsic noise in the measure-
ments of Ac1 and Ac3 is probably the dominant source
of error.

MODEL PREDICTIONS
Figures 4–6 show the models’ predictions of the effects of
varying the concentration of the different alloying elements
on the Ac1 and Ac3 temperatures. Other than the predicted

Materials Science and Technology March 1999 Vol. 15



Bailer-Jones et al. Gaussian modelling of austenite formation 291

log (HR, K s_1)

Ni, wt-%

C, wt-%

Cr, wt-%

T
em

pe
ra

tu
re

, °
C

& Ac
1

predictions; CC Ac
1
±1s modelling uncertainties; % Ac

3
predictions; D D D Ac

3
±1s modelling uncertainties
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4 Gaussian process model predictions for heating rate (HR), C, Ni, and Cr for given alloys and heating rate

trends shown in Fig. 4 for carbon and the heating rate, all
predictions are for a heating rate of 1 K s−1 and for
Fe–0·2C (wt-%) steels, i.e. the fraction of all alloying
elements other than that being varied is zero. The predicted
effect of the carbon concentration (Fig. 4b) is for a plain
carbon steel (i.e. binary Fe–C alloys), again at a heating
rate of 1 K s−1. The heating rate prediction (Fig. 4a) is for
a binary Fe–0·2C steel.

The peak in the transformation temperature (Fig. 4a)
was not initially expected, although it can be explained if
retained austenite is present in the microstructure. This
prediction is consistent with that given by the neural
network in GBMS, and the reader is referred to that paper
for a discussion.1 The predictions for carbon (Fig. 4b) are
in broad agreement with those obtained in GBMS.

Nickel is an austenite stabiliser and, judging from the
phase diagram, both the Ac1 and the Ac3 temperatures
should decrease with increasing nickel concentration. These
trends are predicted by the Gaussian process models as
illustrated in Fig. 4c. This result is a large improvement
over the results of the previous neural network analysis,
which not only gave an incorrect trend for the Ac1
temperature as a function of the nickel concentration, but
also indicated very large uncertainties in the calculations.

The predictions for chromium (Fig. 4d ) are more interes-
ting and, again, differ significantly from GBMS. The Ac3
temperature goes through a minimum at ~5 wt-%Cr,
which is consistent with a minimum found in the equilibrium
Ae3 temperature at ~7 wt-%. On the other hand, the trend
of Ac1 as a function of chromium is opposite to that
expected for Ae1 ; the reason for this is not understood.

It would be useful to know whether these discrepancies
between the Gaussian process model and the neural
network model are on account of having used a different

model or the reduced data set. To determine this, Gaussian
process models based on the full data set used in GBMS
were developed and used to make predictions for the same
alloys. For brevity, the Gaussian process model trained on
the reduced data set will be referred to as the 12D model
(for 12 input dimensions) and that trained on the full data
set as the 22D model. Both models give essentially identical
trends with heating rate, carbon, and nickel for both Ac1
and Ac3 , indicating that the improved predictions shown
in Fig. 4 are on account of having used the Gaussian
process model rather than the removal of the trace elements.

Figure 5a shows that copper, over the concentration
range considered, has little influence on the Ac3 temperature
but depresses the Ac1 temperature as the concentration
approaches the upper limit of ~1 wt-%. The latter effect
is expected from the phase diagram, as copper increases
the stability of austenite.

The Gaussian process predictions for manganese are
similar to those obtained by the neural network, but the
larger uncertainties predicted by the Gaussian process seem
more reasonable. This is particularly the case when
considering that the model should never predict uncertain-
ties smaller than the inferred noise level. Figure 5b shows
some ‘high frequency’ detail in the variation of the Ac1
predictions for manganese, which is not expected and was
not present in the neural network predictions. This is
reflected by the small length scale (0·09) for the Gaussian
process model. In comparison, the 22D Gaussian process
model predicts less variation, and has a correspondingly
larger length scale (0·22). The discrepancy may be on
account of the 12D model slightly overfitting the data in
this region of the input space.

The Ac1 and Ac3 temperatures show a similar insensitivity
to low concentrations of molybdenum as in the previous
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5 Gaussian process model predictions for Cu, Mn, Mo, and Si: alloys are Fe–0·2C steels, heating rate is 1 K s−1

work (Fig. 5c). As noted in GBMS, the opposite trends of
Ac1 and Ac3 at higher concentrations are consistent with
phase diagram calculations. The 22D Gaussian process
model gives essentially identical predictions.

It is worth mentioning at this point that the Gaussian
process model, like the neural network, is an interpolation
model. Thus, when extrapolating beyond the ranges of the
input values in the training data set, the predictions are
less well determined by the data, so poorer the predictions
would be expected. Correspondingly, the model would be
expected to predict larger uncertainties, and this can be
seen in Figs. 4 and 5. Moving away from the range of the
training data, the predictions become more and more
model dependent, in this case dependent on the form of
the covariance function. Inspection of equation (4) shows
that, well away from the data ( large xl ), the dominant
covariance term is h2 , which is constant, so the extrapol-
ations will tend asymptotically towards a constant value.
The predictions in Figs. 4–6 are mostly for values within
the range of inputs. However, it should be pointed out that
the distribution of the inputs is sometimes skewed towards
low values, e.g. for molybdenum (Table 1). Thus, although
it seems possible that model dependent extrapolation could
explain the ‘turn down’ in Ac1 for high molybdenum
concentrations in Fig. 5c, this is unlikely, as a similar turn
down is seen in GBMS from the neural network, which
has a different model prior. The present authors are
similarly confident that much of the behaviour in the other
plots is ‘real’.

An initial reaction may be that extrapolations should
follow the last trend in the data, rather than tending
towards a constant value. However, it can not necessarily
be justified that such trends influence predictions at very
distant parts of the parameter space. The choice of the
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model prior is thus somewhat philosophical, and will
not be discussed here. It is sufficient to note that the
extrapolation from any model will be model dependent. A
different Gaussian process covariance function could be
introduced to provide different extrapolation behaviours.8

The Gaussian process model gives a predicted trend for
the Ac1 temperature with silicon (Fig. 5d ) which differs
from the neural network predictions. However, given the
very large error bars in the latter case, the neural network
essentially failed to learn any significant trend. The 22D
Gaussian process models give similar predictions and error
bars to those of the 12D Gaussian process models, showing
that the reduced uncertainty is a result of using the
Gaussian process model.

The c+a phase field in Fe–Co alloys is extremely narrow
and the phase boundaries are virtually horizontal on the
plot of temperature versus concentration. This is accurately
reflected in the predictions for cobalt (Fig. 6a). Vanadium
is a very strong carbide forming element, with limited
solubility even in austenite. Hence, it is not surprising that
both the Ac1 and the Ac3 temperatures are insensitive to
the vanadium concentration (Fig. 6b). This is similar to the
predictions of GBMS, but the Gaussian process model
does not predict the sharp increase in both Ac1 and Ac3
between concentrations of 0·1 and 1·0 wt-%. The 22D
Gaussian process models show very similar behaviour to
that of the 12D Gaussian process models.

Model comparison

The performance of the models discussed above (12D
Gaussian process model; 22D Gaussian process model;
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6 Gaussian process model predictions for Co, V, Nb, and W: alloys are Fe–0·2C steels, heating rate is 1 K s−1

Table 2 Comparison of root mean square (rms) errors
E and log predicted errors ln L for test data
obtained by three different models: neural
network model is from GBMS;1 in all cases
one of inputs is heating rate, other inputs are
alloying elements

Model E(Ac
1
), °C E(Ac

3
), °C ln L (Ac

1
) ln L(Ac

3
)

Neural network 20·2 21·8 ... . . .
(22 input dimensions)

Gaussian process 21·0 25·3 971 954
(22 input dimensions)

Gaussian process 20·9 22·7 967 964
(12 input dimensions)

neural network model from GBMS) can be assessed by
comparing root mean square (rms) errors on the test data.
These are given in Table 2. The models give very similar
rms errors for the Ac1 problem. This indicates that
removing the 10 trace variables does not decrease the
quality of the predictions. It also shows that there is little
difference in the average performance of the models,
although the above analysis has shown that the Gaussian
process models give better predictions (as well as more
plausible error bars) for some Fe–0·2C steels.

The smaller Ac3 error for the 12D Gaussian process
model, compared to the 22D Gaussian process model, is
presumably on account of having removed the trace
variables. This would seem to confirm the suspicion that
retaining the trace variables leads to inferior performance,
probably owing to the inaccuracy of their measurement. It
is interesting, however, that this has not affected the Ac1
Gaussian process model. It is possible that the trace
variables are more significant in determining Ac1 than Ac3 ,

but the reduction for Ac3 is small (2·6 °C), so this conclusion
may not be particularly significant.

The rms error does not tell the entire story, as it ignores
the predicted error st̂ . Thus, even if a prediction that differs
greatly from its target value has a correspondingly large
predicted uncertainty, it will nevertheless make a large
contribution to the rms error. This limits the value of the
rms error as a measure of model performance. A measure
that does take into account the predicted uncertainties is
P(tN+1 |xN+1 , D) in equation (3), the probability of a
prediction given the training data. The product of these
probabilities over the K vectors in the test data set gives
the total predicted error

ln L =− a
k=K
k=1

P(tk |xk , D)

= ∑
k=K
k=1 C(Tk− t̂k)2

2s2k
+ ln skD . . . . . . . (6)

where Tk , t̂k , and sk are the target, prediction, and model
predicted uncertainty, respectively, for the kth vector; an
additive constant has been dropped. The measure ln L is a
dimensionless error, with more negative values indicating
a better model. The values of ln L for the Gaussian process
models are listed in Table 2. While the 22D Gaussian
process model gives a larger rms error than does the 12D
Gaussian process model on the Ac3 problem, they have
very similar ln L values. In terms of the consistency of their
predictions with their reported uncertainties, therefore, the
two models are equally good.

The neural network gives slightly lower average errors
than the Gaussian process for the 22D problems. However,
it should be noted that many neural networks with different
degrees of complexity and different initial weights were
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tried before selecting the best, i.e. that which gave the
smallest error on the test data set.1 No such selection was
done (or is necessary) with the Gaussian process, so the
comparison is not entirely fair.

Conclusions

The Gaussian process model has been introduced for
empirically modelling the relationship between a set of
input variables and an output variable. This model has
been applied to the problem of predicting the temperature
at which austenite starts to form Ac1 and the temperature
at which austenite formation is completed Ac3 , during the
continuous heating of a steel alloy. In contrast to previous
work (GBMS), a reduced data set has been used by
removing those trace elements believed to be largely
irrelevant in determining Ac1 and Ac3 at the concentrations
involved. Their irrelevance has been confirmed by analysis,
as Gaussian process models trained on the original full
data set (22 inputs) give very similar results to those of
Gaussian process models trained on the reduced data set
(12 inputs).

The Gaussian process model has the advantage over the
neural network model that a decision regarding the number
of hidden nodes and layers in the network is avoided. The
neural network architecture must often be optimised by
training a range of networks and comparing their perform-
ances on a separate validation data set. No such validation
data set is required when training the Gaussian process,
allowing all of the data to be used for training. Another
advantage of the Gaussian process model is that its
hyperparameters are more interpretable than the weights
in a neural network. The present results have demonstrated
that the Gaussian process model performs at least as well
as the neural network model of GBMS,1 and in many cases
produced better predictions (for example with nickel ) and
smaller error bars (for example with silicon).

Appendix
The predictive probability distribution from the Gaussian
process model (equation (2)) is a univariate Gaussian with
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mean t̂ and standard deviation st̂ (equation (3)). These are
given by (for example, Ref. 9).

t̂=k∞C−1N tN . . . . . . . . . . . . . . (7)

s2
t̂
=k−k∞C−1N k . . . . . . . . . . . . (8)

where

k=[C(x1 , xN+1 ), C(x2 , xN+1 ), . . . , C(xN , xN+1 )] . . (9)

k=C(xN+1 , xN+1 ) . . . . . . . . . . . (10)

and C is the covariance function (equation (4)); CN is the
N×N covariance matrix formed from the N training data
points, the elements of which are Cij=C; x1 , x2 , . . . , xN are
the N input vectors in the training data set corresponding
to the N outputs t1 , t2 , . . . , tN ; and xN+1 is the input at
which a prediction of t is required.
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