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Introduction to Crystallography
Amorphous solids are homogeneous and isotropic because there is

no long range order or periodicity in their internal atomic arrangement.

By contrast, the crystalline state is characterised by a regular arrange-

ment of atoms over large distances. Crystals are therefore anisotropic

– their properties vary with direction. For example, the interatomic

spacing varies with orientation within the crystal, as does the elastic

response to an applied stress.

Engineering materials are usually aggregates of many crystals of

varying sizes and shapes; these polycrystalline materials have prop-

erties which depend on the nature of the individual crystals, but also

on aggregate properties such as the size and shape distributions of the

crystals, and the orientation relationships between the individual crys-

tals. The randomness in the orientation of the crystals is a measure of

texture, which has to be controlled in the manufacture of transformer

steels, uranium fuel rods and beverage cans.

The crystallography of interfaces connecting adjacent crystals can

determine the deformation behaviour of the polycrystalline aggregate;

it can also influence the toughness through its effect on the degree of

segregation of impurities to such interfaces.

1



The Lattice

Crystals have translational symmetry: it is possible to identify a

regular set of points, known as the lattice points, each of which has an

identical environment.

The set of these lattice points constitutes a three dimensional lat-

tice. A unit cell may be defined within this lattice as a space–filling

parallelepiped with origin at a lattice point, and with its edges defined

by three non-coplanar basis vectors a1, a2 and a3, each of which rep-

resents translations between two lattice points. The entire lattice can

then be generated by stacking unit cells in three dimensions. Any vec-

tor representing a translation between lattice points is called a lattice

vector.

The unit cell defined above has lattice points located at its corners.

Since these are shared with seven other unit cells, and since each cell

has eight corners, there is only one lattice point per unit cell. Such a

unit cell is primitive and has the lattice symbol P.

Non–primitive unit cells can have two or more lattice points, in

which case, the additional lattice points will be located at positions

other than the corners of the cell. A cell with lattice points located at

the centres of all its faces has the lattice symbol F; such a cell would

contain four lattice points. Not all the faces of the cell need to have

face–centering lattice points; when a cell containing two lattice points

has the additional lattice point located at the centre of the face defined

by a2 and a3, the lattice symbol is A and the cell is said to be A-centred.

B-centred and C-centred cells have the additional lattice point located

on the face defined by a3 & a1 or a1 & a2 respectively. A unit cell with
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two lattice points can alternatively have the additional lattice point at

the body-centre of the cell, in which case the lattice symbol is I. The

lattice symbol R is for a trigonal cell; the cell is usually defined such

that it contains three lattice points.

The basis vectors a1, a2 and a3 define the the unit cell; their mag-

nitudes a1, a2 and a3 respectively, are the lattice parameters of the unit

cell. The angles a1 ∧a2, a2 ∧a3 and a3 ∧a1 are conventionally labelled

γ, α and β respectively.

Note that our initial choice of the basis vectors was arbitrary since

there are an infinite number of lattice vectors which could have been

used in defining the unit cell. The preferred choice includes small basis

vectors which are as equal as possible, provided the shape of the cell

reflects the essential symmetry of the lattice.

The Bravais Lattices

The number of ways in which points can be arranged regularly in

three dimensions, such that the stacking of unit cells fills space, is not

limitless; Bravais showed in 1848 that all possible arrangements can be

represented by just fourteen lattices.

The fourteen Bravais lattices can be categorised into seven crystal

systems (cubic, tetragonal, orthorhombic, trigonal, hexagonal, mono-

clinic and triclinic, Table 1); the cubic system contains for example,

the cubic-P, cubic-F and cubic-I lattices. Each crystal system can be

characterised uniquely by a set of defining symmetry elements, which

any crystal within that system must possess as a minimum requirement

(Table 1).
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System Conventional unit cell Defining symmetry

Triclinic a1 6= a2 6= a3, α 6= β 6= γ monad

Monoclinic a1 6= a2 6= a3, α = γ, β ≥ 90◦ 1 diad

Orthorhombic a1 6= a2 6= a3, α = β = γ = 90◦ 3 diads

Tetragonal a1 = a2 6= a3, α = β = γ = 90◦ 1 tetrad

Trigonal a1 = a2 6= a3, α = β = 90◦, γ = 120◦ 1 triad

Hexagonal a1 = a2 6= a3, α = β = 90◦, γ = 120◦ 1 hexad

Cubic a1 = a2 = a3, α = β = γ = 90◦ 4 triads

Table 1: The crystal systems.

The Bravais lattices are illustrated in Fig. 1, each as a projection

along the a3 axis. Projections like these are useful as simple represen-

tations of three–dimensional objects. The coordinate of any point with

respect to the a3 axis is represented as a fraction of a3 along the point

of interest; points located at 0a3 are unlabelled; translational symme-

try requires that for each lattice point located at 0a3, there must exist

another at 1a3.

Directions

Any vector u can be represented as a linear combination of the basis

vectors ai of the unit cell (i = 1, 2, 3):

u = u1a1 + u2a2 + u3a3 (1)

and the scalar quantities u1, u2 and u3 are the components of the vector

u with respect to the basis vectors a1, a2 and a3. Once the unit cell is

defined, any direction u within the lattice can be identified uniquely by

4



Fig. 1: Projections of the fourteen Bravais lattices

along the a3 axis. The numbers indicate the coor-

dinates of lattice points relative to the a3 axis; the

unlabelled lattice points are by implication located at

coordinates 0 and 1 with respect to the a3 axis. Note

that the P, F, I, C and R type cells contain 1, 4, 2,

2 and 3 lattice points per cell, respectively.
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its components [u1 u2 u3], and the components are called the Miller in-

dices of that direction and are by convention enclosed in square brackets

(Fig. 2).

Fig. 2: Miller indices for directions and planes.

It is sometimes the case that the properties along two or more dif-

ferent directions are identical. These directions are said to be equivalent

and the crystal is said to possess symmetry. For example, the [1 0 0]

direction for a cubic lattice is equivalent to the [0 1 0], [0 0 1], [0 1 0],

[0 0 1] and [1 0 0] directions; the bar on top of the number implies that

the index is negative.

The indices of directions of the same form are conventionally en-

closed in special brackets, e.g. < 1 0 0 >. The number of equivalent

directions within the form is called the multiplicity of that direction,

which in this case is 6.

Planes

If a plane intersects the a1, a2 and a3 axes at distances x1, x2 and

x3 respectively, relative to the origin, then the Miller indices of that

6



plane are given by (h1 h2 h3) where:

h1 = φa1/x1, h2 = φa2/x2, h3 = φa3/x3.

φ is a scalar which clears the numbers hi off fractions or common factors.

Note that xi are negative when measured in the −ai directions. The

intercept of the plane with an axis may occur at ∞, in which case the

plane is parallel to that axis and the corresponding Miller index will be

zero (Fig. 2).

Miller indices for planes are by convention written using round

brackets: (h1 h2 h3) with braces being used to indicate planes of the

same form: {h1 h2 h3}.

The Reciprocal Lattice

The reciprocal lattice is a special co–ordinate system. For a lattice

represented by basis vectors a1, a2 and a3, the corresponding reciprocal

basis vectors are written a∗

1, a∗

2 and a∗

3, such that:

a∗

1 = (a2 ∧ a3)/(a1.a2 ∧ a3) (2a)

a∗

2 = (a3 ∧ a1)/(a1.a2 ∧ a3) (2b)

a∗

3 = (a1 ∧ a2)/(a1.a2 ∧ a3) (2c)

In equation 2a, the term (a1.a2 ∧ a3) represents the volume of the

unit cell formed by ai, while the magnitude of the vector (a2 ∧ a3)

represents the area of the (1 0 0)A plane. Since (a2 ∧ a3) points along

the normal to the (1 0 0)A plane, it follows that a∗

1 also points along the
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Fig. 3: The relationship between a∗1 and ai. The

vector a∗1 lies along the direction OA and the volume

of the parallelepiped formed by the basis vectors ai is

given by a1.a2∧ a3, the area OPQR being equal to

|a2∧ a3|.

normal to (1 0 0)A and that its magnitude |a∗

1| is the reciprocal of the

spacing of the (1 0 0)A planes (Fig. 3).

The components of any vector referred to the reciprocal basis rep-

resent the Miller indices of a plane whose normal is along that vector,

with the spacing of the plane given by the inverse of the magnitude of

that vector. For example, the reciprocal lattice vector u∗ = (1 2 3)

is normal to planes with Miller indices (1 2 3) and interplanar spacing

1/|u∗|.

We see from equation 3 that

ai.a
∗

j = 1 when i = j, and ai.a
∗

j = 0 when i 6= j

or in other words,

ai.a
∗

j = δij
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δij is the Kronecker delta, which has a value of unity when i = j and is

zero when i 6= j.

Example: Electrons in Metals

Metals are electrical conductors because some of the electrons are

able to move freely, even though they move in a periodic array of positive

metal ions. Electrons are waves, characterised by a wave number k

k = ±
2π

λ

where λ is the wavelength. The lattice does not affect the motion of

these electrons except at critical values of k, where the lattice planes

reflect the electrons†. For a square lattice, these critical values of k are

given by

k = ±
nπ

a sin θ
(3)

where a is the lattice parameter and θ is the direction of motion. The

component of k along the x axis is kx = k sin θ and since θ = 0, it follows

that reflection occurs when kx = ±π/a and similarly when ky = ±π/a.

This can be represented in k–space, which is reciprocal space with

a reciprocal lattice parameter of magnitude 2π/a. In Fig. 4, electrons

are reflected in the lattice whenever k falls on any point on the square

ABCD. This square is known as the first Brillouin zone boundary.

Electron energy contours are frequently plotted in k–space. Inside

a Brillouin zone, the energy of electrons can increase ‘smoothly’ with

† Reflection occurs when the Bragg law is satisfied, i.e. when k.g= 0.5g2
,

where g is a reciprocal lattice vector representing the planes doing the reflecting.
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Fig. 4: The first Brillouin zone for a two–dimensional

square lattice. Electron energy contours are also plot-

ted. Note the discontinuity at the first Brillouin zone

boundary.

k; there is then a discontinuity (an energy gap) at the zone boundary.

This is followed by a second Brillouin zone (n = 2 in equation 3) and so

on.

Fig. 5 shows the shape of the first Brillouin zone for the face–centred

cubic lattice, drawn in k–space. Reflections in this lattice occur first from

the {1 1 1} and {2 0 0} planes, so the boundaries of the zone are parallel

to this.
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Fig. 5: The shape of the first Brillouin zone for a

three–dimensional face centred–cubic lattice.

Symmetry

Although the properties of a crystal can be anisotropic, there may

be different directions along which they are identical. These directions

are said to be equivalent and the crystal is said to possess symmetry.

That a particular edge of a cube cannot be distinguished from any

other is a measure of its symmetry; an orthorhombic parallelepiped has

lower symmetry, since its edges can be distinguished by length.

Some symmetry operations are illustrated in Fig. 6; in essence, they

transform a spatial arrangement into another which is indistinguishable

from the original. The rotation of a cubic lattice through 90◦ about

an axis along the edge of the unit cell is an example of a symmetry

operation, since the lattice points of the final and original lattice coincide

in space and cannot consequently be distinguished.

We have already encountered translational symmetry when defin-

ing the lattice; since the environment of each lattice point is identical,

translation between lattice points has the effect of shifting the origin.
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Fig. 6: An illustration of some symmetry operations.

Symmetry Operations

An object possesses an n-fold axis of rotational symmetry if it coin-

cides with itself upon rotation about the axis through an angle 360◦/n.

The possible angles of rotation, which are consistent with the transla-

tional symmetry of the lattice, are 360◦, 180◦, 120◦, 90◦ and 60◦ for

values of n equal to 1, 2, 3, 4 and 6 respectively. A five–fold axis

of rotation does not preserve the translational symmetry of the lattice

and is forbidden. A one-fold axis of rotation is called a monad and the

terms diad, triad, tetrad and hexad correspond to n = 2, 3, 4 and 6

respectively.

All of the Bravais lattices have a centre of symmetry. An observer
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at the centre of symmetry sees no difference in arrangement between the

directions [u1 u2 u3] and [−u1 −u2 −u3]. The centre of symmetry is such

that inversion through that point produces an identical arrangement

but in the opposite sense. A rotoinversion axis of symmetry rotates a

point through a specified angle and then inverts it through the centre

of symmetry such that the arrangements before and after this combined

operation are in coincidence. For example, a three-fold inversion axis

involves a rotation through 120◦ combined with an inversion, the axis

being labelled 3.

A rotation operation can also be combined with a translation par-

allel to that axis to generate a screw axis of symmetry. The magnitude

of the translation is a fraction of the lattice repeat distance along the

axis concerned. A 31 screw axis would rotate a point through 120◦ and

translate it through a distance t/3, where t is the magnitude of the

shortest lattice vector along the axis. A 32 operation involves a rotation

through 120◦ followed by a translation through 2t/3 along the axis. For

a right–handed screw axis, the sense of rotation is anticlockwise when

the translation is along the positive direction of the axis.

A plane of mirror symmetry implies arrangements which are mirror

images. Our left and right hands are mirror images. The operation of

a 2 axis produces a result which is equivalent to a reflection through a

mirror plane normal to that axis.

The operation of a glide plane combines a reflection with a trans-

lation parallel to the plane, through a distance which is half the lattice

repeat in the direction concerned. The translation may be parallel to a

unit cell edge, in which case the glide is axial; the term diagonal glide
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refers to translation along a face or body diagonal of the unit cell. In

the latter case, the translation is through a distance which is half the

length of the diagonal concerned, except for diamond glide, where it is

a quarter of the diagonal length.

Crystal Structure

Lattices are regular arrays of imaginary points in space. A real

crystal has atoms associated with these points. The location of an atom

of copper at each lattice point of a cubic–F lattice, generates the crystal

structure of copper, with four copper atoms per unit cell (one per lattice

point), representing the actual arrangement of copper atoms in space.

The atom of copper is said to be the motif associated with each

lattice point:

lattice + motif = crystal structure

The motif need not consist of just one atom. Consider a motif consisting

of a pair of carbon atoms, with coordinates [0 0 0] and [1
4

1
4

1
4
] relative

to a lattice point. Placing this motif at each lattice point of the cubic-F

lattice generates the diamond crystal structure (Fig. 7), with each unit

cell containing 8 carbon atoms (2 carbon atoms per lattice point).

Some Crystal Structures

The cubic-F zinc sulphide (zinc blende) structure (Fig. 8) is similar

to that of diamond, except that the motif now consists of two different

atoms with coordinates [0 0 0] and [1
4

1
4

1
4
]. Gallium arsenide also has

the zinc blende structure.

The sodium chloride structure (also adopted by CrN, HfC, TiO)

can be generated by placing a motif consisting of a sodium atom at
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Fig. 7: Projection of the diamond crystal structure

along the a3 axis.

Fig. 8: Projection of the zinc blende crystal structure

along the a3 axis.

[0 0 0] and a chlorine atom at [0 0 1
2
] at each lattice point of the cubic-F

lattice (Fig. 9).

The fluorite structure of CaF2 is obtained by placing a motif of a

calcium atom at [0 0 0] and two fluorine atoms at [1
4

1
4

1
4
] and [1

4
1
4

3
4
] at

each lattice point of the cubic-F structure, so that the unit cell contains
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Fig. 9: Projection of the chloride crystal structure

along the a3 axis.

a total of four calcium atoms and eight fluorine atoms, each fluorine

atom surrounded by a tetrahedron of calcium atoms, and each calcium

atom by a cube of eight fluorine atoms (Fig. 10). The fluorite structure

is adopted by many compounds such as CoSi2, UO2 and Mg2Si.

Fig. 10: Projection of the fluorite crystal structure

along the a3 axis.

The crystal structure of the intermetallic compound Fe3Al which
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contains 16 atoms per unit cell may be generated by placing a motif of

an Al atom at [0 0 0] and Fe atoms at [0 0 1
2
], [1

4
1
4

1
4
] and [− 1

4
1
4

1
4
] at

each lattice point of the cubic-F lattice.

Interstices

The atoms inside a unit cell do not fill all space. The empty space

represents the interstices. It is often the case that these interstices can

accommodate small impurity atoms. As an example, we shall con-

sider the crystal structure of iron which at ambient temperature has

the cubic–I lattice with an atom of iron at each lattice point. There

are two kinds of interstitial sites capable of accommodating small atoms

such as carbon or nitrogen. These are the tetrahedral and octahedral

sites as illustrated in Fig. 11.

Crystallography and Crystal Defects

A plane of atoms can glide rigidly over its neighbour in process

described as slip with the slip system defined by the plane and the di-

rection of slip. This kind of deformation requires enormous stresses, far

greater than those required to actually deform a crystal. This is because

almost all crystals contain defects known as dislocations. A dislocation

enables the planes to glide in a piecewise manner rather than the rigid

displacement of the entire plane. This greatly reduces the stress required

to cause slip.

A good analogy to illustrate the role of a dislocation is to imag-

ine the force required to pull an entire carpet along the floor. On the

other hand, if a bump is introduced into the carpet, the force needed

to move the bump along is much smaller. The amount and direction of
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Fig. 11: The main interstices in the body–centred

cubic structure of ferrite. (a) An octahedral interstice;

(b) a tetrahedral interstice; (c) location of both kinds

of interstices.

displacement produced by propagating the bump is, in the context of a

dislocation, known as its Burgers vector.

Crystals may also contain point defects, which are imperfections of

occupation. A vacancy is when an atom is missing from a site which

should be occupied. An interstitial occurs when an atom is forced into

a space within the crystal structure, where atoms are not normally lo-

cated.
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Polycrystalline materials contain many crystals; another common

term for crystals in such materials is grains. Atoms in the grain bound-

ary between crystals must in general be displaced from positions they

would occupy in the undisturbed crystal. Therefore, grain boundaries

are defects.
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