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Abstract

Numerical solutions are presented for the growth of spherical precipitates incorporat-
ing the effect of interface curvature on local equilibrium at the interface in two-phase

binary systems. This corrects an analytical solution [1].

Introduction

In recent work [1], we provided an analytical solution for the diffusion—controlled growth
of a sphere including capillarity. It has been anonymously pointed out to us that this contains
an inconsistency.

The concentration field in the matrix surrounding a spherical particle has to meet Fick’s

second law, which in spherical coordinates is:

dc DO [ ,0c
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where ¢ is the concentration around the particle, D is the diffusion coefficient, assumed to be
independent of concentration, t stands for time and r is the radial coordinate.

We proposed a solution to equation (1) as follows:

where

and
6{a} = éexp{—%} - gerfc{%} ()

where @ is the average concentration of solute in the alloy, p is the precipitate radius, ¢®7 is
the concentration of solute in the matrix (3) in equilibrium with the precipitate (v), o is the
surface energy per unit area, v” is the volume per atom in the precipitate phase v, k is the

Boltzmann constant, T is the temperature and ¢? the solute concentration of the precipitate
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(7) in equilibrium with 3, erfc is the complementary error function and o = p/V/Dt is a growth
parameter. I' is commonly referred as the capillarity constant [2].

Equation (2) is obtained using a similarity transformation [3] but this assumes that ¢{a}
is constant, which is not. We do not know how to analytically solve this difficulty, but the
problem requires a solution given the need to predict the kinetics of precipitation in steels. We

therefore present a numerical solution.

Method

Tanzilli and Heckel [4] have presented a numerical solution for sphere growth in the absence

of capillarity. Thus, equation (1) can be expressed as
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where n = 0,1, 2, ..., N are the nodes that divide the matrix phase in N elements each of length
Ar (Fig. 1), j is a time interval, ¢/ is the concentration in n at the time interval j, At is the
increment in time, L is the zero mass transfer boundary at the matrix, i.e. where ¢y = ¢y,

and ¢7t! the interface velocity at the time interval j+ 1. The time increment was set to satisfy

the restriction for stable and non-oscillatory solutions to be

Ar?
At < 0.25? (6)
C
/N
0%67 I
C
Cﬁ I 2_L-P
5 AN
=
n=0 n=N
r=p r=L

Fig. 1 Definition of finite-difference terminology.



When capillarity effects are considered, the mass transfer equation (5) is similarly ex-

pressed as ' ' ‘
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where p/ is the particle radius at time interval j and

d=e-e-en(1-2) ®
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is the critical radius, cg the solute concentration at the matrix interface (Fig. 1), which is
equivalent to the boundary conditions [1] met by setting the initial concentrations of all the
nodes equal to ¢ at ¢ = 0 except ¢,, which is calculated assuming an initial particle radius of
p/p.= 1.01. Equations (5,7,8) were thus simultaneously solved and their results are shown in
Fig. 2, where the variation of the growth parameter « is plotted as a function of p/p, for a
variety of compositions (Fig. 2a); o was scaled with a starting radius of p° = 1.01 and Q with
values of ¢ = 1 and ¢#7 = 0. The variation of the interface velocity g with p/p,_ is shown
in Fig. 2b. The convergence of equations (5,7,8) was achieved when as At was decreased to
a convenient value, a negligible change in g7 was produced, and the value of N was such that
cy >~ C.

In Fig. 2a « approaches asymptotically the value predicted by Zener’s theory; this is
expected as for large p/p, the capillarity effect becomes less important. Consistent with this,
the velocity (Fig. 2b) approaches a value given by ¢ = Da?/(2p) at large radii, while it
approaches zero for small values as the driving force for growth vanishes due to capillarity.

The accuracy of the predictions given by the analytical solution [1] is illustrated in Fig. 2b
where ¢ is plotted with dotted lines against p/p, for the indicated values of 2. The approximate
values given by the analytical method adequately predict the velocity trends; in the range of
solutions observed, the maximum error was of the order of 11%; thus the analytical solution

may be used for calculations where large precision is not required.

Summary

A numerical solution for the growth of particles when capillarity effects are prominent is
presented. The behaviour of the solution is similar to that of an earlier (incorrect) analytical

solution [1], and its precision may be acceptable for many kinetic predictions.
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Fig. 2 Finite difference solution for (a) o and (b) g. The dotted lines represent

calculations using the analytical solution.
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