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e What we are trying to solve i1s the Time
Independent Schrodinger’s equation:

—>—V2(r) + V(r)¥(r) = Ey(r)

2m

e This is a many-body equation and is VERY
expensive to solve exactly, e.g. Cl, QMC. These
methods can typically treat only a few atoms.

e For any materials problem of interest we need to
employ another approach.



JCISILy rurncuoral 1naeory i1

e The Density functional theory of Hohenberg, Kohn
and Sham! states:

The total ground state energy of a system is a unique
functional of the electron density, p. The minimum
energy of this functional is the ground-state energy
of the system and the density that yields this is the
exact single particle density.

e With this statement they replaced the many-
electron problem with an equivalent set of self-
consistent one-electron equations, the Kohn-Sham
equations.

P. Hohenberg and W. Kohn, Physical Review 136B, 864-871 (1964);
W. Kohn and L.J. Sham, Physical Review 140A, 1133-1138 (1965)
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e The Kohn-Sham energy functional is:

e’ [ p(r)p(x’)
E = ZZgi‘I'Eion—ion_?/ |I'—I"| drdr
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—l—/p(r)(Em — Vze)dr

e The Kohn-Sham equations are:

gii(r)

[_iw + Vion(r) + VE(r) 4+ Vae(r) | 9i(r)
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p(r) = 2 Z |9hs(r)|?

v —

Via(r) = 62/ p(r3,|dr’
5E:vc

_ lo(r)]
Vwc(r) T 5p(r)

e These Kohn-Sham equations represent the mapping
of the interacting many-body equation onto a system
of non-interacting electrons moving in an effective
potential due to all the other electrons.
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e The general scheme for solving the equations is:

1. Make an initial guess at the charge density;
typically a superposition of atomic charge
densities.

2. Construct the potentials with this.
3. Solve for the eigenvalues and eigenvectors, ;'s.
4. Construct a new density from these.

5. Mix the old and new densities together to form a
new input density.

6. Repeat from step 2 until the input and output
densities agree within some criteria.



APPIroAntatiornts.-
Exchange-Correlation Functional

e The only thing we do not know Is what the exact
exchange-correlation functional is.

o If we knew the exact exchange-correlation
functional then we could solve the problem exactly.
Density functional theory is not an approximation.

e \We do not, however, know what the functional is
so we must make a guess for this.

e The guess we make in general Is the so called
local-density approximation:

The exchange-correlation per electron at a point in
space is the same as for a homogeneous electron gas
of the same electron density.

Boelp(r)] = / e o) pl(r)dr

e This is still the most widely used functional

although a lot of calculations now use the generalised

gradient approximation?.

2AD. Becke, Physical Review A 38, 3098 (1988)
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APPIroaAnTiations.-
Pseudopotentials |

e When atoms bond together it is the valence (outer)
electrons that take part in the bonding.

e What pseudopotentials do is replace the full
potential (due to the nucleus) with one due to a
combination of the nucleus and the core electrons.

e So pseudopotentials are an effective potential
constructed so as to mimic the potential a valence
electron feels due to the combination of the ion core

and the core electrons 3.

3M.L. Cohen and V. Heine, Solid state physics 24, 37 (1970)
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APPIroaAnTiations.-
Pseudopotentials |i
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e In order to perform calculations of interest we need
to perform calculations on systems which are not
periodic; such as surfaces and vacancies.

e The methods we typically use can only deal with
periodic systems.

e What we do is create a periodic cell from the
nonperiodic system.

Vacancy:
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Surface:
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e Have to be careful that cell is large enough that
there is little interaction between periodic images of
the vacancy or surface.
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e Most simple metal surfaces do not reconstruct but
lots of semiconductor surfaces do.

e Silicon does forming a dimerised surface thus
reducing the number of dangling bonds.

KRR
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e Reconstructions such as tilted dimers only happen
if you break the symmetry.
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e When surfaces reconstruct they do so to lower their
surface energy.

e This might be to try and saturate dangling bonds
or it may be more preferable to put one atom species
on the surface rather than another.

e Many other factors also influence what the most
stable surface reconstruction is.

e An understanding of the energetics of the surface
reconstructions is essential for understanding the
equilibrium driving forces for a system.
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e For systems containing more than one atomic
species we need to address the problem of defining a
chemical potential.

e Why?

e Surface reconstructions on the CoSiy(100) surface

2 Sl atoms — | | I
I | |
| | I
1 Coaom — I | |
| | I
I | |
| | I

e Cell on the left has 3 Co’s and 8 Si's the one on
the right 4 Co’s and 6 Si’s; neither is stoichiometric.

e If we want to calculate the surface energy of either
cell we need to define the chemical potential of the
Co and Si atoms.

HCoSis, — HCo + 2usi + Hoosio
OxfordMaterials
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e What an STM tip sees is the surface electronic
structure, this is not always the same as the
underlying physical surface.

e A simple model can be used to produce simulated
STM images from an electronic structure calculation.

e By taking eigenstates within the energy window
of the tunnelling a simulated STM image can be
produced that gives at least a qualatative description
of what is observed.

SURFACE
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e The picture above shows a number of possible
bonding sites for a Co atom on a Si(100) surface.

e To find the real site in which the Co atom sits it is
necessary to perform calculations for all the sites to
see which is most stable.
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COrnciusiors

e The calculations confirm the models that have
been proposed that suggest that the surface is always
silicon terminated.

e The calculations indicate that it is likely that the
observed c(2x2) (100) surface reconstruction is one
due to an extra half layer of silicon.

e The unusual bonding configuration for the silicon
leads to a situation where saturating more dangling
bonds is offset by the decrease in strength of the
bonds due to the loss of the ability to relax.

e STM images show surface electronic structure
which is not always the same as the physical
structure.

e When Co bonds to Si (100) it wants to sit in a
packed enviroment with lots of neighbours.
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