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Abstract
We are entering an era where it may become

possible to calculate important mechanical properties
such as toughness and fatigue. Attempts to do this for
weldments have opened up new avenues of research,
aspects of which are described here. A recommenda-
tion is made about the optimum scheme for modelling
materials failure.

Introduction
Our theoretical understanding of the various as-

pects of welding varies in the solidity of its foundations
and in its predictive powers [1]. Many calculations in-
volved are very difficult. The most intractable of these
problems lies in predicting the mechanical behaviour
of a weldment [2,3]. For there are many variables, in-
cluding a variety of heterogeneities, the mean chemical
composition, processing parameters, heat treatments,
imperfections, and changes that occur during service,
which determine performance.

Mechanical properties can be measured with preci-
sion and the data used in safe design. But given a
comprehensive description of material and process
parameters, it is not yet possible to predict most of
these properties.

There are many properties of interest. But to
illustrate the difficulties and the way forward, I shall
describe just two, the hardness and the toughness.

Hardness
It is common practice to design the welding pro-

cedure and the heat treatment to keep the hardness
below some critical value based on experience. The
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hardness is often a measure of the potential for brittle
fracture or the susceptibility to hydrogen–induced or
stress–corrosion cracking [4]. This, of course, is the
reason for the existence of carbon–equivalent equa-
tions where hardenability is kept below some maxi-
mum value in order to avoid unacceptable peak values
in the heat–affected zones (HAZ’s) of welds. A typi-
cal plot of how the hardness is expected to vary in the
HAZ of a quenched and tempered martensitic steel is
illustrated in Fig. 1 [5].

Fig. 1: Typical variation in hardness in the heat affected

zone of QT steel [5].

The detailed variation in HAZ hardness, of the
kind illustrated in Fig. 1, is due to a combination of
factors including the gradients in the austenite grain
structure, the variation in the thermal cycle experi-
enced as a function of position and the chemical com-
position of the steel itself. The complex transforma-
tions in the HAZ were modelled by Ion, Easterling and
Ashby in 1984 [6]. The model contained a distributed
heat source to represent the welding arc, adapted from



           

Rosenthal’s theory of heat flow. A key feature of the
model was the concept of kinetic strength, a parameter
which, by combining time and temperature, enables
the effect of continuous heating or continuous cool-
ing on the kinetics of transformations to be modelled.
They were therefore able to calculate the dissolution
and growth rates of carbides and nitrides during the
heating part of the thermal cycle, and hence the effect
of microalloying elements on the growth of austenite
grains in the heat affected zone. Transformations dur-
ing cooling were modelled using a representation of
experimental continuous cooling transformation dia-
grams within a loose Avrami formulation. Finally, the
hardness was related to the microstructure using a rule
of mixtures, the hardnesses of the individual phases
being estimated from empirical equations containing
chemical composition and cooling rate as variables.
With appropriate calibration, Ion et al. demonstrated
a model which not only gave reasonable fit with exper-
imental data, but also permitted all the trends to be
reproduced in an self–consistent manner which could
be represented on ‘HAZ maps’.

Similar work on the hardness of hot–wire laser
welds has been reported by Metzbower et al. [7], on
the basis of calculated fusion–zone microstructure [8].

Hardness of the fusion zone: The devel-
opment of microstructure is influenced by the chem-
ical driving force, a variety of rate phenomena and
spatial interference between growing particles. The
microstructure of the fusion zone of a weld has been
modelled using such a framework of thermodynam-
ics, individual–particle kinetics and overall transfor-
mation kinetics [8,9,10]. It is possible to obtain quite
reasonable estimates of weld metal microstructures as
a function of the detailed chemical composition, weld-
ing conditions and other relevant parameters. Some
example calculations are illustrated in Fig. 2, which
shows the dramatic effects of carbon and boron on
the microstructure [9].

For an individual phase, the strength can be fac-
torised into a number of intrinsic components [2]:

σ = σFe +
∑

i

xiσSSi + xCσC +KL{L}+KDρ
0.5
D

where xi is the concentration of a substitutional solute
which is represented here by a subscript i. The other
terms in this equation can be listed as follows:

KL strengthening due to ‘grain’ size, 115 MN m−1

KD dislocation strengthening, 7.34× 10−6 MN m−1

σFe pure, annealed Fe, 219 MN m−2 at 300 K
σSSi substitutional solute (i) strengthening
σC solid solution strengthening due to carbon
ρD dislocation density, typically 1016 m−2

L measure of the ferrite plate size, typically 0.2µm

Fig. 2: Calculated microstructures of manual metal arc

weld deposits as a function of chemical composition. The

boron concentration makes a remarkable difference to the

microstructure.

Given the microstructure, the yield strength can
be estimated from that of the individual phases, ei-
ther as a rule of mixtures [2], i.e. σ =

∑
i σiVi where

Vi is the fraction of phase i, and σi the corresponding
strength. Alternatively, a more sophisticated compos-
ite strengthening theory may be used [11,12]. A rule
of mixtures will work well when each of the phases
has a substantial presence in the microstructure; it
would not be appropriate to apply it to a small frac-
tion of precipitate present in a matrix. It can be shown
that the rule fails when there are large differences in
the mechanical properties of the constituent phases,
as illustrated in Fig. 3(i). Fig. 2 shows that the mi-
crostructure can be particularly sensitive to carbon
at low concentrations; Fig. 3(ii) shows that this is



         

reflected in the calculated strength. The calculated
strength can be converted into hardness.

Fig. 3: (i) Strength of mixtures of bainite and marten-

site. Curve (a) shows the strength calculated using the

rule of mixtures, (b) the strength including constraint but

neglecting the detailed chemical composition of the indi-

vidual phases and (c) the model including constraint and

composition [14]. The points are experimental data from

[15]. (ii) Calculated yield and ultimate tensile strength of

weld metal as a function of the carbon concentration [2]

Hardness changes due to tempering: Apart
from the heat–affected zone, many welding alloys, in-
cluding those used in the construction of submarines
and power plant, have a martensitic microstructure.
It is useful then to be able to estimate hardness
changes during heat treatment. Tempering marten-
site leads to the precipitation of carbon from solid so-
lution, followed by recovery and recrystallisation. All
of these processes involve some combination of nucle-
ation, growth and overall kinetics. There is an impres-
sive model due to Venugopalan and Kirkaldy which
partly addresses these issues [16]. It is not appropri-
ate to present here the full theory, but some equations
are discussed in order to illustrate the level of sophis-

tication. For example, account is taken of both lattice
diffusion (DL) and dislocation pipe diffusion (DP ) so
the effective diffusion coefficient is

Deff = DL(1− f) +DP f

where f is the fraction of atoms at the dislocation
pipes. In this way, it is also possible to account for
the dislocation cells (size L) that exist in martensitic
microstructures. Indeed, the dislocation cells are al-
lowed to coarsen alongside the precipitate dispersion
using pinning and kinetic theory:

d(L2)

dt
=

(
1− L

Ll

)
k0 exp

{
− Q

RT

}

where k0 and Q are kinetic constants and Ll =
8r∗/3VV is the limiting grain size given by standard
pinning theory, VV is the volume fraction of precip-
itates and r∗ the mean precipitate size. The varia-
tion in r∗ is modelled using Ostwald ripening theory
adapted for multicomponent diffusion, which is dealt
with quite rigourously in a consistent thermodynamic
framework. The model requires an input of the ini-
tial cementite size, which the authors represent using
an empirical equation based on experimental data for
a large number of steels. Once the microstructure is
calculated in this way, dislocation theory is used to es-
timate the yield strength and hence the hardness. The
agreement between experiment and theory is found to
be very good for a large number of alloys, both in
terms of microstructure and strength.

In spite of its success, the theory cannot handle
complications such as transitions between carbides.
Although the theory for complex precipitation reac-
tions is now available [17], there is no corresponding
link between the calculated microstructure and the
hardness. A different approach could be based on
Avrami theory in which the extent ξ of the reaction
can be assumed to be related to a normalised change
in the hardness as follows:

ξ{t} =1− exp{−kAtn}

with ξ{t} =
H0 −H{t}
H0 −HF

and kA = k0 exp

{
− Q

kT

} (1)

where T is the absolute temperature, t is the time in
hours, and k0, Q and n are rate constants, H0 is the
hardness of untempered martensite, HF is the hard-
ness in the fully softened condition and H{t} the hard-
ness after an isothermal heat treatment.

Although the relationship in equation 1 has some
justification in science, it nevertheless is a simplifica-
tion of the real processes that happen during tem-
pering. Discovery of the rate constants by fitting



         

to experimental data nevertheless provides a conve-
nient method of interpolating and extrapolating the
data. The method also suggests that in deriving the
empirical fitting–parameters, the variables of interest
are not T , t and ξ, but rather T−1 and ln{t} with
ln{− ln{1 − ξ}}. The results from an analysis of this
kind are illustrated in Fig. 4.

Fig. 4: The calculated hardness for Fe 0.21C 0.41Si

0.33Mn 1.77Cr 0.41Mo 3.87Ni wt% steel, with a marten-

sitic microstructure, as a function of the tempering tem-

perature and time [18]

Some experimental data for the steel described
in Fig. 4 are reproduced in Fig. 5 in order to reveal
complications, not accounted for in the theories de-
scribed, when conducting post–weld heat treatments.
Such heat treatments have the intention of reducing
the hardness, but it is sometimes forgotten that the
temperature at which austenite formation begins can
be quite low for many modern alloys which contain
relatively large concentrations of solutes. Thus, the
hardness following tempering at 750 ◦C is greater than
for the 650 ◦C samples. This is because the Ae1 tem-
perature of the steel has been exceeded so that austen-
ite forms during post–weld heat treatment; its subse-
quent transformation into untempered martensite is
the reason for the increase in hardness. Effects like
these have been reported previously in the context of
welding alloys [19].

Fig. 5: (a) The hardness of the 3 1
2Ni alloy as a func-

tion of tempering temperature and time, illustrating the

consequence of austenite formation at temperatures be-

yond Ae1. (b) Dilatometer experiment showing that dur-

ing continuous heating transformation at 2◦C s−1, showing

the beginnings of austenite formation at about 740◦C. [18]

There are useful ways of expressing hardness and
limited models relating structure to hardness. It
is evident, however, that there is no method for
predicting the hardness in general.

Scatter & Information Theory
It is well known that there is scatter in measure-

ments of fracture toughness of wrought and welded
steels. Some of the scatter has its origins in the
nonuniform microstructure typical of welds. A quan-
titative measure of such heterogeneity is the so–called
microstructural entropy [20–22]. If X is a random
variable assuming the value i with probability pi,
i = 1, . . . , n, the entropy of X, as a logarithmic mea-
sure of the mean probability, is

H{X} = −
∑

pi ln{pi}.

H{X} is zero for pi = 1, and has a maximum value
ln{n} when p1 = . . . = pn = 1

n .
For a typical weld microstructure, it follows that

H = −[Vα ln{Vα}+ Va ln{Va}+ Vw ln{Vw}]

where Vα, Va and Vw are the volume fractions of al-
lotriomorphic, acicular and Widmanstätten ferrite re-
spectively. H has been found to correlate well against
the observed scatter in Charpy–toughness data [11],
and hence can be used in the design of reliable mi-
crostructures (Fig. 6).

The term “local brittle zone” (LBZ), coined by
Fairchild [23] is another cause of scatter. An LBZ is



          

Fig. 6: A measure of the scatter in Charpy values,

versus a measure of the heterogeneity of microstructure.

A uniform microstructure has a small value of entropy H .

a small region of hard phase (usually martensite) in
the heat–affected zone of a weld. A toughness test
will record a low value if it samples the zone, but a
high value if it does not. It has been claimed that the
lower bound toughness values decrease as the fraction
of the hard phase in the form of LBZ’s increases [24,
but the data in fact reveal a minimum in toughness
with increasing martensite content [25]. This is be-
cause not all LBZ’s are brittle, only those in which
the martensite contains a large carbon concentration.
When austenite transforms to ferrite at high tempera-
tures it becomes enriched with carbon. The extent of
enrichment depends on the fraction of ferrite; a large
fraction is needed for the remaining austenite to trans-
form into high carbon martensite LBZ’s. Indeed, it
has been demonstrated that the zones of martensite
are not problematic in high hardenability steels where
the amount of ferrite is small; the corresponding large
fraction of relatively low–carbon martensite cannot be
regarded as a local brittle zone.

The formation of LBZ’s can be expressed quan-
titatively [26], as a function of cooling conditions,
austenite grain structure and alloy chemistry. The
condition favouring the existence of LBZ’s was taken
to be that 90% of the austenite should transform be-
fore the onset of martensitic transformation. The
theory predicts correctly that LBZ’s are more likely
in regions which experience multiple thermal cycles
within the austenite formation range; that they should
form more readily when the austenite grain size is
small; and that an increase in hardenability produces
martensite zones which are not brittle (Fig. 7).

There is an understanding of scatter, but it is a
loose understanding. Wouldn’t it be nice to em-
body scatter in all aspects of weld modelling? After
all, it is present without exception in all welds.

Fig. 7: A large amount of transformation prior to marten-

site a local zone more brittle. Hence, the Fe-0.1C-1Mn

wt.% alloy illustrated in (a) is less susceptible to LBZ’s

than the lower hardenability Fe-0.1C-1Si wt.% alloy shown

in (b) [26].

Fracture Toughness

Much of the literature about mechanical tough-
ness tends to focus on micromechanisms, test method-
ology or procedures for using experimental data in de-
signing for structural integrity. By contrast, there is
very little work on predicting the fracture toughness
given a complex set of variables. This difficulty is illus-
trated by considering some basic concepts of fracture
mechanics. The critical value KIC of the stress in-
tensity which must be exceeded to induce rapid crack
propagation is the product of two terms:

KIC = stress× distance
1
2 (2)

where the stress is a fracture stress σF which can be
measured independently using notched tensile speci-
mens. It can be related to the microstructure via (for
detailed references see [3]):

σF ∝
[

Eγp
π(1− ν2)c

] 1
2

(3)

where E is the Young’s modulus and ν is the Poisson’s
ratio. γp is the effective work done in creating a unit
area of crack plane, estimated to be about 14 J m−2

for many iron–base microstructures; it is much larger
than a surface energy (typically 1 J m−2) because of
the plastic zone which moves with the crack tip. This
value of 14 J m−2 seems to apply to a wide variety of
steel microstructures, which is surprising given that
they often have quite different deformation character-
istics. In any event, there is no obvious way of relating
γp to details of the microstructure. The dimension c
is the size of a sharp crack created by the fracture of a
brittle microstructural constituent such as a cementite
particle in wrought steels, or a non–metallic inclusion
in a weld deposit.



          

The other parameter in equation 3, distance
1
2 ,

refers to a distance ahead of the crack tip, within
which the stress is large enough to cause the fracture
of brittle crack–initiators. It is well–defined for coarse
microstructures but not for many useful microstruc-
tures.

The temperature dependence of the fracture
toughness of steels seems to be very well–behaved.
Wallin [3] has shown that the shape of the toughness
versus temperature curve is essentially the same for all
structural steels, making it possible to define a univer-
sal dependence as follows:

∆K = 77 exp{0.019(T − T0)} MPa m1/2 (4)

where ∆K is a change in toughness due to a corre-
sponding change in temperature T . T0 is a “transi-
tion temperature” where the fracture toughness for a
25 mm thick specimen is 100 MPa m1/2. This equa-
tion ought to apply to weld metals although T0 would
have to be determined experimentally.

There are, therefore, well–defined concepts of
fracture mechanics, relating stress and crack–
dimensions. These relationships cannot be used
predictively because in each application they rely
on experimental data generated for the specific ma-
terial investigated. There is only a qualitative un-
derstanding of the factors that control toughness.

Neural Networks

All is not lost. There is a very promising method
[27–30] for creating quantitative models for mechani-
cal properties, as follows.

The usual approach when dealing with difficult
problems is to correlate the results against chosen vari-
ables using linear regression analysis; a more powerful
method of empirical analysis involves the use of neural
networks. Since the method has been described else-
where [27–30], what follows is a mere introduction.

In conventional regression analysis the data are
best–fitted to a specified relationship which is usually
linear. The result is an equation in which each of the
inputs xj is multiplied by a weight wj ; the sum of all
such products and a constant θ then gives an estimate
of the output y =

∑
j wjxj + θ. Relationships like

these are used widely in the welding industry, for ex-
ample, in the formulation of the famous carbon equiv-
alents:

IIW > 0.18 wt.% C

CE = C+
Mn + Si

6
+

Ni + Cu

15
+

Cr + Mo + V

5
wt.%

or in the expression of mechanical properties as a func-
tion of the chemical composition (after Glynn Evans):

yield strength / MPa = 484 + 57× wCu

where wCu is the weight percent of copper in as–
welded “carbon–manganese” manual metal arc welds.
It is well understood that there is risk in using the
relationships beyond the range of fitted data, but the
risk is not quantified.

With neural networks, the input data xj are again
multiplied by weights, but the sum of all these prod-
ucts forms the argument of a hyperbolic tangent. The
output y is therefore a non–linear function of xj , the
function usually chosen being the hyperbolic tangent
because of its flexibility. The exact shape of the hy-
perbolic tangent can be varied by altering the weights
(Fig. 8a). Further degrees of non–linearity can be in-
troduced by combining several of these hyperbolic tan-
gents (Fig. 8b), so that the neural network method is
able to capture almost arbitrarily non–linear relation-
ships.

Fig. 8: (a) Three different hyperbolic tangent functions;

the “strength” of each depends on the weights. (b) A

combination of two hyperbolic tangents to produce a more

complex model.

Fig. 9 illustrates the complexity of the surface
that can be produced when representing the output
(vertical axis) as a function of two inputs using just
four hyperbolic tangents. A potential difficulty with
the ability to produce complex, non–linear functions
is the possibility of overfitting of data. It is possible,
for example, to produce a neural network model for a
random set of data. To avoid this difficulty, the exper-
imental data can be divided into two sets, a training
dataset and a test dataset. The model is produced
using only the training data. The test data are then
used to check that the model generalises when pre-
sented with previously unseen data. Other facilities



           

Fig. 9: Variation in the output (vertical axis) as a func-

tion of two input variables, the surface being represented

with just four hyperbolic tangent functions.

are introduced in the section dealing with Bayesian
inference [27,28].

It is common practice in regression analysis to
best fit a function to the data, i.e. to use the most
probable values of the weights for a given model. This
results in an overall error obtained by comparing the
predictions against experimental values, with no indi-
cation of the uncertainty as a function of position in
the input space. MacKay has developed a treatment
of neural networks in a Bayesian framework [27,28],
which allows the calculation of error bars representing
the uncertainty in the fitting parameters. The method
recognises that there are many functions which can
be fitted or extrapolated into uncertain regions of the
input space, without unduly compromising the fit in
adjacent regions which are rich in accurate data. In-
stead of calculating a unique set of weights, a prob-
ability distribution of sets of weights is used to de-
fine the fitting uncertainty. The error bars therefore
become large when data are sparse or locally noisy.
The Bayesian framework is also used to avoid over-
fitting and automatic relevance determination [27,28]
We shall now proceed to explain the Bayesian method
which has now become vital in the study of weld me-
chanical properties.

Bayesian Inference
It is worth introducing gaussians which are as-

sumed in the inference procedures described below
[27,28,31]. Given a continuous variable x, a gaussian
probability distribution is

P{x} =
1

σ
√

2π
exp

{
− (x− x)2

2σ2

}

where σ is the standard deviation or the width of the
gaussian, x is the mean and the term outside of the
exponential normalises the distribution such that the
area under the curve (i.e. total probability) is one.

Bayesian Inference: Given a set of experimen-
tal data in which the inputs and output are related by
a straight line, our goal is to infer the fitting param-
eters as a probability distribution of weights rather
than a single set of best–fit weights.

Prior Beliefs: Consider a straight line model in
the absence of any data:

y{x} = w1x1 + w2x2 (5)

where w1 is the slope and w2 the constant since we
set x2 = 1. The vector describing the set of weights
(w1, w2) is written w. Vectors are identified in the
text using bold font.

In the absence of data we have some a priori be-
liefs (Fig. 10) about the values of wi, which are ex-
pressed as a (gaussian) probability distribution func-
tion

P (wi) = exp{−αw2
i /2}/Z

where Z is the normalising factor and α = 1/σ2
w where

σw is the standard deviation in the distribution of wi.

Fig. 10: Prior beliefs about straight line models

The Data: Suppose we now have some experi-
mental data D = {xm, tm}, where m = 1 . . . N is a
label running over the pairs of inputs xm and target
tm. The set of inputs and targets are written {x} and
{t} respectively.

Given the data, a line with connections w can
make predictions about the target output tm as a func-
tion of the input vector xm = (x1, x2)m in accordance
with the probability distribution

P (tm|w,xm) = exp

{
−β(tm − y{xm})2

2

}/
Z ′

with σ2
ν = 1/β, where σν is the perceived level of noise

in the output (Fig. 11).



         

Fig. 11: Gaussian noise associated with the output.

Bayes’ Rule: The desired probability distribu-
tion of weights is obtained from Bayes’ rule as the
likelihood× prior

P (w|{t}, {x}) ∝ P ({t}|w, {x})× P (w)

P (w|{t}, {x}) =
P ({t}|w, {x})× P (w)

P ({t}|{x})

=
exp{−M{x}}

ZM

where

M{x} =
α

2

∑

i

w2
i +

β

2

N∑

m=1

(
tm −

∑

i

wixm,i

)2

A probability distribution of weights is illustrated
in Fig. 12a. This distribution can be used to derive
the error bars as shown in Fig. 12b.

Charpy Toughness
We can now see how these concepts can be applied

to one of the most common tests used to characterise
the energy absorbed during fracture, the Charpy test.
A square section notched bar is fractured under spec-
ified conditions and the energy absorbed during frac-
ture is taken as a measure of toughness. The Charpy
test is empirical in that the data cannot be used di-
rectly in engineering design. It does not provide the
most searching mechanical conditions. The sample
has a notch, but this is less than the atomically sharp
brittle crack. Although the test involves impact load-
ing, there is a requirement to start a brittle crack from
rest at the tip of the notch, suggesting that the test
is optimistic in its comparison against a propagating
brittle crack [32]. Most materials can be assumed to
contain sub–critical defects so that the initiation of a
crack seems seldom to be an issue.

The Charpy test is nevertheless a vital quality
control measure which is specified widely in interna-
tional standards, and in the ranking of samples in re-
search and development exercises. It is the most com-
mon first assessment of toughness and in this sense

Fig. 12: (a) Contours showing the probability distribu-

tion of weights. wMP represents the most probable set.

(b) Plot showing the error bounds about the most proba-

ble line.

has a proven record of reliability. The test is usu-
ally carried out at a variety of temperatures in order
to characterise the ductile–brittle transition intrinsic
to body–centred cubic metals with their large Peierls
barriers to dislocation motion.

The toughness of a steel depends on many vari-
ables; that of a weld is dependent on many more. It
is not possible to predict the Charpy toughness of a
weld with any reliability.

Some of the variables that influence the impact
toughness of a ferritic steel weld are listed in Table 1.

A common belief is that the toughness of ferritic
steel welds and of ferritic steels in general can be im-
proved by adding nickel as an alloying element. The
mechanism for this in not understood but it is spec-
ulated that those solutes which enable the cross–slip
of screw dislocations, by reducing their dissociation,
make them less effective as crack nuclei [33].

However, attempts at improving the Charpy
toughness of commercial welding alloys of the type
used in the fabrication of submarines, by increas-
ing the nickel concentration, have consistently failed.
These alloys have a base chemical composition which
is summarised as follows:

Fe–0.03C–0.5Si–2Mn–0.5Cr–0.5Mo–3Ni wt%

A part of the reason for the failure to improve
toughness using nickel is that we tend to generalise



          

Yield strength Ultimate tensile strength

carbon silicon

manganese chromium

nickel tungsten

sulphur phosphorus

titanium aluminium

nitrogen, hydrogen oxygen etc.

primary microstructure secondary microstructure

α, αW , αb, αa etc. welding parameters

degassing heat treatment

Table 1: Some variables controlling Charpy toughness.

observations made on a limited range of alloy chem-
istry. A neural network model was therefore created to
cover a very large range of welding alloys; its purpose
was to estimate the Charpy toughness as a function
of many of the variables indicated in Table 1. Cal-
culations using this model showed that in the class
of welds described above, nickel is only effective in
improving the Charpy toughness when the concentra-
tion of manganese is small (Fig. 13) [34]. No experi-
ments were done in creating the model, which relied
on published data. The only experiments were those
conducted after the modelling, involving the manufac-
ture of a new welding alloy which verified the results
shown in Fig. 13.

Naturally, the plot (Fig. 13) does not in itself ex-
plain the mechanism by which the toughness is en-
hanced by nickel at low manganese concentrations,
and vice versa. But it does suggest some clear paths
for investigation. The fact that even at low manganese
levels, nickel reduces toughness beyond a concentra-
tion of about 7 wt% points towards solidification–
induced chemical segregation as the culprit. This has
now been proven [35], that segregation leads to hard
zones in the weld, and that segregation is prominent
at high manganese concentrations (and high Ni when
the Mn concentration is low).

Conclusions & Recommendation

Physical models for complex properties are very
far from being able to be used for quantitative predic-
tions.

Models based on an examination of a limited
dataset lead to relationships which do not generalise.
Indeed, it is difficult to understand why such models
are created given the vast quantities of experimental
data which are openly available. It is not surprising
that such models are susceptible to abuse.

Fig. 13: The combined effect of manganese and nickel on

the calculated toughness for -60◦C, of weld metal produced

using arc welding with a heat input of 0.8 kJ mm−1, with a

base composition (wt%) 0.025 C, 0.37 Si, 0.006 S, 0.013 P,

0.21 Cr, 0.4 Mo, 0.011 V, 0.03 Cu, 0.039 O, 0.008 Ti,

0.019 N, and an interpass temperature of 250◦C. (a) Con-

tours showing the Charpy toughness. (b) Contours show-

ing the ±1σ uncertainty in the calculations.

Recommendation: the best way to model
mechanical properties is by using neural networks
within a Bayesian framework. The models have
greater generality, they deal neatly with scatter and
provide a framework for identifying complex pat-
terns which are otherwise difficult to perceive. Fu-
ture effort should be focused on this technique and
in the compilation of existing data.

Acknowledgments: I am deeply grateful
to David MacKay for his help with Bayesian infer-
ence and to Thomas Sourmail and Marimuthu Muru-
gananth for helpful discussions.



   

References

1. T. Zacharia, J. M. Vitek, J. A. Goldak, T. A.
Debroy, M. Rappaz and H. K. D. H. Bhadeshia:
Modelling and Simulation in Materials Science
and Engineering 3, 265–288 (1995)

2. H. K. D. H. Bhadeshia: Mathematical Mod-
elling of Weld Phenomena III, eds H. Cerjak
and H. Bhadeshia, Institute of Materials, Lon-
don 229–284 (1997)

3. H. K. D. H. Bhadeshia: Second Griffith Con-
ference on Micromechanisms of Fracture and
Their Structural Significance, Institute of Ma-
terials, London, 15–24 (1995)

4. H. Tamehiro, T. Takeda, S. Matsuda, K. Ya-
mamoto and N. Okumura: Trans. ISIJ 25,
982–988 (1985)

5. A. J. R. Loureiro and A. A. Fernandes: Weld-
ing Journal Research Supplement 73, 225s–
232s (1994)

6. J. C. Ion, K. E. Easterling and M. F. Ashby:
Acta Metall. 32, 1949–1962 (1984)

7. E. A. Metzbower, H. K. D. H. Bhadeshia and
R. H. Philips: Materials Science and Technol-
ogy 10, 56–59 (1994)

8. H.K.D.H. Bhadeshia, L.–E. Svensson & B.
Gretoft: Acta Metall. 33, 1271–1283 (1985)

9. H. K. D. H. Bhadeshia and L.–E. Svensson:
Mathematical Modelling of Weld Phenomena,
eds H. Cerjak and K. Easterling, Institute of
Materials, London 109–182 (1993)

10. S. S. Babu, S. A. David, J. M. Vitek, K.
Mundra and T. DebRoy: Materials Science
and Technology 11, 186–199 (1995)

11. H. K. D. H. Bhadeshia and D. V. Edmonds:
Metal Science 17, 411–419 (1983)

12. Y. Tomota, K. Kuroki, T. Mori and I. Tamura:
Materials Science and Engineering 24, 85–94
(1976)

13. H. K. D. H. Bhadeshia and D. V. Edmonds:
Metal Science 14, 41–49 (1980)

14. C. H. Young and H. K. D. H. Bhadeshia: Ma-
terials Science and Technology 10, 209–214
(1994)

15. Y. Tomita and K. Okabayashi: Metall. Trans.
14A, 485–492 (1983)

16. D. Venugopalan and J. S. Kirkaldy: Harden-
ability concepts with applications to steels, eds
D. V. Doane and J. S. Kirkaldy, TMS–AIME,
Warrendale, USA 249–268 (1977)

17. J. D. Robson and H. K. D. H. Bhadeshia: Ma-
terials Science and Technology 13, 631–644
(1997)

18. C. Downs and H. K. D. H. Bhadeshia: Unpub-
lished work (2001)

19. T. Cool and H. K. D. H. Bhadeshia: Science
and Technology of Welding and Joining 2, 36–
42 (1997)

20. F. H. Lange: Correlation Techniques, Iliffe
Books Ltd., London, U. K. 76–77 (1967)

21. S. Karlin and H. M. Taylor: A First Course
in Stochastic Processes, Academic Press, New
York, U. S. A., 495–502 (1975)

22. A. A. B. Sugden and H. K. D. H. Bhadeshia:
Recent Trends in Welding Science and Technol-
ogy, eds. S. A. David and J. M. Vitek, ASM
International, Ohio, U. S. A., 745–748 (1989)

23. D. Fairchild: Private communication to H. K.
D. H. Bhadeshia (1995)

24. J. Y. Koo and A. Ozekcin : Welding Metallurgy
of Structural Steels,ed J. Y. Koo, TMS–AIME,
Warrendale, PA, USA 119–136 (1987)

25. S. Aihara and K. Okamoto: Metallurgy, Weld-
ing and Qualification of Microalloyed Steel
Weldments, eds J. T. Hickey et al., AWS,
Florida 402–427 (1990)

26. S. Suzuki, G. I. Rees and H. K. D. H.
Bhadeshia: Modelling and Control of Joining
Processes, ed. T. Zacharia, AWS, Florida,
U.S.A. 186–194 (1993)

27. D. J. C. MacKay: Neural Computation, 4,
415–447 (1992)

28. D. J. C. MacKay: Neural Computation, 4,
448–472 (1992)

29. H. K. D. H. Bhadeshia: ISIJ International 39,
966–979 (1999)

30. D. Cole, C. Martin-Moran, A. Sheard, H. K. D.
H. Bhadeshia and D. J. C. MacKay: Science
and Technology of Welding and Joining 5, 81–
89 (2000)

31. P. M. Lee: Bayesian Statistics, Edward
Arnold, London 1989 ()

32. A. H. Cottrell: European Review 1, 169–176
(1993)

33. W. C. Leslie: Physical Metallurgy of Steels
McGraw–Hill International Book Company, Lon-
don, 1982 ()

124
34. M. Murugananth, H. K. D. H. Bhadeshia, E. Kee-

han, H. O. Andren, L. Karlsson: Mathematical
Modelling of Weld Phenomena VI, eds H. Cerjak
and H. Bhadeshia, Institute of Materials, London
in press (2002)

35. M. Murugananth: Unpublished work (2002)


