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Thehot torsion stress-strain curves of steeis have been modelled using a neural network, within a Bayesian
framework. The analysis is based on an extensive database consisting of detailed chemical composition.

temperature and strain rate from newhot torsion experiments, Non-linear functions are obtained, describing
the variation of stress-strain curves with temperature and chemica! composition, Predictions are associated

with error bars, whosemagnitude depends on their position in the input space. From the population of

possible models, a "committee of models" is found to give the most reliable estimate. The results from the
neural network model where found to be consistent with knownmodels, and reasonable estimates are
obtained beyond the scope of the experimental data.
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1. Introduction

There has been considerable interest in the behaviour
of low-alloy steels whendeformed to high strains at high

temperatures, l) This is becausethe vast majority of steels

are processed by hot-rolling, under conditions in which
the austenite is repeatedly recrystallised,2,3) in order to
refine the grain structure.4) Dynamical recovery5,6) and
grain growth7) mayalso occur. Modelsof the hot working
process rely ona representation of the stress versus plastic

strain curve of the austenite. Thepurpose of the present
work was to see whether measuredstress-strain curves

can be adequately represented using neural network
analysis, a technique which has beendemonstrated to be
extremely useful in dealing with complex metallurgical

problems.
There is a large amountof high temperature stress

strain torsion measurementsavailable in the literature.8)

It is well knownthat recrystallisation is a complicated

process, highly dependent on temperature and strain
rate.9'10) It is not surprising therefore, that an ex-
amination of the torsion data reveals that a linear rela-

tionship between the plastic limit and the solute con-
centration, temperature or strain rate is not necessarily

valid. Linear regression techniques thus, are not ap-
propriate. Weshall use instead, a neural networkll'l2)

to model the dependenceof the stress on strain as a
function of manyvariablesl 3) which include the chemical
composition and temperature. A neural network is ca-
pable of modelling highly non-linear relatlons. In addi-
tion, the model allows the estimation of error bars

whosemagnitudedependsupon the position in the input

999

space and the preceived level of noise in the experi-

mental data. The neural network analysis can be con-
sidered to be a moregeneral form of existing empirical
models, 14' I s)

2. The Database

The torsion measurementswere performed on the
fifteen different steels whosechemical compositions are
listed in Table 1; wlth the exception of H04, they are
all microalloyed, either with vanadiumor niobium. Most
alloys were electric arc melted and madeinto O.5ton
Ingots. Cylindrical samples were extracted from areas
parallel to the ingot axis and adjacent to the ingot
surface. Furthermore, blast furnace and continuous
casting technologies have been used to produce addi-
tlonal samples. Thesesamplesmayhave two geometries:
diameter of 7.5 mmand length 17mm,or diameter 6mm
and length 13 mm.Following austensization at 1200'C
for 15min in a radiant furnace, the samples were tested
in a purified argon atmosphere for at least fourteen
different temperatures in the range 1200-700'C. Prior

to each test, the samples were allowed to stabilise for

5-lOO s. A computer control system is used to record
the twist and torque data, which were converted into
shear-stress through the Fields and Backofen technique
and then transformed to equivalent stress andstrain using
the von Mises criterion.16,17)

3. The Neural Network Model

The neural network inputs include temperatures,
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Table
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l. The chemical compositions of the alloys examined
by hot torsion stress-strain measurements.

(1 999), No. IO

Alloy
Composition (~/*wt) bal Fe

Tellrlperature

Strain

rate

C TiS~ Mn Cr Nl Nb V

H05
BSI
H04
Nb
H22038
2077
V-GSB
4A
4B
6A
6B
7B
H63
K63
748l

0,082
O, l
O. 14
0.1 1
0,07

0,37

0.455
0.036
0.047
0,044
0,044
0,06

0.07

0.072
O.373

0.36
O.31
0.02

O.51
0.012
0.56
0.74
0.02

0.02

0,02
0.02

0.02
O. 165
O.21

0.6

l .47 0.02 0.03

l ,42 0.02 0.02

1, 18 0.02 0.08

l , 14 0.0 0.029
0.62 0.019 0.024
l.45 0.04 0.07

l .55 0.26 0.08

1,5 0.0 0.0

1,
38 0.0 0.0

l.39 0.0 0.0

l .35 0.0 0.0

l .47 OO 0.0

l ,5 1 0.0 0.0

0,958 0.0 0,0

I,4 0.07 0.07

0.051 0.08 0.0

0.035 0.0 0.0

0.0 O.O 0.0

0.049 0.0 0.0

0.034 0.0 0.067
O.O O, 11 0.0

0.0 O. 12 0.007
0.078 0.0 0.0

0.061 O.O 0.03

0.062 0.0 0.066
0.064 0.0 0.029
0.06 0.0 0.025
0.048 0.019 0,129
0.046 0.0 0.011
0.0 O, 11 0.0 15

Table 2. Thevariables usedin theneuralnetworkanalysis.

Varlables Range Mean Standard
deviation

Temperature ("C)

Strain rate (s~ 1)

Interpass time (s)

C(o/owt)

Si (o/owt)

Mn(o/owt)

Cr (o/owt)

Ni (o/owt)

Nb(o/owt)

V (o/owt)

Ti

Strain

10g(Stress)

Measurement
history

676-1 181

0.25-1.8

OIOO
0.036-0 455

O.O 12-0
.
74

O.62 I. 55
0.00.26
0.00.08
0.0-0.078
0.0-0. 12
0.0O. 129

0.04060.8422
0.2953-0.5759
0.0-0.8422

953, l
l ,

309
39.6
O, 1254
O, 1873

l .28 1
0.02469
0.0 1944
0.0423
0.02454
0.0379
O. 1643
0,4694
0,3

134.7

0,4759
30.0
O. 1298
O.2414
0.295

0.057

O.027 17
0.02386
0.0444
0.0324
O, 1275
0,5214
O, 1677

interpass time, strain rate, chemical composition, the
measuredlog of the equivalent stress being the output.
The range, meanand standard deviation of the input
and output data are listed in Table 2. Torsion tests are
frequently conducted in several stages, in order to
simulate passes in a rolling mill. The total plastic strain
in the previous pass therefore, can matter in determining
the deformation characteristics of the current test. This
has beentaken Into account by including a "measurement
history", which is the largest strain value, of the previous
stressstrain measurement. Each of the variables was
normalised within the range ~0.5:

xN=
x-x***~ _O.5

......
.........(1)

x~** - x**~

where XN Is the normalised value of x, x~.* is the

maximumvalue and x~i~ is the minimumvalue. This
normalisation permits comparison of the relative im-
portance of individual inputs in the analysis.

The structure of the neural network model is shown
in Fig. l. The inputs and outputs are connected through
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Fig. 1. The neural network structure.

hidden units hi where the inputs xj are operated by a
hyperbolic tangent transfer function:

(h,=tanh~~J w!Jl)xJ+0!Jl)
.. ..... .........

(2)

were O(1) is defined as the bias (analogous to the constant
that appears in the linear regression method), wi,j are
defined as the weights that determine the strength of the
transfer function. All the hidden units contribute to the

output as follows:

y=~. 14'(2)hi+0(2)
........... .........

(3)

were w(2) and e(2) are a second set of weights and a
bias. Equations (2) and (3) completely define the neural
network structure that connects the inputs to the output.
The weights and biases however, are unknownsto be
determmedthrough "training" using the Bayesian back
propagation scheme, which involves a minimisation of
the function:

M(w)=pED+~, oc.E~(.)
......,.............

(4)

where EDis defined as:

ED(w)= (yi(x~, w) -
t~)2

.,......
(5)

where the data set {x~, t"'} consists of x"' inputs related
to a particular target t"' (m labels the set of inputs to

output mappings). The parameter ptherefore, defines
the noise level (T~

= 1/p. Theaim is to determine a. set of
weights in a manner that minimises ED but without
overfitting to noise. Thus, the regularisers E+. are included

so that smooth solutions of y(x~,w) are favoured and
fitting to noise in the experimental data can be minirnised.

Theparameter ce thus defines the "significance" (T~ = 1lc(

of a particular input. Large values of (T~, i.e. small values
of c(, correspond to a greater significance for a particular
input since the weights for that input are penalised to a
smaller extent. Weuse the automatic relevance deter-

mination modell8) as described in the literature instead
of the simplest regulariser, that has the form Ew=
(1/2)~w~• For "training", we must first randomise
the database and then divide it into two equal parts.

Thefirst half of this database (the "training" data), is used
to determine the weights and biases for each model.
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The number of hidden units used determines the

complexity. The value of a., the model perceived noise
in the data, therefore decreases monotonically with the

numberof hidden units, as shown in Fig. 2. The test

error, defined as the value of the error function for unseen
data is shownin Fig. 3. The choice of a model with a
minimumtest error avoids the problem of overfitting.

The best model can be chosen as that with the smallest

test error. Howeverwechoose the best modelaccording

to a quantity the "log predictive error" (LPE), because
unlike the test error, the LPEput less emphasis on any
outliers if those outliers are accompaniedby appropri-
ately large error bars. TheLPE, assumingthat the neural
network gives a prediction Normal O,~, (Tf') where (Tr

is an error bar calculated using bayesian statistics, has
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Thecomparison of the measuredstress with the neural

network committee prediction, after retraining the

committee using the whole database,

the form:

1LPE=~ -y ) /Uy ' + Iog(~/~,;cry'" ) (6)

~
l,(t~ '" 2 ,~

Having chosen a model which minimises the error in

predicting the test data, the neural network correspond-
ing to that model is retrained on the entire dataset.

4. The CommitteeModel

The predictions madeby using a committee of mod-
elsl9) can be more accurate than the single best mod-
el. Figures 2and3present modelsthat maybe ranked ac-
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cording to the magnitude of the test error. Weconstruct

a committee however, by using Nmodels ranked by log

predictive error, which is a measureof error that is less

sensitive to outliers. The committee is formed through
cornbining the best Nmodels(where N=I ,

2, 3, • • • )such
that the meanprediction of the committee is:

_ IN
= ~ i ••

••••••••••(7)y N y ...

i=1

with the error in ~expressed as:

N Nl 1cr2
= ~ ~(yi-y)

.........
(8)a"2* +N Ni= I i= 1

Figure 4showsthe test error as a function of the number
of models used to form a committee. The figure shows
that an eight model committee is the most favourable.

In Fig. 5, committee predictions are comparedagainst

experimental data. The accuracy of the predictions

improves after retraining as shownin Fig. 6.

5. The Significance of Individual Inputs on the Stress

Strain Curve

Figure 7 illustrates the significance cr~ of each of the

inputs, as perceived by the neural network model. AIarge

value of cr* implies that the input concerned explains a
relatively large amountof the variation in the stress in
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Frg. 9. The predicted stress at strain 0.04 as a function of

temperature for alloys (a) A, (b) Cand (c) F, For strain

rate I.O s~ I and interpass time 30 s.

the dataset (analogous to the partial correlation co-
efficient in the multiple regression technique). The (T*

value is not however, an indication of the sensitivity of
the stress to a particular input. For some inputs we
observe a significant scatter of a,+, indicating that the

C 1999 ISIJ 1002



250

ISIJ International, Vol,

~
~{_

t)

Fig. lO.

200

150

i oo

50

o

~

,

1,

.- ,l I*

'=*oo"'

~
~

T=IOOOoC

~~*
T=IIOOoc

~~~

_*

~~~~~~~~~~~~~{~~~~{~s~~}~~~{~~~}~~:~E~:

~
~

39 (1 999),

~~o

30

20

10

o
-10

-20

-30

30

20

10

o
-10

-20

-30

No. 10

(a)

l}ill~~~--"~~11111

o07 O1)75 0.085o08 0,09 ol)95

~
~:

~c)

l:

(b)

7
1' iTIJTTl

1lirrT1 i

o o05 oI o15 0.2

8
The predicted stress strain graph of alloy A for a
range of temperatures. For strain rate 1.0s~1 and
interpass time 30 s.

250

o07 o075 oOS5o08 o09 ol)95

~
~:

~t)

Fig.

30
(c)

20

[lT
if Ii1

10

'l
'. l t

~

. ~20
l

1
-30

~~
o

200

150

T=8000c

'="""'

~
i OO f T=IOOOoc

~~ T=11000c
~{ ~~~~~~~~~~~

~
-ss=~~l~~

50 ~
{F

~
~:

~b

~
~:

~t)

o,07 o,075 o,08 o085 o,09 o,095
C(o/owt)

12. The variation in measuredstress (at strain 0.04) of

A, as a function of carbon concentration, for

temperatures (a) I 100"C, (b) 950'C and (c) 800*C.

30

20

10

o~

-1 o
-20

-30

30

20

10

o
-10

-20

-30

(a)

i--'++1iilil il

i

o,05 0,1 0.1 5 o2
8

Fig. 11. The predicted stress strain graph of alloy C for a
range of temperatures. For strain rate 1.0s~1 and
interpass time 30s.

relationships identified for that input has a large uncer-
tainty. The stress naturally is found to be sensitive

to temperature and strain.

6. Application of the Model

Weshall predict the stress-strain graphs for three

typical steels: (i) Awhich has a small vanadiumcontent
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Fig. 13. The variation in measuredstress (at strain 0.04) of

A, as a function of silicon concentration, for

temperatures (a) I 100'C, (b) 950'C and (c) 800'C.

(ii) Cwith carbon content O. 14 (o/owt) andother elements
in relatively small proportions and (iii) Ewhich is a low
carbon steel that contains small amounts of niobium.
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The Input database, contains stress-strain measurements
of Aat fourteen different temperatures including 950'C.

In Fig. 8, the predicted stressstrain graph of alloy A at

950'C, is comparedwith the measuredgraph, and there

@1999 ISIJ 1004

is reasonable agreement.
In Fig. 9, we predict the stress at 0.04 strain as a

function of temperature for alloys A. Cand F (that has

a relatively high carbon content). Notice the predicted

stress for these alloys, encompassesa narrower range
with increasing temperature. Figures 10 and 11 showthe
stress-strain graphs for alloys Aand Crespectively, as

a function of temperature. The results illustrate that the

recovery mechanism,as seen in previous studies,20,2 l) is

highly temperature dependent. Comparingthese figures,

wenote that at the temperature I IOO'Cthe graphs for

both alloys are very similar, thus the element variation

between these alloys has little effect. At lower tem-
peratures, the graphs becomeless similar and the differ-

ence in element concentration becomesmore signifi-

cant.

The variation of the stress at 0.04 strain of A, as a
function of somesolutes is next predicted. In this study,

a single element in Awaschosen and its concentration

was altered. The results are shownin Figs. 12, 13 and
14 at the temperatures I 100'C, 950'C and 800'C. The
predictions indicate, that changing the concentration of
these elements does not dramatically effect the stress for

these temperatures. The error bars however, are large

with significant changes in element concentration (par-

ticularly at 800'C), indicating that the neural network
is not sure at these alloy configurations.

Wenext predict the stress-strain graph of alloy Eas

a function interpass time at high and low temperatures.
Figure 15 shows the predicted stress-strain graphs of E
at I 100'C for interpass times 5, 30 and 100swith "strain

history" 0.28, 0.30 and 0.29 respectively. Given that the

"strain histories" at all interpass times are similar, the
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graphs clearly show that the stress-strain relation is

vlrtually independent of interpass time. Wemayconclude
therefore, that static recrystallisation, at this high

temperature occurs very rapidly (faster than 5s).

Figure 16 shows the predicted stress-strain graphs of

Eat 950'C for interpass times 5, 30 and 100swith "strain

history" 0.26, 0.24 and O.24 respectively. These graphs
showthat the stress-strain graph is dependent on inter-

pass time, since the "strain history" at all interpass

times are similar. In this case weare in the range of low
temperature, and recrystalisation of steel cannot occur,
and the strain is accumulated from pass to pass, so that

the stress increases not only due to the decrease in

temperature but aiso due to strain hardening (stress

leveis of around 150MPain Fig. 16 comparedto 50MPa
in Fig. 15, which corresponds to a higher temperature in

the range of recrystalisation). The experiment measure-
mentsof Eindicates that for an interpass time of 5s, the

minimumrecrystallisation temperature Is I Ol I'C and
for interpass times 30s and 100s the minimumrecrys-
tallisation temperature is 985'C and 971'C respectively.

This assumes that for the lower interpass times the

amountof accumulated strain (given by the amountof
strain applied below the recrystallisation temperature) is

greater than for the longer Interpass times. For these

reasons we observe in Fig. 16, a higher stress level for

interpass times of 5s whencomparedto 30s and 100 s.

7. Conclusions

Wehave used a neural network model within a
Bayesian framework to predict the stress-strain graph
of a numberof steels. A committee of neural network
models which is found to be more accurate than using

a single model and morereliable error bars. Reasonable
predictions havebeenmadefor several steels, which agree
with experimental measurements. The stress-strain

39 (1 999), No. 10

graphs have been shown to be (i) highly dependent on
temperature and (ii) Iess sensitive to the interpass time
with increasing temperature (iii) not very sensitive to
chemical composition at very high temperatures.
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