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Estimation of Hot Torsion Stress Strain Curves in Iron Alloys

Using a Neural Network Analysis
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The hot torsion stress—strain curves of steels have been modelled using a neural network, within a Bayesian
framework. The analysis is based on an extensive database consisting of detailed chemical composition,
temperature and strain rate from new hot torsion experiments. Non-linear functions are obtained, describing
the variation of stress—strain curves with temperature and chemical composition. Predictions are associated
with error bars, whose magnitude depends on their position in the input space. From the population of
possible models, a “committee of models” is found to give the most reliable estimate. The results from the
neural network model where found to be consistent with known models, and reasonable estimates are

obtained beyond the scope of the experimental data.
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1. Introduction

There has been considerable interest in the behaviour
of low-alloy steels when deformed to high strains at high
temperatures.” This is because the vast majority of steels
are processed by hot-rolling, under conditions in which
the austenite is repeatedly recrystallised,>® in order to
refine the grain structure.”” Dynamical recovery®>® and
grain growth” may also occur. Models of the hot working
process rely on a representation of the stress versus plastic
strain curve of the austenite. The purpose of the present
work was to see whether measured stress—strain curves
can be adequately represented using neural network
analysis, a technique which has been demonstrated to be
extremely useful in dealing with complex metallurgical
problems.

There is a large amount of high temperature stress—
strain torsion measurements available in the literature.®
It is well known that recrystallisation is a complicated
process, highly dependent on temperature and strain
rate.>*? It is not surprising therefore, that an ex-
amination of the torsion data reveals that a linear rela-
tionship between the plastic limit and the solute con-
centration, temperature or strain rate is not necessarily
valid. Linear regression techniques thus, are not ap-
propriate. We shall use instead, a neural network**:!?
to model the dependence of the stress on strain as a
function of many variables'3 which include the chemical

composition and temperature. A neural network is ca-

pable of modelling highly non-linear relations. In addi-
tion, the model allows the estimation of error bars
whose magnitude depends upon the position in the input

space and the preceived level of noise in the experi-
mental data. The neural network analysis can be con-

sidered to be a more general form of existing empirical
models. %13

2. The Database

The torsion measurements were performed on the
fifteen different steels whose chemical compositions are
listed in Table 1; with the exception of H04, they are
all microalloyed, either with vanadium or niobium. Most
alloys were electric arc melted and made into 0.5ton
ingots. Cylindrical samples were extracted from areas
parallel to the ingot axis and adjacent to the ingot
surface. Furthermore, blast furnace and continuous
casting technologies have been used to produce addi-
tional samples. These samples may have two geometries:
diameter of 7.5 mm and length 17 mm, or diameter 6 mm
and length 13 mm. Following austensization at 1200°C
for 15min in a radiant furnace, the samples were tested
in a purified argon atmosphere for at least fourteen
different temperatures in the range 1200-700°C. Prior
to each test, the samples were allowed to stabilise for
5-100s. A computer control system is used to record
the twist and torque data, which were converted into
shear-stress through the Fields and Backofen technique
and then transformed to equivalent stress and strain using
the von Mises criterion.'®17

3. The Neural Network Model

The neural network inputs include temperatures,
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Table 1. The chemical compositions of the alloys examined
by hot torsion stress—strain measurements.

Composition (%wt) bal Fe

Alloy
C Si Mn C N Nb V T
HO5 0082 036 147 0.02 003 0051 0.08 0.0
BSI 0.1 031 142 002 002 0035 00 00
HO4 0.14 002 1.I8 002 008 00 00 00
Nb 0.11 051 1.14 00 0029 0.049 0.0 0.0
H22038  0.07 0.012 0.62 0.019 0.024 0.034 0.0  0.067
2077 037 056 145 004 007 00 011 00
V-GSB 0455 0.74 155 026 008 0.0 0.2 0007
4A 0036 002 15 00 00 0078 00 00
4B 0.047 002 138 00 00 0061 0.0 0.3
6A 0044 002 139 00 00 0062 0.0 0.066
6B 0.044 002 135 00 00 0064 0.0 0.029
7B 006 002 147 00 00 006 00 0025
H63 007 0.165 1.51 0.0 00 0048 0.019 0.129
K63 0072 021 0958 0.0 0.0 0046 0.0 001l
7481 0373 06 14 007 007 00 01l 0.015

Table 2. The variables used in the neural network analysis.

Variables Range Mean Star.1d2.1rd
deviation

Temperature (°C)  676-1181 953.1 134.7
Strain rate (s~ !) 0.25-1.8 1.309 0.4759
Interpass time (s)  0-100 39.6 30.0
C (Y%owt) 0.036-0.455 0.1254 0.1298
Si (Yowt) 0.012-0.74 0.1873 0.2414
Mn (%wt) 0.62-1.55 1.281 0.295
Cr (%wt) 0.0-0.26 0.02469 0.057
Ni (%wt) 0.0-0.08 0.01944 0.02717
Nb (%wt) 0.0-0.078 0.0423 0.02386
V (Y%wt) 0.0-0.12 0.02454 0.0444
Ti 0.0-0.129 0.0379 0.0324
Strain 0.0406-0.8422 0.1643 0.1275
log(Stress) 0.2953-0.5759 0.4694 0.5214
Measurement 0.0-0.8422 0.3 0.1677

history

interpass time, strain rate, chemical composition, the
measured log of the equivalent stress being the output.
The range, mean and standard deviation of the input
and output data are listed in Table 2. Torsion tests are
frequently conducted in several stages, in order to
simulate passes in a rolling mill. The total plastic strain
in the previous pass therefore, can matter in determining
the deformation characteristics of the current test. This
has been taken into account by including a “measurement
history”, which is the largest strain value, of the previous
stress—strain measurement. Each of the variables was
normalised within the range 40.5:
X—x

Xy =m0 05 e, 6}
X X

‘max — Xmin
where xy is the normalised value of x, x,,, is the
maximum value and x,,;, is the minimum value. This
normalisation permits comparison of the relative im-
portance of individual inputs in the analysis.

The structure of the neural network model is shown

in Fig. 1. The inputs and outputs are connected through
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Fig. 1. The neural network structure.

hidden units /; where the inputs x; are operated by a
hyperbolic tangent transfer function:

/’ll=tanh<z WI(JUXJ-FQ[(JU) .................. (2)

J

were 0" is defined as the bias (analogous to the constant
that appears in the linear regression method), w,; are
defined as the weights that determine the strength of the
transfer function. All the hidden units contribute to the
output as follows:

Y=Y WP +0P 3)

were wi? and 8 are a second set of weights and a
bias. Equations (2) and (3) completely define the neural
network structure that connects the inputs to the output.
The weights and biases however, are unknowns to be
determined through “training” using the Bayesian back
propagation scheme, which involves a minimisation of
the function:

MW)=BEp+ Y 0 Epy wvoererrrrnrrnrane. )
where Ej, is defined as:
1
ED(w)=7ZZ(y,-(x"‘, W) —1t™? ®)

where the data set {x™, "} consists of x™ inputs related
to a particular target ™ (m labels the set of inputs to
output mappings). The parameter f therefore, defines
the noise level 62 =1/f. The aim is to determine a set of
weights in a manner that minimises £, but without
overfitting to noise. Thus, the regularisers E,, are included
so that smooth solutions of y(x™ w) are favoured and
fitting to noise in the experimental data can be minimised.
The parameter o thus defines the “‘significance” o2 =1/«
of a particular input. Large values of 62, i.e. small values
of a, correspond to a greater significance for a particular
input since the weights for that input are penalised to a
smaller extent. We use the automatic relevance deter-
mination model'® as described in the literature instead
of the simplest regulariser, that has the form E, =
(1/2)).wf. For “training”, we must first randomise
the database and then divide it into two equal parts.
The first half of this database (the “training” data), is used
to determine the weights and biases for each model.
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Fig. 3. The test error as a function of hidden units for five
different seed values.
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Fig. 4. Thechange in the test error with the number of models
used in the committee.

The number of hidden units used determines the
complexity. The value of o, the model perceived noise
in the data, therefore decreases monotonically with the
number of hidden units, as shown in Fig. 2. The test
error, defined as the value of the error function for unseen
data is shown in Fig. 3. The choice of a model with a
minimum test error avoids the problem of overfitting.
The best model can be chosen as that with the smallest
test error. However we choose the best model according
to a quantity the “log predictive error” (LPE), because
unlike the test error, the LPE put less emphasis on any
outliers if those outliers are accompanied by appropri-
ately large error bars. The LPE, assuming that the neural
network gives a prediction Normal (y™, ¢’) where o™
is an error bar calculated using bayesian statistics, has
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Fig. 5. The comparison of the measured stress with the neural
network committee prediction for the (a) “training
data’ and (b) the unseen “test” data.
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Fig. 6. The comparison of the measured stress with the neural
network committee prediction, after retraining the
committee using the whole database.

the form:

Having chosen a model which minimises the error in
predicting the test data, the neural network correspond-
ing to that model is retrained on the entire dataset.

4. The Committee Model

The predictions made by using a committee of mod-
els'® can be more accurate than the single best mod-
el. Figures 2 and 3 present models that may be ranked ac-
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Fig. 7. The bar chart of the model perceived significance for
each input used in the eight model “committee” to
predict the stress. For each input, the bars (top to
bottom) correspond to hidden units 20, 20, 19, 19, 20,
20, 19 and 19 where the seed of random number used
to start the training was 40, 1, 20, 30, 20,
30, 10 and 40 respectively.

cording to the magnitude of the test error. We construct
a committee however, by using N models ranked by log
predictive error, which is a measure of error that is less
sensitive to outliers. The committee is formed through
combining the best N models (where N=1,2,3, - - -) such
that the mean prediction of the committee is:

e T — 0

with the error in y expressed as:

, i , 1 i
2=— D 0l+— ) (¥i=P) . ®)
N i=1 Ni= !

Figure 4 shows the test error as a function of the number
of models used to form a committee. The figure shows
that an eight model committee is the most favourable.
In Fig. 5, committee predictions are compared against
experimental data. The accuracy of the predictions
improves after retraining as shown in Fig. 6.

5. The Significance of Individual Inputs on the Stress
Strain Curve

Figure 7 illustrates the significance o,, of each of the
inputs, as perceived by the neural network model. A large
value of ¢, implies that the input concerned explains a
relatively large amount of the variation in the stress in
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Fig. 8. The comparison of the stress—strain graph of alloy A
measured by torsion experiments (a) with (b) the
predicted graph for deformation at 950°C. For strain
rate 1.6s™! and interpass time 30s.
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Fig. 9. The predicted stress at strain 0.04 as a function of
temperature for alloys (a) A, (b) C and (¢) F. For strain
rate 1.0s”! and interpass time 30s.

the dataset (analogous to the partial correlation co-
efficient in the multiple regression technique). The g,
value is not however, an indication of the sensitivity of
the stress to a particular input. For some inputs we
observe a significant scatter of o,, indicating that the
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relationships identified for that input has a large uncer-
tainty. The stress naturally is found to be sensitive
to temperature and strain.

6. Application of the Model

We shall predict the stress—strain graphs for three
typical steels: (i) A which has a small vanadium content
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Fig. 12. The variation in measured stress (at strain 0.04) of
A, as a function of carbon concentration, for
temperatures (a) 1 100°C, (b) 950°C and (c) 800°C.
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(ii) C with carbon content 0.14 (%wt) and other elements
in relatively small proportions and (iii) E which is a low
carbon steel that contains small amounts of niobium.
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strain rate 1.6s7 .

The input database, contains stress—strain measurements
of A at fourteen different temperatures including 950°C.
In Fig. 8, the predicted stress—strain graph of alloy A at
950°C, is compared with the measured graph, and there
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is reasonable agreement.

In Fig. 9, we predict the stress at 0.04 strain as a
function of temperature for alloys A, C and F (that has
a relatively high carbon content). Notice the predicted
stress for these alloys, encompasses a narrower range
with increasing temperature. Figures 10 and 11 show the
stress—strain graphs for alloys A and C respectively, as
a function of temperature. The results illustrate that the
recovery mechanism, as seen in previous studies,>*2") is
highly temperature dependent. Comparing these figures,
we note that at the temperature 1100°C the graphs for
both alloys are very similar, thus the element variation
between these alloys has little effect. At lower tem-
peratures, the graphs become less similar and the differ-
ence in element concentration becomes more signifi-
cant.

The variation of the stress at 0.04 strain of A, as a
function of some solutes is next predicted. In this study,
a single element in A was chosen and its concentration
was altered. The results are shown in Figs. 12, 13 and
14 at the temperatures 1100°C, 950°C and 800°C. The
predictions indicate, that changing the concentration of
these elements does not dramatically effect the stress for
these temperatures. The error bars however, are large
with significant changes in element concentration (par-
ticularly at 800°C), indicating that the neural network
is not sure at these alloy configurations.

We next predict the stress-strain graph of alloy E as
a function interpass time at high and low temperatures.
Figure 15 shows the predicted stress—strain graphs of E
at 1100°C for interpass times 5, 30 and 100 s with “strain
history” 0.28, 0.30 and 0.29 respectively. Given that the
“strain histories” at all interpass times are similar, the
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graphs clearly show that the stress—strain relation is
virtually independent of interpass time. We may conclude
therefore, that static recrystallisation, at this high
temperature occurs very rapidly (faster than 5s).
Figure 16 shows the predicted stress—strain graphs of
E at 950°C for interpass times 5, 30 and 100 s with “strain
history” 0.26, 0.24 and 0.24 respectively. These graphs
show that the stress—strain graph is dependent on inter-
pass time, since the ‘“‘strain history” at all interpass
times are similar. In this case we are in the range of low
temperature, and recrystalisation of steel cannot occur,
and the strain is accumulated from pass to pass, so that
the stress increases not only due to the decrease in
temperature but also due to strain hardening (stress
levels of around 150 MPa in Fig. 16 compared to 50 MPa
in Fig. 15, which corresponds to a higher temperature in
the range of recrystalisation). The experiment measure-
ments of E indicates that for an interpass time of 5s, the
minimum recrystallisation temperature is 1011°C and
for interpass times 30s and 100s the minimum recrys-
tallisation temperature is 985°C and 971°C respectively.
This assumes that for the lower interpass times the
amount of accumulated strain (given by the amount of
strain applied below the recrystallisation temperature) is
greater than for the longer interpass times. For these
reasons we observe in Fig. 16, a higher stress level for
interpass times of 5s when compared to 30s and 100s.

7. Conclusions

We have used a neural network model within a
Bayesian framework to predict the stress—strain graph
of a number of steels. A committee of neural network
models which is found to be more accurate than using
a single mode! and more reliable error bars. Reasonable
predictions have been made for several steels, which agree
with experimental measurements. The stress—strain

1005

graphs have been shown to be (i) highly dependent on
temperature and (ii) less sensitive to the interpass time
with increasing temperature (iii) not very sensitive to
chemical composition at very high temperatures.
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