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The lattice constants of the yand y' phases of nickel base superalloys have been modelled using a neural

network within a Bayesian framework, The analysis is based on datasets compiled from newexperiments

and the published literature, the parameters being expressed as a non-linear function of someeighteen

variables which include the chemical composition and temperature. The analysis permits the estimation of

error bars whosemagnitude dependson their position in the input space, Of the manymodels possible, a
"committee of models" is found to give the most reliable estimate. The method is demonstrated to be
consistent with knownmetallurgical trends and has been applied towards the study of someexperimental

alloys.
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be described later in the text.
l. Introduction

There has been considerable interestl,2) in the ap-
plication of nickel base superalloys for use in a multitude
of industrial applications that include blades for gas
turbines and jet engines. Suchalloys have an Impressive
ability to withstand creep deformation at temperatures

as high as IOOO'C.The excellent properties rely on the

existence of ordered Ni3(A1. Ti)y' precipitates which can
be coherent with the disordered f.c,c structure of the y
matrix-phase. The y' phase volume fraction can be as
high as O.6.3) They' precipitate has a cubic structure with

acube-cubeorientation with the matrix y. Thedifference

in the lattice parameters of the two phases is small but
quite significant in at least two respects. The magni-
tude4'5) and sign6,7) of the misfit control the coarsening

behavior (e.g. rafting8) and indeed the way in which
deformation by dislocation glide9) in hindered at the y/y'

interface.

There is a vast quantity of accurate lattice parameter
data available in the published literature. A cursory
examination of these data shows that Vegard's law, i.e.

a linear relationshiplo,1 l) between the lattice parameters
and solute concentration is not valid as a method for

modelling the parameters. Thepurpose of this work was
to use instead aneural networkl 2, 13) to modelthe changes
in lattice parameter of both the y and v' phases as a
function of their chemical composition and temperature.

A neural network has the ability to model highly non-
linear relationships. 14) Furthermore, the methodpermits

the estimation of error bars whosemagnitude depends

on their position in the Input space. The method shall
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2. The Data Base

The database consists of lattice constants obtained
from new X-ray analysis experiments and from the

published literature. Thecompositions of the nickel base
superalloys studied experimentally are shownin Table 1.

The last five alloys In the table are commercial super-
alloys, whereas the others are experimental alloys devel-

oped by Haradaet al.15) using their computer models.

With the exception of CMSX4,all the alloys listed in

Table I have identical processing and heat treatment.

Theywere directionally solidified and then homogenised
for four hours at 1300'C, followed by air cooling to

980'C where they were annealed for five hours. They
were then cooled to 850'C and held there for sixteen

hours. Thealloy CMSX4however, wasaged for five and
sixteen hours at temperatures 1120 and 870'C respec-
tively. These heat treatments are well established to

produce fine cuboidal y' precipitates in the y matrix
with volume fractions that exceed0.6. Thealloy samples

were filed to powder with approximate particle size of
60mmfor the purpose of X-ray analysis. This particle

size mitigates the effects of any oxidation at higher

temperatures. Prior to X-ray analysis, the powder
samples were annealed at 900'C for 20min to remove
any mechanical strain produced during filing.

TheX-ray equipment consisted of a Rigaku Rotorflex

RU-200BVdiffractometer with a Curotating anodeand

a high temperature vacuumspecimen chamber. The
anode operated at 55 kV and 180mAat high tempera-
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Table l. The chemical compositions for alloys examinedby high temperature X-ray dilTraction.

Alloy

Co MoCr W

Composition (at"/,) bal Ni

Al Ti Nb Ta Hf Re

TMS-l
TMS-6
TMS-12
TMS-17
TMS-19
TMS-26
TMS-30
TMS-61
TMS-62
TMS-63
TMS-67
TMS-70
NSRIOO
CMSX4
RR2000*
SRR99
MC2

8 12

0.0

0.0

0.0

0.0

8,82

8,36

OO
0.0

0.0

0,0

6,54
0,0

9.80

13.77

5.0

5,lO

6.75

9.98

7.20

7.34

7.47

6.34

6.68

12.35

8.
54

780
5.84

6.27

9.77

7.60

l0.56

9.63

9.30

0.0

0.0

0.0

0.0

0.0

1.26

0.0

3.47

4.04

4.60
5.42

4.64

0.62

0.38

l .70

0.0

l .30

5,76

2,99

4,45

3.53

2.80

3.97

3,
54

0,0

0,0

0.0

0.0

0,0

3,28
2, 12
0,0

3,04

2.06

l2.30

l I.58

l I.29

11.79

11.09

l I.98

12.17

l0.44

l2.08

12. 80
13.21

12.97

l I.96

12.60

l 1.01

12.00

11.20

O.O

0.0

OO
0.0

0.0

0.0

0.0

2.47

1.06

OO
0.0

0.0

l .50

1.27

4.60

2.
70

2.50

0.0

0.0

0.0

0.0

0.0

0.0

0.0

l.15

l .45

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

l .83

3.59

267
3.87

4.47
,~.84

2.65

0.28

0.0

2.80

l .87

2.79

l .09

2, 18
0.0

0.9 l
2.00

183
3.59

2.67

3.87

4,47

2,84

2,65

0,28
O.O

2,80

1,87

2,79

1,09

2,18

0.0

0.9 l
2,00

0,0

0,0

0,0

0,0

0,0

0,0

0,85
o.o

oo
0,0

0,0

0,0

oo
0.98

0.0

oo
0,0

NSRiOOabbreviation for NASAIRIOO.* RR2000contains small amountsof vanadium.

Table 2. The numberof lines of data used in the neural
network analysis.

Table 3b.

yphase )" phase

Thevariables used in the neural network analysis
for the y' phase. The information is mostly
presented to two decimal places.

Measuredby XRD
Databook
Total

133

321
454

133

l77
310

Variables Range Mean
St,andard

deviation

Table 3a. Thevariables used in the neural network analysis
for the y phase. The information is mostly
presented to two decimal places.

Variables Range Mean
Standard
deviation

Temperature ('C)

Nickel (at"/o)

Cobalt (ato/o)

Chromium(ato/o)

Molybdenum(ato/.)

Tungsten (ato/o)

Aluminium (ato/o)

Titanium (ato/.)

Niobium (at"/o)

Tantarium (ato/*)

Hafnium (at"/.)

Rhenium(ato/*)

Vanadiurn (ato/o)

lron (at"/o)

Gallium (at"/o)

Copper (ato/o)

Gold (ato/.)

Lattice constant (A)

15l 100

31.
1-lO0.00

O68.90
0-34.80
0-26. 51
O-15.

50
O-17.00

O9.
50

O7.90
O8.02
0-1

. 12
O-2

. 67
0~192
0-35.00
0-15.72
O-32.4 l
0-6.7

3. 51663.6606

316
79.32

2.98

7.74

2.38

i .26

2.02
O, 19
0,63

0.29

0.00

0.07

1.4 l
l ,60

0,20
0,38
O, IO
3.5730

344
15.30

7.82

9.55
5, 13
2,40

2,85

O87
0.52

0.72

0.06

0.39

6,33

5,28

l ,45

2.61

0.50

0.04 1O

tures. The heating mechanismconsisted of a thermo-
couple, a]uminium stage wrappedin platinum heater coil

and a platinum sample holder connected to a second
thermocouple. Thespecimenalloy powderwasembedded
onstandard oe-alumina powderto avoid chemical reaction
with the platinum holder and the stage wascovered with
three layers of nickel foil to reduce thermal emissions.

The X-ray measurementswere madeat room tem-

Temperature ('C)

Nickel (at"/o)

Cobalt (ato/o)

Chrourium (at(Vo)

Molybdenum(ato/o)

Tungsten (ato/o)

Aluminium (ato/o)

Titanium (ato/o)

Niobium (ato/o)

Tantarium (ato/o)

Hafnium (alo/o)

Rhenium(ato/o)

Vanadium(ato/o)

lron (ato/o)

Gallium (ato/o)

Lattice constant (A)

'-O-1 100

3290.20
O25,00
O34,80
O~:L82

0-4
, 87

0-26.00

O20.00
O~8

, O3
OIO, 14
0~L04
0-0,25

OlOOO
0-64.00
O-29.80

3.522733 641508

357
72,82

124
3,01

O64
0.96

15.01

1.25

0.18

l ,74

0,04
0,0 l
0,14

1.08

1.86

3,5950

387
4.8 l
2.7 1
5,38

l,18

l ,36

6.82

2.74
O.79
•_,lO

031
0.04
0,98

6.27

6.13
O.,_7

perature, 300, 500, 600, 700, 800, 900, I OOOand 1100'C.
The (200) and (31 1) peaks for the yand y' phases were
measuredin steps of 0.01' 2sec. Prior to each scan the
sample was allowed to stabilise its temperature for
approximately 15 mln. The signals were measuredtwice
and added together to produce a single profile with en-
hanced the signal-to-noise ratio. The X-ray profile con-
sisted of overlapping yand y' peaks which were decon-
voluted using the profile fitting programPROFIT16)that
employs a split Pearson VII function. The use of the
latter function enables the detailed analysis of peak
asyrnmetry and thus allows the separation of the yand
y' signals and the broadening of peaks. Thecompositions
of the y and y' phases at high temperatures were cal-

culated using the alloy design program developed by
Harada

.

15)

Asignificant proportion of the lattice parameters that

composethe database were obtained from Pearson's
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databookl7) and Ochiai et al.18,19) The size of the data
base is important to evaluate the plausibility of the
predictlons. In Table 2wehave summarizedthe number
of measuredand reported lattice parameters. The lattice

constants of the y and y' phases in the nickel base su-
peralloys were measured in a mixed two-phase micro-
structure. The published lattice parameter data are for

singie phase samples. It is possible that coherency strain

in the mixed microstructure can introduce an error of
0.01-0.1 o/o in the measurements, as shown by Ohno
et a/.20) Such an error wouid be reflected in the model
perceived level of noise in the dataset. Weconstruct a
separate database for the y and y' phases respectively.

The range, meanand standard deviation of the variables
in the databases are listed in Table 3.

3. The Neural Network Model

The temperatures and alloy compositions were used

as inputs and the lattice constant was the output of the
neur'al network model. Wehave a separate database of
inputs and output for the y and y' phases respectively.

The inputs and output were first normalised within the

range ~0.5:

xN=
'c x~*~ ..........(1)

x*,** - x*i~

where XN is the normallsed value of x, x~** is the

maxlmumvalue and x~~~ is the mlnlmumvalue of each
variable. This normalisation allows convenient compar-
ison of the relative importance of individual inputs on
the output.

The structure of the neura] network model used is

shownschematically in Fig. 1. The inputs and outputs
as shownare connected through hidden units where the
inputs xj are operated by a hyperbolic tangent transfer

function to obtain the hidden units hi defined as:

(~
J

lli:=tanh (1) +e!1)}4;" x'tJ J
(2)

where O!1) is defined as the bias that is analogous to the

constant that appears in the linear regression technique,

wi,j are defined as the weights that determine the strength
of the transfer function. The output is obtained as
follows:

Temperature

Nickel

Gallium

o
o
o
o
o
o
o
o
o
o
o
o
o

InpL]ts

Fig. l.

o
o
o
o
o
o
o
o
o Lattice constant
o
o
o (Output)

o
o
o
o

Hidden units

The neural network structure.

y=~. w~2)hi+e(2)
..........

..........(3)

where w(2) and O(2) are a newset of weights and a bias.

Equations (2) and (3) define the neural network structure
that connects the inputs to the output. The weights and
biases however, are unknownsto be determined through
"training" using the Bayesian back propagation scheme,
which involves a minimisation of the function:

M(w) pED+~0(.E,,,(.) ..........(4)

where EDis defined as:

ED(w)= (yi (x'", w) -
t'")2

. ... . . .. .

(5)

where the data set {x"', t"'} consists of x"' inputs related

to a particular target t'" (m is a label of the pairs). The
aim is to determine a set of weights in a mannerthat
minimises EDbut without overfitting to noise. Thus, the
regularisers E,*, are included so that smoothsolutions of
y(x"',w) are favoured and the possibility of fitting to
noise in the experimental data can be reduced. The
simplest regularlser has the form E,.=(112)~ wf• We
shall use however, the more sophisticated automatic
relevance determination model21) as described in the
literature.

The number of hidden units used determines the
complexity of the neural network and more accurate
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~D
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O~~Cl~
0.03

o02

(a)

x

X
)

X
~{
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~

0,06
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Numberof hidden units
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Cl)
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(b)

>
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~
~

X
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Numberof hidden unitS

Fig. 2. The variation in (T~ for the lattice parameters of(a) V
and (b) y' phases respectively as a function of hidden
units.
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Frg. 3. The test error for the lattice parameters of (a) yand
(b) ~,' phases respectively as a function of hidden units.
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predictions occur with increased numberof hidden units.

Thevalue of (T. decreases monotonically with the number
of hidden units for both the yand ,/' Phases(Fig. 2). The
test error, defined as the value of the error function for

unseendata is shownfor both the yand y' phases in Fig.
3. Thebest modelmaybe defined as that with the smallest
test error. This would be approprlate, for sltuation where
only scalar prediction (i,e. no error bars) are required.

MacKayhas shown, whenmakingpredictlons with error
bars, the best model should be declded according to a
quantity the "log predicted error". Using the log pre-
dicted error, unlike the test error, wild predictions are
penalised less if they have large error bars. Whenusing
noisy data, commonin manyexperimental situation,

somewild predictions must be expected.

X

X

x
x

X

4. The CommitteeModel
It is often the case with noisy data that models with

different complexity makedifferent predictions. In these
circumstances, the prediction madeby a committee of
models maybe more reliable than using a single model.
Figures 2and 3describe a population of models that

can be ranked according to the magnitude of the test

error. Westart a committee by using Nmodels ranked
by the "log predicted error". The committee is formed
through combining the best N models (where N=
l ,

2, 3• • • )such that the meanprediction of the committee
is:
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O IO 15 20 255
Numberof models in committee

Fig. 4. Thechangeinthe test errorwith the numberofmodels
used in the committee for (a) the yand (b) y' Phases
respectively.

_ IN
= ~ i •

••••••••••(6)y N y ...

i=1

with associated error in Jexpressed as:

IN Nla2= ~ ~(yi-y) ..........(7)(r ~+Ni=1 i=1N
Figure 4shows the changes in the test error with the

numberof modelsused to form a committee. The figure
showsthat a ten model committee Is favourable for the
y' phase, whereasfor the yphase the use of a single model
is appropriate. Committee predictions are compared
against experirnental data in Fig. 5. The behaviour of
the committee model consisting of individual models
retrained on the entlre dataset is illustrated in Fig. 6. The
inputs to output mappingbecomesmoreaccurate, after
retraining. Thepurpose of the division into training and
test data was to identify models with the optimal level

of complexity. Once that is done, its quite reasonable
to use the entire dataset for retraining, but without
changing the complexity of the model. Since the com-
mittee complexity is not changed after retraining, its

ability to generalise is not significantly effected.

5. The Significance of Individual Inputs on the Lattice
Constant

The metallurgical significance of the inputs is now
considered. Figures 7and 8 illustrate the significance of
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Fig. 5. The comparison of the measured lattice parameter
the (a) y and (b) ~,' phases with the neural network
connTlittee prediction, using the test data.
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measuredof (a) y and (b) */' Phases with the neural

network committee prediction after retraining on all

the data.

each of the inputs for the yand y' phases, as percelved
by the neural network model, in effecting the lattice

constants within the limitations of the dataset. For some
inputs weobserve a significant scatter of a,. (for y' phase
model) for each memberof the committee, indicating
that the relationship identified for that input has a high
uncertainty. Howeverclear trends are observed. A Iarge

value of (T** implies that the input concerned explains a
relatively large amount of the variation in the lattice

constant in the dataset (analogous to the partial cor-
relation coefficient used in the multiple regression anal ysis

approach). The (Tw value is not an indication of the
sensitivity of the lattice constant to a particular input.

The interpretation of a,,, is best understood by the
predictions madein the following section. The results

showvariation in lattice constant expected from cluster

variation calculations.2)

6. Application of the Model

Wechose to predict the lattice constants of the yand
y' phase for three typical nickel-base supera]loys: (i)

TMS63which has a large negative lattice misfit at all

temperature and thus showsthe most superlor creep rup-
ture lifetime (ii) TMS19that has a large positive lattice

misfit and thus poor creep rupture lifetime (iii) CMSX4
a commercial single crystal superalloy that has acomplex

Fig.

Au

Cu

Ga

Fe

v
Re

Hf

Ta

Nb

Ti

A1

W
Mo

Cr

Co

Ni

Temp ~!
o

SIGMAW
7. The bar chart ofthe model perceived significance for

each input used in the 9 hidden units single neural

network model for the yphase (the seed of the random
numberused to start the training was 30).
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SIGMAW
8. The bar chart of the model perceived significance for

each input used in the ten model "committee" to

predict the lattice parameter of the ~/' Phase. For each
weight the bars (top to bottom) correspond to hidden
units 14, 16, 4, 3, 3, 4, 3, 4, 3and 3were the seed of

randomnumberused to start the training was 50, lO,

20, 1, lO, 40, 30, 30, 60 and 30 respectively.
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9. The lattice constant predicted for alloy (a) CMSX4(b)

TMS19and TMS63for the y phase comparedwith
the measuredvalue (dotted line).

Fig.

composition that includes rhenium. In Fig. 9wepresent
the predictions for these alloys in the y phase. The
predictions have very small error bars and are in the

range of the experimental measurements.Figure 10 con-
tains the prediction for the alloys CMSX4,TMS19and
TMS63for the y' phase, these predictions also compare
favourably with the X-ray measurements,

Weshall next focus on alloy TMS63that has been
reported to have the best creep rupture time and study
the variatiofi of the lattice constant with most of the

individual alloying elements. In this study, a single

element in TMS63waschosenand its concentration was
changed. The predictions are at the commmercially
critical temperature of 900'C and are shownin Figs. 11

and 12 for the y phase. The chemical compositions of
the yand y' phases of alloy TMS63at 900'C are shown
in Table 4. The results illustrate that raising the con-
centration of most variables increases the yphase lattice

constant (with elements Al, NbandMobeing particularly

effective). It is emphasisedhere that the results are plotted

as a function of the yand y' phase compositions rather

than alloy composition. The partitioning of elements

.
~
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~
g:

O
CJ
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~i
~:l
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.
~
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%
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Q(J
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lO. The lattice constant predictions for ailoy (a) CMSX4

(b) TMS19and TMS63for the y' Phase.
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Table 4. Thechemical compositions of the ~/ and y' phases
of alloy TMS63at 900'C.

Phase
The composition of TMS63(at'/*) bal Ni at 900'C

Nl Co Cr Mo W A1 Ti Nb Ta

y
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between the y and y' is a separate issue not treated in
this paper. The predictions for the y' phase are shown
in Figs. 13 and 14. Wenote, that the y' phase lattice

constant is not that sensitive to element changesas is the

y phase. Wehave only examined the variation of the
lattice constant with one element at a tirne, though the
methodpermits variation in any numberof elements.

7. Conclusions

Wehave constructed a neural network model within

a Bayesian framework to predict the temperature de-
pendent lattice constant of the vand y' phases of nickel
superalloys. The neural network employs a committee
of models which is more reliable than using a single

model. In addition, the error bars of the committee
predictions are expected to be morereliable. Reasonable
predictions havebeenmadefor several alloys which agree
with X-ray measurements. The variation of the lattice

constant with the concentration of individual alloying
elements and with temperature can nowbe embodied
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14. Thedeviationoflattice constant with variation in (a)
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y' phase TMS63at the temperature of 900'C.

into other computer programs which deal with the
partitioning of solutes between the yand y' phases.

It has been demonstrated that the neural network
technique can reveal information in cases where (i)

experiments cannot be designed to study each variable
in isolation and (ii) the theoretical modelling of the
physical system is difficult due to its complexity. The
neural network scheme has the advantage that the
network summariseinformation in an empirical manner

and maybe retrained once newdata are madeavailable
to obtain moreaccurate predictions.
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