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The lattice constants of the y and y’ phases of nickel base superalloys have been modelled using a neural
network within a Bayesian framework. The analysis is based on datasets compiled from new experiments
and the published literature, the parameters being expressed as a non-linear function of some eighteen
variables which include the chemical composition and temperature. The analysis permits the estimation of
error bars whose magnitude depends on their position in the input space. Of the many models possible, a
“committee of models” is found to give the most reliable estimate. The method is demonstrated to be
consistent with known metallurgical trends and has been applied towards the study of some experimental

alloys.
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1. Introduction

There has been considerable interest’*? in the ap-
plication of nickel base superalloys for use in a multitude
of industrial applications that include blades for gas
turbines and jet engines. Such alloys have an impressive
ability to withstand creep deformation at temperatures
as high as 1000°C. The excellent properties rely on the
existence of ordered Ni,(Al, Ti)y’ precipitates which can
be coherent with the disordered f.c.c structure of the y
matrix-phase. The y’ phase volume fraction can be as
high as 0.6.> The y’ precipitate has a cubic structure with
a cube—cube orientation with the matrix y. The difference
in the lattice parameters of the two phases is small but
quite significant in at least two respects. The magni-
tude*> and sign®7 of the misfit control the coarsening
behavior (e.g. rafting® and indeed the way in which
deformation by dislocation glide® in hindered at the y/y’
interface.

There is a vast quantity of accurate lattice parameter
data available in the published literature. A cursory
examination of these data shows that Vegard’s law, i.e.
a linear relationship!®*! between the lattice parameters
and solute concentration is not valid as a method for
modelling the parameters. The purpose of this work was
to use instead a neural network*?'13 to model the changes
in lattice parameter of both the y and y’ phases as a
function of their chemical composition and temperature.
A neural network has the ability to model highly non-
linear relationships.'® Furthermore, the method permits
the estimation of error bars whose magnitude depends
on their position in the input space. The method shall

be described later in the text.

2. The Data Base

The database consists of lattice constants obtained
from new X-ray analysis experiments and from the
published literature. The compositions of the nickel base
superalloys studied experimentally are shown in Table 1.
The last five alloys in the table are commercial super-
alloys, whereas the others are experimental alloys devel-
oped by Harada et al.'® using their computer models.

With the exception of CMSX4, all the alloys listed in
Table 1 have identical processing and heat treatment.
They were directionally solidified and then homogenised
for four hours at 1300°C, followed by air cooling to
980°C where they were annealed for five hours. They
were then cooled to 850°C and held there for sixteen
hours. The alloy CMSX4 however, was aged for five and
sixteen hours at temperatures 1120 and 870°C respec-
tively. These heat treatments are well established to
produce fine cuboidal y’ precipitates in the y matrix
with volume fractions that exceed 0.6. The alloy samples
were filed to powder with approximate particle size of
60 mm for the purpose of X-ray analysis. This particle
size mitigates the effects of any oxidation at higher
temperatures. Prior to X-ray analysis, the powder
samples were annealed at 900°C for 20 min to remove
any mechanical strain produced during filing.

The X-ray equipment consisted of a Rigaku Rotorflex
RU-200 BV diffractometer with a Cu rotating anode and
a high temperature vacuum specimen chamber. The
anode operated at 55kV and 180 mA at high tempera-
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Table 1. The chemical compositions for alloys examined by high temperature X-ray diffraction.

Composition (at%) bal Ni

Alloy S
Co Cr Mo w Al Ti Nb Ta Hf Re
TMS-1 8.12 6.75 0.0 5.76 12.30 0.0 0.0 1.83 1.83 0.0
TMS-6 0.0 9.98 0.0 2.99 11.58 0.0 0.0 3.59 3.59 0.0
TMS-12 0.0 7.20 0.0 445 11.29 0.0 0.0 2.67 2.67 0.0
TMS-17 0.0 7.34 0.0 3.53 11.79 0.0 0.0 3.87 3.87 0.0
TMS-19 0.0 7.47 0.0 2.80 11.09 0.0 0.0 4.47 4.47 0.0
TMS-26 8.82 6.34 1.26 3.97 11.98 0.0 0.0 2.84 2.84 0.0
TMS-30 8.36 6.68 0.0 3.54 12.17 0.0 0.0 2.65 2.65 0.85
TMS-61 0.0 12.35 347 0.0 10.44 247 1.15 0.28 0.28 0.0
TMS-62 0.0 8.54 4.04 0.0 12.08 1.06 1.45 0.0 0.0 0.0
TMS-63 0.0 7.80 4.60 0.0 12.80 0.0 0.0 2.80 2.80 0.0
TMS-67 0.0 5.84 5.42 0.0 13.21 0.0 0.0 1.87 1.87 0.0
TMS-70 6.54 6.27 4.64 0.0 12.97 0.0 0.0 2.79 2.79 0.0
NSRI100 0.0 9.77 0.62 3.28 11.96 1.50 0.0 1.09 1.09 0.0
CMSX4 9.80 7.60 0.38 2.12 12.60 1.27 0.0 2.18 2.18 0.98
RR2000* 13.77 10.56 1.70 0.0 11.01 4.60 0.0 0.0 0.0 0.0
SRR99 5.0 9.63 0.0 3.04 12.00 2.70 0.0 0.91 091 0.0
MC2 5.10 9.30 1.30 2.06 11.20 2.50 0.0 2.00 2.00 0.0

NSR100 abbreviation for NASAIR100. * RR2000 contains small amounts of vanadium.

Table 2. The number of lines of data used in the neural
network analysis.

y phase y' phase
Measured by XRD 133 133
Databook 321 177
Total 454 310
Table 3a. The variables used in the neural network analysis
for the y phase. The information is mostly
presented to two decimal places.
Variables Range Mean ita{lde}rd
eviation
Temperature (°C) 15-1100 316 344
Nickel (at%) 31.1-100.00 79.32 15.30
Cobalt (at%) 0-68.90 2.98 7.82
Chromium (at%) 0-34.80 7.74 9.55
Molybdenum (at%) 0-26.51 2.38 5.13
Tungsten (at%) 0-15.50 1.26 2.40
Aluminium (at%) 0-17.00 2.02 2.85
Titanium (at%) 0-9.50 0.19 0.87
Niobium (at%) 0-7.90 0.63 0.52
Tantarium (at%) 0-8.02 0.29 0.72
Hafnium (at%) 0-1.12 0.00 0.06
Rhenium (at%) 0-2.67 0.07 0.39
Vanadium (at%) 04192 1.41 6.33
Iron (at%) 0-35.00 1.60 5.28
Gallium (at%) 0-15.72 0.20 1.45
Copper (at%) 0-32.41 0.38 2.61
Gold (at%) 0-6.7 0.10 0.50
Lattice constant (A)  3.5166-3.6606 3.5730 0.0410

tures. The heating mechanism consisted of a thermo-
couple, aluminium stage wrapped in platinum heater coil
and a platinum sample holder connected to a second
thermocouple. The specimen alloy powder was embedded
onstandard a-alumina powder to avoid chemical reaction
with the platinum holder and the stage was covered with
three layers of nickel foil to reduce thermal emissions.
The X-ray measurements were made at room tem-
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Table 3b. The variables used in the neural network analysis
for the y’ phase. The information is mostly
presented to two decimal places.

Variables Range Mean Slal.ld?rd
deviation
Temperature (°C) 20-1100 357 387
Nickel (at%) 32-90.20 72.82 4.81
Cobalt (at%) 0-25.00 1.24 2.71
Chromium (at%) 0-34.80 3.01 5.38
Molybdenum (at%) 0-4.82 0.64 1.18
Tungsten (at%) 0-4.87 0.96 1.36
Aluminium (at%) 0-26.00 15.01 6.82
Titanium (at%) 0-20.00 1.25 2.74
Niobium (at%) 0--8.03 0.18 0.79
Tantarium (at%) 0-10.14 1.74 2.10
Hafnium (at%) 0-4.04 0.04 0.31
Rhenium (at%) 0-0.25 0.01 0.04
Vanadium (at%) 0-10.00 0.14 0.98
Iron (at%) 0~64.00 1.08 6.27
Gallium (at%) 0-29.80 1.86 6.13
Lattice constant (A) 3.52273-3.641508 3.5950 0.27

perature, 300, 500, 600, 700, 800, 900, 1000 and 1 100°C.
The (200) and (311) peaks for the y and y’ phases were
measured in steps of 0.01° 2sec. Prior to each scan the
sample was allowed to stabilise its temperature for
approximately 15min. The signals were measured twice
and added together to produce a single profile with en-
hanced the signal-to-noise ratio. The X-ray profile con-
sisted of overlapping y and y’ peaks which were decon-
voluted using the profile fitting program PROFIT!® that
employs a split Pearson VII function. The use of the
latter function enables the detailed analysis of peak
asymmetry and thus allows the separation of the y and
7’ signals and the broadening of peaks. The compositions
of the y and y’ phases at high temperatures were cal-
culated using the alloy design program developed by
Harada.'®

A significant proportion of the lattice parameters that
compose the database were obtained from Pearson’s
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databook'” and Ochiai er al.'®'® The size of the data
base is important to evaluate the plausibility of the
predictions. In Table 2 we have summarized the number
of measured and reported lattice parameters. The lattice
constants of the y and y’ phases in the nickel base su-
peralloys were measured in a mixed two-phase micro-
structure. The published lattice parameter data are for
single phase samples. It is possible that coherency strain
in the mixed microstructure can introduce an error of
0.01-0.1 % in the measurements, as shown by Ohno
et al.®? Such an error would be reflected in the model
perceived level of noise in the dataset. We construct a
separate database for the y and y’ phases respectively.
The range, mean and standard deviation of the variables
in the databases are listed in Table 3.

3. The Neural Network Model

The temperatures and alloy compositions were used
as inputs and the lattice constant was the output of the
neural network model. We have a separate database of
inputs and output for the y and y’ phases respectively.
The inputs and output were first normalised within the
range +0.5:

X — X
XN= TR 0.5 e, )
Xmax ™ *min
where xy is the normalised value of x, x,, is the

maximum value and x,;, is the minimum value of each
variable. This normalisation allows convenient compar-
ison of the relative importance of individual inputs on
the output.

The structure of the neural network model used is
shown schematically in Fig. 1. The inputs and outputs
as shown are connected through hidden units where the
inputs x; are operated by a hyperbolic tangent transfer
function to obtain the hidden units 4; defined as:

h;=tanh <Z wilx; + 6{“)
J

where 6{!) is defined as the bias that is analogous to the
constant that appears in the linear regression technique,
w; ; are defined as the weights that determine the strength
of the transfer function. The output is obtained as
follows:

Temperature

Nickel 0
o o
o 0
o 0 \
o 0
9 0
o 0 / .
8 o Lattice constant
0 5
0 o (Output)
0 0
o 0
o 0

o]
Gallium O
Inputs .
Hidden units
Fig. 1. The neural network structure.
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where w{? and 6® are a new set of weights and a bias.
Equations (2) and (3) define the neural network structure
that connects the inputs to the output. The weights and
biases however, are unknowns to be determined through
“training” using the Bayesian back propagation scheme,
which involves a minimisation of the function:

MW)=BEp+Y 0 Epey cwereervereereernnnns )
where Ep is defined as:
1
Ep(W)=—2% (;(x", W) —t™? ...ccceennn. (5)

zmi

where the data set {x",¢™} consists of x™ inputs related
to a particular target 1™ (m is a label of the pairs). The
aim is to determine a set of weights in a manner that
minimises Ep, but without overfitting to noise. Thus, the
regularisers E,, are included so that smooth solutions of
¥(x™,w) are favoured and the possibility of fitting to
noise in the experimental data can be reduced. The
simplest regulariser has the form E,=(1/2)) w?. We
shall use however, the more sophisticated automatic
relevance determination model?? as described in the
literature.

The number of hidden units used determines the
complexity of the neural network and more accurate
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Fig. 2. The variation in g, for the lattice parameters of (a) y
and (b) y’ phases respectively as a function of hidden
units.
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predictions occur with increased number of hidden units.
The value of ¢, decreases monotonically with the number
of hidden units for both the y and y’ phases (Fig. 2). The
test error, defined as the value of the error function for
unseen data is shown for both the y and y’ phases in Fig.
3. The best model may be defined as that with the smallest
test error. This would be appropriate, for situation where
only scalar prediction (i.e. no error bars) are required.
MacKay has shown, when making predictions with error
bars, the best model should be decided according to a
quantity the “log predicted error”. Using the log pre-
dicted error, unlike the test error, wild predictions are
penalised less if they have large error bars. When using
noisy data, common in many experimental situation,
some wild predictions must be expected.

4. The Committee Model

It is often the case with noisy data that models with
different complexity make different predictions. In these
circumstances, the prediction made by a committee of
models may be more reliable than using a single model.
Figures 2 and 3 describe a population of models that
can be ranked according to the magnitude of the test
error. We start a committee by using N models ranked
by the “log predicted error”. The committee is formed
through combining the best N models (where N=
1,2,3- - -)such that the mean prediction of the committee
is:
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y= i oo, (6)

1

with associated error in j expressed as:

N S ©
Ni:lO'l Ni=1 YVi—= V) e
Figure 4 shows the changes in the test error with the
number of models used to form a committee. The figure
shows that a ten model committee is favourable for the
7’ phase, whereas for the y phase the use of a single model
is appropriate. Committee predictions are compared
against experimental data in Fig. 5. The behaviour of
the committee model consisting of individual models
retrained on the entire dataset is illustrated in Fig. 6. The
inputs to output mapping becomes more accurate, after
retraining. The purpose of the division into training and
test data was to identify models with the optimal level
of complexity. Once that is done, its quite reasonable
to use the entire dataset for retraining, but without
changing the complexity of the model. Since the com-
mittee complexity is not changed after retraining, its
ability to generalise is not significantly effected.

5. The Significance of Individual Inputs on the Lattice
Constant

The metallurgical significance of the inputs is now
considered. Figures 7 and 8 illustrate the significance of
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the (a) y and (b) 7’ phases with the neural network
committee prediction, using the test data.

each of the inputs for the y and y’ phases, as perceived
by the neural network model, in effecting the lattice
constants within the limitations of the dataset. For some
inputs we observe a significant scatter of g, (for y’ phase
model) for each member of the committee, indicating
that the relationship identified for that input has a high
uncertainty. However clear trends are observed. A large
value of o,, implies that the input concerned explains a
relatively large amount of the variation in the lattice
constant in the dataset (analogous to the partial cor-
relation coefficient used in the multiple regression analysis
approach). The ¢, value is not an indication of the
sensitivity of the lattice constant to a particular input.
The interpretation of ¢, is best understood by the
predictions made in the following section. The results
show variation in lattice constant expected from cluster
variation calculations.?

6. Application of the Model

We chose to predict the lattice constants of the y and
y" phase for three typical nickel-base superalloys: (i)
TMS63 which has a large negative lattice misfit at all
temperature and thus shows the most superior creep rup-
ture lifetime (ii) TMSI19 that has a large positive lattice
misfit and thus poor creep rupture lifetime (iii)) CMSX4
a commercial single crystal superalloy that has a complex
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The bar chart of the model perceived significance for
each input used in the 9 hidden units single neural
network model for the y phase (the seed of the random
number used to start the training was 30).
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Fig. 8. The bar chart of the model perceived significance for

each input used in the ten model “committee” to
predict the lattice parameter of the y’ phase. For each
weight the bars (top to bottom) correspond to hidden
units 14, 16, 4, 3, 3, 4, 3, 4, 3 and 3 were the seed of
random number used to start the training was 50, 10,
20, 1, 10, 40, 30, 30, 60 and 30 respectively.

composition that includes rhenium. In Fig. 9 we present
the predictions for these alloys in the y phase. The
predictions have very small error bars and are in the
range of the experimental measurements. Figure 10 con-
tains the prediction for the alloys CMSX4, TMSI9 and
TMS63 for the y’ phase, these predictions also compare
favourably with the X-ray measurements.

We shall next focus on alloy TMS63 that has been
reported to have the best creep rupture time and study
the variation of the lattice constant with most of the
individual alloying elements. In this study, a single
element in TMS63 was chosen and its concentration was
changed. The predictions are at the commmercially
critical temperature of 900°C and are shown in Figs. 11
and 12 for the y phase. The chemical compositions of
the y and y’ phases of alloy TMS63 at 900°C are shown
in Table 4. The results illustrate that raising the con-
centration of most variables increases the y phase lattice
constant (with elements Al, Nb and Mo being particularly
effective). It is emphasised here that the results are plotted
as a function of the y and y’ phase compositions rather
than alloy composition. The partitioning of elements
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Table 4. The chemical compositions of the y and y’ phases
of alloy TMS63 at 900°C.

The composition of TMS63 (at%) bal Ni at 900°C

Phase
Ni Co Cr Mo w Al Ti Nb Ta
v 689 00 170 925 0.0 405 0.0 0.0 082
Yy 736 0.0 335 235 00 170 0.0 0.0 37
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Fig. 13. The deviation of lattice constant with variation in (a)

Al (b) Co (c) Cr and (d) Ga compositions (at%) from
y" phase TMS63 at the temperature of 900°C.

between the y and 9’ is a separate issue not treated in
this paper. The predictions for the y’ phase are shown
in Figs. 13 and 14. We note, that the 7’ phase lattice
constant is not that sensitive to element changes as is the
y phase. We have only examined the variation of the
lattice constant with one element at a time, though the
method permits variation in any number of elements.

7. Conclusions

We have constructed a neural network model within
a Bayesian framework to predict the temperature de-
pendent lattice constant of the y and y’ phases of nickel
superalloys. The neural network employs a committee
of models which is more reliable than using a single
model. In addition, the error bars of the committee
predictions are expected to be more reliable. Reasonable
predictions have been made for several alloys which agree
with X-ray measurements. The variation of the lattice
constant with the concentration of individual alloying
elements and with temperature can now be embodied
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Fig. 14. The deviation of lattice constant with variation in (a)
Mo (b) Nb (c) Ti and (d) W compositions (at%) from
y' phase TMS63 at the temperature of 900°C.

into other computer programs which deal with the
partitioning of solutes between the y and y’ phases.

It has been demonstrated that the neural network
technique can reveal information in cases where (i)
experiments cannot be designed to study each variable
in isolation and (ii) the theoretical modelling of the
physical system is difficult due to its complexity. The
neural network scheme has the advantage that the
network summarise information in an empirical manner
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and may be retrained once new data are made available
to obtain more accurate predictions.
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