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Martensitic Transformation

Martensitic transformations are diffusionless. The
change in crystal structure is achieved by a homo-
geneous deformation of the parent phase. To minimize
the strain energy the martensite forms as thin plates on
particular crystallographic planes known as the habit
planes. The consequences of this mechanism can be
seen macroscopically because the shape of the trans-
formed region changes, the strain being a combination
of shear (~ 0.25) parallel to, and a dilatational strain
(~ 0.03) normal to the habit plane (Fig. 1). Given the
nature of the homogeneous deformation, it should be
possible to predict many of the aspects of the crys-
tallography, morphology, transformation strains, and
dynamic characteristics of martensite. We shall see
that this is indeed the case, making martensitic
transformation amenable to rigorous theoretical treat-
ment.

Martensite can grow at temperatures close to
absolute zero and at speeds in excess of 1000ms~".
The transformation interface must then have a struc-
ture that is glissile, i.e., one that does not require
diffusion. Only coherent or semicoherent interfaces
can be glissile. A semicoherent interface will contain
dislocations that periodically correct the misfit at the
interface. For martensite, there can exist only one
array of dislocations; multiple arrays can interfere,
leading to the formation of jogs that require climb,
rendering the interface sessile. This simple logic implies
that for martensite the semicoherent interface must
contain one line that remains undistorted and un-
rotated by the transformation strain; it is this invariant
line that defines the line vector of the interfacial
dislocations. This single set can accommodate the
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Figure 1

Schematic representation of the shape deformation
accompanying martensitic transformation. The habit plane
normal is vertical, J and ¢ represent the dilatational and
shear strains, respectively, and md is the net displacement
vector. Such a deformation is known as an invariant-plane
strain because it leaves the habit plane undistorted and
unrotated. The square has unit height.

misfit because there is no misfit parallel to the invariant
line. The Burgers vector of the interface dislocations
must in general lie out of the plane of the interface so
that they can glide as the boundary advances.

Thus, martensitic transformations can occur only in
systems where the parent and product lattices can be
related by a transformation strain that leaves at least
one line invariant.

The change from the f.c.c. (face-centered cubic
austenite) to b.c.c. (body-centered cubic martensite)
crystal structure in iron is sufficiently general to
represent all martensitic transformations. Bain in 1924
proposed that the change in structure could be
achieved by the simple homogeneous deformation
illustrated in Fig. 2. The crystal structure of austenite
can also be represented by a body-centered tetragonal
(b.c.t.) unit cell, as shown in Fig. 2(b). It is then easy to
see how the b.c.t. cell of austenite may be deformed
to produce the required b.c.c. cell. Thus, the “Bain
strain” consists of a contraction of the parent lattice
along the a, axis and identical expansions along the
a, and a, axes.

The Bain strain implies the following orientation
relationship between the parent and product lattices:

[OOI]ICC ” [OOI]bcc [ITO]fcc “ [100]bcc [1 lo]lcc ” [Olo]bcc

but, in fact, the experimentally observed orientation
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(a) Conventional f.c.c. unit cell. (b) Relationship between
f.c.c. and b.c.t. cells of austenite (some of the lattice points
have been omitted to avoid confusion). (¢, d) Bain strain
deforming the austenite lattice into a b.c.c. martensite
lattice.
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Stereographic representation of the Kurdjumov-Sachs
orientation relationship. The stereogram is centered on
(111),,. Il (011),,... The unmarked neighboring pairs of
poles would superpose exactly for the Bain orientation but
they do not do so for the Kurdjumov—Sachs orientation.

relationships are irrational,
Kurdjumov—Sachs orientation:

{lll}fcc ” {Oll}bcc <10T>I‘cc ” <11T>bcc

The difference between these two orientations is shown
on the stereographic projection in Fig. 3.
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Temporarily neglecting the fact that the Bain
orientation is inconsistent with experiments, we pro-
ceed to examine whether the Bain strain leaves at least
one line invariant. After all, this is a necessary
condition for martensitic transformation.

The austenite is represented in Figs. 4(a) and (b) as
a sphere, which, as a result of the Bain strain, B, is
deformed into an ellipsoid of revolution that repre-
sents the martensite. There are no lines that are left
undistorted or unrotated by B. There are no lines in
the (001),,. plane which are undistorted. The lines wx
and yz are undistorted but are rotated to the new
positions w’x” and y’z’. Such rotated lines are not
invariant. However, the combined effect of the Bain
strain, B, and the rigid body rotation, R, is indeed an
invariant-line strain (ILS) because it brings yz and y’z’
into coincidence (Fig. 4(c)). This is the reason why the
observed irrational orientation relationship differs
from that implied by the Bain strain. The rotation
required to convert B into an ILS precisely corrects the
Bain orientation into that which is observed exper-
imentally.

As can be seen from Fig. 4(c), there is no rotation
which can make B into an invariant-plane strain (IPS)
since this would require two nonparallel invariant
lines. Thus, for the f.c.c.—b.c.c. transformation,
austenite cannot be transformed into martensite by a
homogeneous strain which is an IPS. And yet the
observed shape deformation leaves the habit plane
undistorted and unrotated, i.e., it is an IPS (Fig. 1).

The phenomenological theory of martensite crys-
tallography solves this remaining problem (Fig. 5).
The Bain strain converts the structure of the parent
phase into that of the product phase. When combined

(a, b) Effect of the Bain strain on austenite, which when undeformed is represented as a sphere of diameter wx = yz in
three dimensions. The strain transforms it to an ellipsoid of revolution. (c) Invariant-line strain obtained by combining the

Bain strain with a rigid body rotation through an angle 6.
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Phenomenological theory of martensite crystallography.

with an appropriate rigid body rotation, the net
homogeneous lattice deformation, RB, is an ILS (step
(a) to (c¢) in Fig. 5). However, the observed shape
deformation is an IPS, P, (step (a) to (b) in Fig. 5), but
this gives the wrong crystal structure. If a second
homogeneous shear, P,, is combined with P, (step (b)
to (c)), then the correct structure is obtained but the
wrong shape since

PP,=RB

These discrepancies are all resolved if the shape-
changing effect of P, is cancelled macroscopically
by an inhomogeneous lattice-invariant deformation,
which may be slip or twinning, as illustrated in Fig. 5.

The theory explains all the observed features of the
martensite crystallography. The orientation relation-
ship is predicted by deducing the rotation needed to
change the Bain strain into an ILS. The habit plane
does not have rational indices because the amount of
lattice-invariant deformation needed to recover the
correct macroscopic shape is not usually rational. The
theory predicts a substructure in plates of martensite
(either twins or slip steps) as is observed experimen-
tally. The transformation goes to all the trouble of
ensuring that the shape deformation is macro-

scopically an IPS because this reduces the strain energy
when compared with the case where the shape de-
formation might be an ILS.

The mechanism by which martensite nucleates must
also be consistent with diffusionless transformation
and the fact that the phase can form at remarkably low
temperatures and high strain rates. The classical idea
that nucleation happens when random phase and
composition fluctuations reach a critical size is not
reasonable in such circumstances. The probable mech-
anism involves the dissociation of three-dimensional
arrays of dislocations. The faulted structure between
the partials then represents the embryo, which is said
to become the nucleus of martensite when the cir-
cumstances are right for the rapid growth of the
embryo. In most cases this means that the chemical
driving force for transformation must be large enough
to allow the partials to propagate with a rate limited
only by the usual barriers to dislocation motion. This
theory is particularly useful because it predicts cor-
rectly that the activation energy for nucleation is
directly proportional to the driving force for trans-
formation. This behavior is not expected in classical
nucleation by heterophase fluctuations.

There have been many proposals that nucleation
involves some sort of lattice instability or a strain
spinodal. These do not seem to be useful models
except when the driving force for transformation is
extremely large.
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