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ABSTRACT

A solution is presented for the growth of needle-shaped particles (paraboloids of revolution)
in multicomponent systems that obey Henry’s law. Interface kinetics and capillarity effects
are incorporated, and it is demonstrated that the maximum velocity hypothesis cannot be
sustained if it is assumed that there is local equilibrium at the interface. The particle is unable
to grow with equilibrium for small supersaturations when capillarity effects are prominent, and
for large supersaturations when the interface kinetics effect is large. A method to obtain the

lengthening rate and tip radius is provided.

Introduction

There is a variety of models dealing with the diffusion—controlled growth of needle-like
particles with the idealised shape of a paraboloid of revolution. Some of the original work in this
area was done by Ivanstov [1] and Horvay and Cahn [2], who presented exact solutions to the
diffusion equation for an isoconcentrate boundary. Their model is expressed mathematically

as:

Q = pexp{p}E,{p} (1)

where p = vp/2D is the Péclet number, v is the lengthening rate, p is the radius of curvature
of the tip of the paraboloid, D is the diffusion coefficient of the solute in the matrix phase, F;

the exponential integral [3] and €2 is the dimensionless supersaturation given by

¢ —coP

0=——° _ (2)

cPo — cof

where € is the average solute concentration in the alloy, ¢®? is the solute concentration of the
matrix (a) in equilibrium with the precipitate (8), ¢?® is the corresponding concentration in

the precipitate in equilibrium with the matrix.
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Trivedi [4,5] pointed out the non—isoconcentrate nature of the interface, and incorporated

capillarity and interface kinetics effects

Q= pexpiphFi{p} | L+ QR {p}+ TR (p) (3)

a

b 9

where v, = (¢ — c®P) is the velocity of a flat interface during interface—controlled growth,
i.e., when almost all the free energy is dissipated in the transfer of atoms across the boundary
causing the concentration difference in the matrix to vanish, and p is the interface kinetics
coefficient. For curved interfaces, the growth rate will become zero at a curvature 1/p, via
the Gibbs—-Thomson effect [6]. The functions R, = ﬁNl{p} —1land R, = ﬁNZ{p} — 1 have
been evaluated numerically by Trivedi [4] for large supersaturations, and have recently been
extended for small values of Q [7]; such functions account for the concentration change along
the parabolic surface.

The term labelled a in equation (3) is the Ivanstov solution [1] where interface kinetics and
capillarity effects are neglected; terms b and ¢ account respectively for those effects. Equation
(3) does not provide a unique answer for the growth rate v, which depends on the tip radius p.
For solid—state transformations it is common to adopt Zener’s assumption [7-10] that the radius
of curvature is that which gives the maximum growth rate. This is obtained by differentiating

equation (3) with respect to p and setting dv/dp = 0, which gives

0= () (22 m i) - )+ T ey
where g*{p} = pexp{p}£;{p} and
. uE—c?)
q = T/pc (5)

is a parameter which indicates the relative magnitudes of the interface kinetics and the diffusion
effect. The values of the functions R}, R} are given in [7]; they can be used to solve equations
(3) and (4) simultaneously, to obtain a unique solution for v and p/p, as a function of Q, as
long as the Zener assumption is justified.

The purpose of the present work was to extend Trivedi’s work on binary alloys, to cover
the growth of needles in multicomponent systems. The inspiration for this comes from Coates
[11-13] who treated the growth of spheres in multicomponent systems, but we shall add the

effects of capillarity and interface kinetics.



Multicomponent needle growth with an isoconcentrate boundary

With 2 = 1,2, ..., m components diffusing during growth, it becomes necessary to solve a

set of diffusion equations in parabolic coordinates. Following Ivanstov, this requires

Q, = p;exp{p;} Ey{p;} (6)

where p, = vp/2D,, D, is the diffusivity of component i and

o= G- 7)
oo

is the supersaturation of component ¢. Since v and p can only have single values, simultaneous

solution of equation (6) for ¢ = 1,2, ...,m demands

p Dy =pDy=...=p, D, (8)

Consider now a ternary system, such as a steel. The influence of a difference in the
diffusivities of two components (for example carbon and a substitutional solute) can be seen
by varying p, and obtaining p, = g—?pQ, and plotting the results in the form of Coates interface—
composition (IC) contours for several values of D,/D;. A given IC contour is the locus of all
alloy compositions for which the concentration at the transformation front are defined by the
same equilibrium tie-line. Such results are shown in Fig. 1. Thus, a needle—shaped particle
with an isoconcentrate interface behaves much the same as a sphere [11-13] but with p,, p,

given by the solution of equations (6,8).
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Fig. 1 Needle-shaped isoconcentrate particle IC contours for different ratios

of diffusivities in a ternary system.



Capillarity effects in multicomponent needle growth

When capillarity is taken into account during needle growth, mass balance demands for

each diffusing component,

Pe

Q, = p;exp{p;} E1{p;} [1 + ?QiRQ {Pz}] (9)

for i = 1,2,...,m diffusing components [4,5]. The use of the maximum velocity hypothesis
gives

apo2Pe (1 9Pt
0= (g"{p:}) p—(——RQ{pi} + Ré{pi}) p el {p} -1 (10)
P p p;
for ¢ =1,2,...,m, which gives a system of 2m equations in which p and v are over determined.

The problem will thus be inverted to seek solutions consistent with equations (8,9).

Binary systems

First consider a particle growing at p/p., = 10 in a binary system, the corresponding
values of p as a function of § given by equation (9) are shown in Fig. 2a. It is seen that a
minimum in €2 is present when the critical radius p, and the needle tip radius p = 10 X p, are

maximum, as shown in Fig. 2b, where p, was calculated assuming ¢’® = 0.95, ¢®” = 0.05 and

CT’U'B

o = 10~1%m. As with Trivedi [4,5], the expression for p, as presented below assumes that

the solution obeys Henry’s law, i.e. that the activity coefficient is constant [6, page 483]:

_ 2006 ovP 1 (11)
Pe = ¢ —coP\ kT cBo — cob

where v? is the solute atomic volume, k is the Boltzmann’s constant and T the temperature.

This is because the conditions at the needle tip are closest to equilibrium, as given by the phase
diagram, at the largest tip radius. Note that for a given value of €2, there are two solutions
for p, it is assumed by Trivedi [4,5] that growth occurs at the value of p that produces the
maximum lengthening rate.

Fig. 3 shows a generic plot of equation (9), showing the variation of p with ©Q and p/p,
in a binary system. With p/p. = oo the plot represents the Ivanstov solution, where p and v
cannot be defined uniquely. When p/p, = 10 capillarity plays a role in the growth process, Q
is no longer a function that grows monotonically with p; as p/p, approaches to 1, capillarity

becomes prominent, and the growth process has to occur at large supersaturations.

Multicomponent systems

The Coates’ concept of interface-composition contours as represented in Fig. 1 cannot be

applied directly when capillarity is included in the calculations. In Fig. 1, the €2, term defines
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the compositions at the growing interface via equation (2), and at the same time represents the
dimensionless supersaturations. Whereas €2, continue to represent the supersaturations when
capillarity is incorporated into the theory, the compositions at the interface are no longer ¢?
and ¢”* (equation (2)) but rather the values the values ¢3” and ¢ as modified by capillarity.
Therefore, the plots corresponding to Fig. 1 are best called interface-saturation (IS) contours
rather than interface composition contours; as will be seen later, it is necessary to make this
distinction in order to avoid confusion.

The effects of capillarity in multicomponent growth can be observed in IS contours, which
in the present context illustrates the locus of points where growth under local equilibrium is
possible. In the absence of capillarity, growth with local equilibrium is always possible, as
illustrated in Fig. 1. Fig. 4a shows for a ternary system, the permitted values for 2, and €, as
p, is varied for p/p, = 6 (see also Appendix A). Consistent with the binary case (Fig. 3), there
is a minimum value of €, for the fast diffuser; larger values of Q, are required when D, /D is
increased, because as the slow diffuser requires more driving force to keep pace with the fast
diffuser. As capillarity is increased, less energy is available for diffusional growth, demanding

larger supersaturations as shown in Fig. 4b for p/p,. = 2; this effect is reduced for larger values

of p/p,. (Fig. 4c).
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Fig. 2 Variation of (a) supersaturation and (b) critical and needle tip radius

with p for p/p, = 10.
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Fig. 3 Supersaturation as a function of the Péclet number and tip radius

ratio.
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Fig. 4 1S contours in a ternary system for p/p, = (a) 6, (b) 2, (c) 10. Note
that the scale in Fig. 4b is different from 4a and 4c.



To find a solution to equations (8,9), consider an alloy of composition ¢;. In a multicom-

ponent system, the critical radius can be calculated from the classical theory [6, page 483]

as
QC?ﬁ (U'Uf) ( 1 (12)
Pe= A 5 g
¢ —c kT ¢’ =
which requires that
B B B B
CTZ Uy — C; Vg — — C?Ovzlﬁ vgl ( 1 3)
¢ — PP, =P - o e —cal e —cof

for ¢ =1,2,..,m components, where vf is the atomic volume of 7. Once a tie-line that satisfies
equation (13) is found, the value of p, can be obtained.

Consider a ternary system, choosing the appropriate equilibrium tie-line that satisfies
equation (13), the values of ¢;”, ¢/*, ¢3”, ¢J* can be obtained, and thus Q, and €, and p,
calculated. Provided that the value of the diffusion coefficients of the two solutes is known,
D, /D, can be calculated. Then the value of p/p, can be varied until an IS contour intersects
the point Q,, Q,. This procedure is shown in Fig. 5 for D,/D; = 10%, where the point Q, = 0.1,

2, = 0.05 is intersected only by the IS contour produced with p/p, = 10.
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Fig. 5 IS contours for D,/ D; = 10% as a function of p/p..



For any set of supersaturations €2, €2,, there is only one possible IS contour that can be
intersected (Fig. 5), implying that the value of p/p, is unique. Furthermore, being that each
point of such IS contour is associated to a unique value of p, and p, = g—?pQ, these are uniquely
defined as well. p, can be obtained from the equilibrium compositions and then the velocity
is determined through v =2p,D,/p = 2p,D,/p.

Therefore, it is seen that an important consequence is that the velocity is determined
uniquely, without invoking a maximum velocity hypothesis; the presence of a third element with

a different diffusivity permits a unique choice of velocity when local equilibrium is assumed.

Interface kinetics effect in multicomponent needle growth

If it is assumed that the flux J; of solute 7 across the interface is only a function of the

aﬁ)

concentrations of that solute, the velocity of a flat interface can be expressed as v, = y,(¢,—¢;

for:=1,2,...,m components, where , is the interface kinetics coefficient of component 7. The
relative magnitudes of interface kinetics and diffusion effect are given by
— B
¢ = pi (@ — ;")
‘ 2Dz/pc

Note that the critical velocity v, decreases as y; (or ¢) decrease. In other words, the critical

(14)

velocity decreases as it becomes more difficult to transfer atoms across the interface. An infinite
value of ¢ means that the free energy dissipated in interface kinetics is negligible.

Thus, equation (9) can be modified to include interface kinetics as

Q, =g"{p;} 1‘*’2%%91‘1%1{1%}4‘ %QiRZ{pi} (15)

k3

For small values of p/p,, the solution of equation (15) for a single diffusing component is shown
in Fig. 6 for the indicated values of ¢*. It is to be noted that as the interface kinetics effect
is increased, the permitted values of p are reduced for a given supersaturation and p/p.. This
is because at greater velocities more energy is dissipated in atom transfer across the interface,
reducing the lengthening rate.

To asses the effect of multicomponent interface kinetics it is first recognised that
4Dy =Dy =...=q,D, (16)

which has to be simultaneously solved with equations (8) and (15) to satisfy mass balance at
the interface.

The supersaturations that simultaneously satisfy equations (8,15,16) can be expressed as
IS contours for m = 2. Fig. 7 provides an example of such contours for ¢; = 0.02, p/p,=8, this
shows that the addition of interface kinetics effect limits the value of 2, and €, when these

approach 1 due to all the energy will be depleted by this effect.
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The overall effect of interface kinetics is to reduce the particle lengthening velocity, and
limit this to a maximum value as €, — 1. The procedure to obtain the lengthening rate and
tip radius for a given composition is identical to the one explained previously, but using the

appropriate values of ¢ to produce the IS contours.

Application of the theory to Fe-C-Mo

To illustrate the use of the theory, it has been applied to calculate the lengthening rate
of Mo, C needle—shaped precipitates growing in a ferrite matrix in a Fe-0.11C-1.95Mo alloy.
Measurements on the lengthening rates and needle tip radius have been performed by Hall et

al. [14] for a number of temperatures, and their data are shown in Table 1.

T [K] 873 923 973 1023
measured p [A] 25 30 35 40
measured v [x1071? m s71] 1.0 10 130 220
D,/D, x10° 23 9.5 4.3 2.1

Qs 0.0165 0.0159 0.0150 0.0132

Q. 0.0149 0.0145 0.0139 0.0130

Pago X 1073 295 211 192  1.60

p/p. 21.6 208  20.1  19.6
0 1 18 30 49
v [x107% m s71] 2.0 6.8 18 40

Table 1: Mo, C tip radius and average Mo, C lengthening rates in Fe-0.11C-
1.95Mo [14], and those obtained from the application of the theory.

The diffusion coefficients of C and Mo are calculated from

D:Doexp{—%} (17)
where R = 8.314 J mol~! K~! is the universal gas constant, T’ the absolute temperature. For
molybdenum, D, ,=1.1x107* m? s=! and Q=240x10? J mol~'[15]. For carbon, D =2.2x10~*
m? s7! and Q=122x10% J mol~![16].

The critical radius was obtained from equation (12) with o = 0.2471 J m~2 [17], v and
fo[o were approximated as 1.25x1072? m® atom~'; and c?ﬁ and cfa were obtained from a tie—

line satisfying equation (13), which was provided by a thermodynamical database and phase

diagram software MTDATA [18].
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The values of D,/D, were found to be ~ 107 (Table 1), and the IS contours corresponding
to the values of p/p, that intersect supersaturations Q,, , Q. were chosen. The tip radii and

lengthening velocities associated to these calculations are shown in Table 1.
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Fig. 8 Comparison between measured and calculated lengthening rates for

the indicated temperatures

The measured and calculated lengthening velocities shown in Table 1 are presented graph-

ically in Fig. 8, where it is seen that reasonable agreement is obtained.

Summary

Consistent with Trivedi’s work on the growth of needle shaped particles for binary systems,
the incorporation of capillarity into the corresponding model for multicomponent systems
introduces a minimum value of the supersaturation €2 under which growth will not occur.

The diffusion—controlled growth rate tends to infinity as £ — 1. This is not expected in
practice because other rate—controlling processes become limiting at high needle lengthening—
rates. Therefore, finite growth rates are obtained as {2 — 1 when interfacial kinetic effects are
introduced into the model. This again is consistent with Trivedi’s work. However, with multi-
component systems, it becomes possible to obtain a unique solution for the velocity, without
invoking a maximum velocity hypothesis. This method was applied to obtain lengthening rates

of Mo, C and their tip radius, obtaining reasonable agreement with experimental observations.
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Appendix A

In Fig. 4 the lines for D,/ D, = 1 terminate in limiting (forbidden) supersaturations; these

depend on the value of p/p, as shown in Fig. 3. The minima can be obtained when equation

(9) is expressed as

R
Q. = ! Al
B p%g*{pi}RQ{pi}
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and setting

d { 97{p:} }} 0 49

d_pi I- ﬁg*{pi}RQ{pi
The solution of equation (A2) for p, can be inserted in (A1) to obtain the variation of the

minimum values of Q, with p/p,, as shown in Fig. Al.
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Fig. A1 Minimum values of €2, as a function of p/p,
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