6 Kinetics

There are three distinct events in the evolution of bainite (Fig. 6.1). A sub-unit
nucleates at an austenite grain boundary and lengthens until its growth is
arrested by plastic deformation within the austenite. New sub-units then
nucleate at its tip, and the sheaf structure develops as this process continues.
The average lengthening rate of a sheaf must be smaller than that of a sub-unit
because of the delay between successive sub-units. The volume fraction of
bainite depends on the totality of sheaves growing from different regions in
the sample. Carbide precipitation influences the reaction rate by removing
carbon either from the residual austenite or from the supersaturated ferrite.
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Fig. 6.1 The microstructural features relevant in the kinetic description of a bainitic
microstructure. There is the lengthening of sub-units and of sheaves, the latter by
the repeated nucleation of sub-units, the precipitation of carbides, and the change
in volume fraction as a function of time and temperature.
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6.1 Thermodynamics of Nucleation

It was shown in Chapter 5 that the equilibrium compositions x*7 and x* of
ferrite and austenite respectively, are obtained using the common tangent
construction. The same construction can be used to determine the change in
free energy AG’ 7" when austenite of composition ¥ decomposes into the
equilibrium mixture of ferrite and carbon-enriched austenite (7'), Fig. 6.2a.
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Fig. 6.2 Free energy diagrams illustrating the chemical free energy changes during
the nucleation and growth of ferrite from austenite of composition ¥. The term ~
refers to austenite which is enriched in carbon as a result of the decomposition of
austenite of composition ¥ into a mixture of ferrite and austenite.
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The equilibrium fraction of ferrite is given by the lever rule as (x™ —X)/
(27> — 7). It follows that the free energy change per mole of ferrite is
Vo oy
AG, = AGT™ T x %
(Fig. 6.2a).

There is a significant change in the chemical composition of the austenite
when it changes into the equilibrium mixture of ferrite and austenite. A ferrite
nucleus on the other hand has such a small volume that it hardly affects the
composition of the remaining austenite. The calculation of the free energy
change associated with nucleation must therefore take into account that only
a minute quantity of ferrite is formed. Consider the change AG, as austenite
decomposes to a mixture of ferrite and enriched austenite of composition
x7 = x7. As the fraction of ferrite is reduced, x” and ¥ move towards each
other causing the line AB to tilt upwards. In the limit that x” = X, AB becomes
tangential to the curve at x. The free energy change for the formation of a mole
of ferrite nuclei of composition x“ is then given by AG;, Fig. 6.2b.

The greatest reduction in free energy during nucleation is obtained if the
composition of the ferrite nucleus is set to a value x,,, given by a tangent to the
ferrite free energy curve which is parallel to the tangent to the austenite free
energy curve at X, as shown in Fig. 6.2b. This maximum possible free energy
change for nucleation is designated AG,,.

There is simplification when the transformation occurs without composition
change (Fig. 6.2c). The change AG' ™ is the vertical distance between the
austenite and ferrite free energy curves at the composition of interest.

6.1.1 Transformation-Start Temperature

It is a common observation that the Widmanstitten ferrite-start (Ws) and
bainite-start (Bg) temperatures are more sensitive to the steel composition
than is the Ae; temperature. This indicates that the influence of solutes on
the nucleation of Widmanstétten ferrite and bainite is more than just thermo-
dynamic (Fig. 6.3a).

Some clues to this behaviour come from studies of time-temperature-trans-
formation diagrams, which consist essentially of two C-curves. The lower C-
curve has a characteristic flat top at a temperature T, which is the highest
temperature at which ferrite can form by displacive transformation (Fig. 6.3b).
The transformation product at T, may be Widmanstétten ferrite or bainite.

The driving force AG,, available for nucleation at T}, is plotted in Fig. 6.4a,
where each point comes from a different steel. The transformation product at
T}, can be Widmanstitten ferrite or bainite, but it is found that there is no need
to distinguish between these phases for the purposes of nucleation. The same
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Fig. 6.3 (a) The variation of the Widmanstétten ferrite-start and bainite-start tem-
peratures as a function of the Ae; temperature of the steel concerned (Ali, 1990).
(b) Schematic TTT diagram illustrating the two C-curves and the T}, temperature.

nucleus can develop into either phase depending on the prevailing thermo-
dynamic conditions. The analysis proves that carbon must partition during the
nucleation stage in order always to obtain a reduction in free energy. The
situation illustrated in Fig. 6.4b is not viable since diffusionless nucleation
would in some cases lead to an increase in the free energy.

The plots in Fig. 6.4 are generated using data from diverse steels. Figure 6.4a
represents the free energy change AG,, at the temperature T), where displacive
transformation first occurs. The free energy change can be calculated from
readily available thermodynamic data. It follows that Fig. 6.4a can be used
to estimate T} for any steel. The equation fitted to the data in Fig. 6.4a is (Ali
and Bhadeshia, 1990):

Gy =C(T—-27318)—C,  Jmol™ (6.1)

where the fitting constants are found to be C; = 3.637 +=0.2Jmol 'K and
C, = 2540+ 120J mol ! for the temperature range 670-920 K. Gy is to be
regarded as a wuniversal nucleation function, because it defines the minimum
driving force necessary to achieve a perceptible nucleation rate for
Widmanstétten ferrite or bainite in any steel.

6.1.2 Evolution of the Nucleus

The nucleus is identical for Widmanstatten ferrite and for bainite; it must
therefore be growth which distinguishes them. But what determines whether
the nucleus evolves into bainite or Widmaénsstatten ferrite?
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Fig. 6.4 The free energy change necessary in order to obtain a detectable degree of
transformation. Each point represents a different steel and there is no distinction
made between Widmanstétten ferrite or bainite. (a) Calculated assuming the par-
titioning of carbon during nucleation. (b) Calculated assuming that there is no
change in composition during nucleation. After Bhadeshia, 1981a.

The answer is straightforward. If diffusionless growth cannot be sustained at
T}, then the nucleus develops into Widmanstétten ferrite so that T}, is identified
with Ws. A larger undercooling is necessary before bainite can be stimulated.
If, however, the driving force at T} is sufficient to account for diffusionless
growth, then T, = Bs and Widmanstétten ferrite does not form at all.

It follows that Widmaénsstatten ferrite forms below the Ae; temperature
when:

— /+
AGTTTTY < _GSW

(6.2)
AG,, < Gy

where Ggyy is the stored energy of Widmanstitten ferrite (about 50 Jmol ).

The first of these conditions ensures that the chemical free energy change

exceeds the stored energy of the Widmanstitten ferrite, and the second that

there is a detectable nucleation rate.
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Bainite is expected below the T temperature when:

AGTT < _GSB (63)

AG,, < Gy (6.4)

where Ggj is the stored energy of bainite (about 400 Jmol ). The universal
function, when used with these conditions, allows the calculation of the
Widmanstdtten ferrite-start and bainite-start temperatures from a knowledge
of thermodynamics alone.

In this scheme, carbon is partitioned during nucleation but in the case of
bainite, not during growth which is diffusionless. There is no inconsistency in
this concept since a greater fraction of the free energy becomes available as the
particle surface to volume ratio, and hence the influence of interfacial energy,
decreases. The theory explains why both Widmanstétten ferrite and bainite can
form during the early stages of isothermal transformation at temperatures
close to Bs (Chang, 1999).

The scheme is illustrated in Fig. 6.5 which incorporates an additional func-
tion Gy representing the critical driving force AG”*{M;} needed to stimulate
martensite by an athermal, diffusionless nucleation and growth mechanism.
Whereas it is reasonable to set G to a constant value for low alloy steels
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Fig. 6.5 Free energy curves for a low (A), medium (B) and high (C) alloy steel
showing the conditions necessary for the nucleation and growth of
Widmanstatten ferrite, bainite and martensite.
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(Bhadeshia, 1981c,d) a function dependent on the strength of the austenite has
to be used for steels containing large concentrations of solute (Ghosh and
Olson, 1994).

The three common displacive transformations in steels include
Widmanstatten ferrite, bainite and martensite. It is intriguing that they are
not all found in every steel. Only martensite occurs in Fe-28Ni-0.4C wt%,
whereas only bainite and martensite are found in Fe-4Cr-0.3C wt%. This is
readily explained: steels A, B and C in Fig. 6.5 contain increasing quantities of
austenite stabilising elements, with the driving force for transformation
decreasing as the alloy content increases. In steel A, all three transformations
are expected in turn as the temperature is reduced. For steel B, the temperature
at which Widmanstétten ferrite nucleation becomes possible also corresponds
to that at which bainite can grow. Bainite has a kinetic advantage so
Widmanstatten ferrite does not form. Further alloying increases the stability
of the austenite so much that the nucleation of Widmanstétten ferrite and
bainite is suppressed to temperatures below Mg in which case they do not
form at all.

The nucleation condition for bainite (eq. 6.4) becomes redundant for any
steel in which Widmanstétten ferrite precedes bainite because they have a
common nucleation mechanism.

An interesting prediction emerges from this rationale. For some steels the
thermodynamic characteristics are such that the AG,, curve intersects the Gy
function at two points, Fig. 6.6a (Bhadeshia and Svensson, 1989c).
Widmanstédtten ferrite then occurs at high temperatures, there is an intermedi-
ate temperature range where neither Widmanstatten ferrite nor bainite can
nucleate, until bainite formation becomes possible at a lower temperature.
The lower C-curve thus splits into two segments, one for Widmanstétten ferrite
and a lower temperature segment for bainite (Fig. 6.6b). This prediction from
theory has been confirmed experimentally (Ali and Bhadeshia, 1991).

Finally, because Gy decreases linearly with T, it is expected that the W5 and
Bs temperatures are depressed to a greater extent by solute additions than the
Ae; temperature. A larger driving force is needed to achieve a given rate of
nucleation when the transformation is depressed to lower temperatures by
alloying. A justification for the form of the universal nucleation function Gy
is given in the next section.

6.2 Possible Mechanisms of Nucleation

Phase fluctuations occur as random events due to the thermal vibration of
atoms. An individual fluctuation may or may not be associated with a reduc-
tion in free energy, but it can only survive and grow if there is a reduction.
There is a cost associated with the creation of a new phase, the interface energy,
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Fig. 6.6 (a) Free energy curves for the nucleation of Widmanstitten ferrite and
bainite in a low alloy steel for which the AG,, and Gy curves exhibit a double
intersection. (b) Calculated TTT diagram for the same steel, showing how
Widmanstatten ferrite and bainite form separate C curves. The Widmanstaitten
ferrite and bainite C curves would ordinarily be just one curve, joined by the line
wxyz. After Ali and Bhadeshia (1991).

a penalty which becomes smaller as the particle surface to volume ratio
decreases. In a metastable system this leads to a critical size of fluctuation
beyond which growth is favoured.

Consider the homogeneous nucleation of o from ~. For a spherical particle of
radius r with an isotropic interfacial energy o,,, the change in free energy as a
function of radius is:

4 4
AG = gﬂrsAGCHEM + §7r1’3AG5TRAIN + 471'1’20'&7 (6.5)

where AGeypy = GV — Gy, Gy is the Gibbs free energy per unit volume of «
and Gsyrapy is the strain energy per unit volume of . The variation in AG with
size is illustrated in Fig. 6.7; the activation barrier and critical size obtained
using equation 6.5 are given by:

. l67ra?w . 20,
G = 5 and rt= (6.6)
3(AGcuem + AGsrraN) AGchem + AGsrraN

The important outcome is that in classical nucleation the activation energy
varies inversely with the square of the driving force. And the mechanism
involves random phase fluctuations. It is questionable whether this applies
to cases where thermal activation is in short supply. In particular, an activation
barrier must be very small indeed if the transformation is to occur at a proper
rate at low temperatures.

One mechanism in which the barrier becomes sufficiently small involves the
spontaneous dissociation of specific dislocation defects which are already pre-
sent in the parent phase (Christian, 1951; Olson and Cohen, 1976). The disloca-
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Fig. 6.7 The activation energy barrier G* and the critical nucleus size r* according
to classical nucleation theory based on heterophase fluctuations.

tions are glissile so the mechanism does not require diffusion. The only barrier
is the resistance to the glide of the dislocations. The nucleation event cannot
occur until the undercooling is sufficient to support the faulting and strains
associated with the dissociation process that leads to the creation of the new
crystal structure (Fig. 6.8).

The free energy per unit area of fault plane is:

Gr = 1ppa(AGcuem + GstraN) + 204, {1p} (6.7)

where np is the number of close-packed planes participating in the faulting
process, p, is the spacing of the close-packed planes on which the faulting is
assumed to occur. The fault energy can become negative when the austenite
becomes metastable.

For a fault bounded by an array of np dislocations each with a Burger’s
vector of magnitude b, the force required to move a unit length of dislocation
array is np7,b. 7, is the shear resistance of the lattice to the motion of the
dislocations. Gp provides the opposing stress via the chemical free energy
change AGcpypy; the physical origin of this stress is the fault energy which
becomes negative so that the partial dislocations bounding the fault are
repelled. The defect becomes unstable, i.e. nucleation occurs, when

Gp = —np7,b (6.8)

Take the energy barrier between adjacent equilibrium positions of a disloca-
tion to be G,. An applied shear stress 7 has the effect of reducing the height of
this barrier (Conrad, 1964; Dorn, 1968):
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Fig. 6.8 Olson and Cohen model for the nucleation of o martensite. (a) Perfect
screw dislocation in austenite. (b) Three-dimensional dissociation over a set of
three close-packed planes. The faulted structure is not yet that of «. (c) Relaxation
of fault to a body-centred cubic structure with the introduction of partial disloca-
tions in the interface. (d) Addition of perfect screw dislocations which cancel the
long range strain field of the partials introduced in (c).

G =G, —(r—m,)0" (6.9)
where v* is an activation volume and 7, is the temperature independent
resistance to dislocation motion (Fig. 6.9). In the context of nucleation, the
stress 7 is not externally applied but comes from the chemical driving force.
On combining the last three equations we obtain

2 *
G =G, + |7, + Pa GsrrAIN + =2 v + pag AGepem (6.10)
b npb b

It follows that with this model of nucleation the activation energy G* will
decrease linearly as the magnitude of the driving force AGcpygy increases.
This direct proportionality contrasts with the inverse square relationship of
classical theory.

138



Kinetics

—>

Temperature / K —>

Fig. 6.9 Temperature dependence of the applied stress necessary to move a dis-
location at two different strain rates (é;, > ¢;). 7, is the athermal resistance which
never vanishes. After Conrad (1964).

6.3 Bainite Nucleation

The linear relationship between Gy and T (Fig. 6.4) can be used to deduce
whether nucleation involves dislocation dissociation or heterophase fluctua-
tions (Bhadeshia, 1981a). The nucleation rate I, will have a temperature depen-
dence due to the activation energy:

Iy x vexp{—G*/RT} (6.11)
where v is an attempt frequency. It follows that
—G"x BT  where B =RIn{ly/v} (6.12)

We now assume that there is a specific nucleation rate at T}, irrespective of the
type of steel, in which case 3 is a constant, negative in value since the attempt
frequency should be larger than the actual rate. This gives the interesting result
that

Gy x BT (6.13)

which is precisely the relationship observed experimentally. This is evidence
for nucleation by the dissociation of dislocations with the activation energy
proportional to the driving force, as opposed to the inverse square relationship
predicted by classical theory. The activation energy G" in this model comes
from the resistance of the lattice to the motion of dislocations.

Nucleation corresponds to a point where the slow, thermally activated
migration of glissile partial dislocations gives way to rapid, breakaway
dissociation. This is why it is possible to observe two sets of transformation
units, the first consisting of very fine embryo platelets below the size of the
operational nucleus, and the second the size corresponding to the rapid growth
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to the final size. Intermediate sizes are rarely observed because the time period
for the second stage is expected to be much smaller than that for the first.
Figure 6.10 shows that in addition to the fully growth sub-units (a few micro-
meters in length), there is another population of much smaller (submicron)
particles which represent the embryos at a point in their evolution prior to
breakaway dissociation.

6.4 Empirical Equation for the Bainite-Start Temperature

Steven and Haynes (1956) measured the bainite-start temperature by
isothermally transforming a large number of engineering steels with chemical
composition in the range (wt%):

Carbon 0.1-0.55 Nickel 0.0-5.0
Silicon 0.1-0.35 Chromium 0.0-3.5
Manganese 0.2-1.7 Molybdenum  0.0-1.0

Fig. 6.10 Transmission electron micrograph of a sheaf of bainite in a partially
transformed sample. A region near the tip of the sheaf in (a) is enlarged in (b).
The arrows in (b) indicate possible sub-operational embryos which are much
smaller than the fully grown sub-units seen in (a). After Olson et al. (1989).
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and expressed their results empirically as:
BSOC =830 — 270wc — 90’Z/UM” — 37ZUN1' — 70wCr — 83’Z/UMO (614)

where w; is the wt% of element i in solid solution in austenite.

6.5 The Nucleation Rate

The linear dependence of the activation energy for nucleation on the driving
force can be substituted into a nucleation rate equation to obtain:'

G*
IV:C3exp{—RT}
A
 Cooxp{ -G GG )

where AG,, is the maximum value of AGcygy (Fig. 6.2c) and C; are positive
constants. The nucleation rate at Tj is obtained by setting AG,, = Gy

(6.15)

I, = C3exp { — Q;—]%GN } (6.16)
It follows that
C, AT Cs (AG,, G
IVZIThexp{—R‘*TTh —f( T’"—T—’:)} (6.17)

with AT =T, —T. Recall that the Gy function was justified with martensite
nucleation theory assuming that the nucleation rate I, is the same for all steels
at Tj,. For two different steels A and B,

Ipa (Cy — C,C5)(T = TF)
I—h = exp { - ;TSATBh h } (6.18)
TB ntn
Since Ips = Ips it follows that C4 = C, x Cs5 so that
Cy  C4AG, }
Iy =Ciexpq — == — 6.19
v=Ciop{ gt~ Er (6.19)

In this equation the constant C, is known since it comes from the slope of the
Gy function (equation 6.1) so the two unknowns are C; and C, which are
obtained by fitting to experimental data. The pre-exponential factor Cj is the
product of a number density of nucleation sites (NY) and an attempt frequency

(v).

'Bhadeshia (1982b); Rees & Bhadeshia (1992); Chester & Bhadeshia (1997); Singh (1998).
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6.6 Growth Rate

The displacement of an interface requires the atoms of the parent to transfer
into and adopt the crystal structure of the product phase. The ease with which
this happens determines the interface mobility. There may also be a partition-
ing of solutes in which case diffusion may limit the movement of the interface.
The two processes of diffusion and mobility are in series; the velocity as cal-
culated from the interface mobility must therefore match that due to the diffu-
sion of solute ahead of the interface. Both processes dissipate the available free
energy, so motion is always under mixed control. However, a process is said to
be diffusion-controlled when most of the free energy is dissipated in the diffu-
sion of solute. Interface-controlled growth occurs when the larger proportion
of the free energy is consumed in the transfer of atoms across the interface. The
compositions of the phases at the moving interface during diffusion-controlled
growth are given approximately by a tie-line of the phase diagram, and other
circumstances are illustrated in Fig. 6.11.

( ) Diffusion ( ) Interface
control control

o Y
X
Mixed Solute
( ) control ( )trapping

Fig. 6.11 Carbon concentration profiles at a moving «/~ interface. The terms x“7,
x™ and X refer to the equilibrium concentrations in the ferrite and austenite
respectively, and the average concentration in the alloy as a whole. (a)
Diffusion control. (b) Interface control. (c) Mixed control. (d) Solute trapping
(discussed later).
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6.6.1 Theory for the Lengthening of Plates

Particle dimensions during diffusion-controlled growth vary parabolically
with time when the extent of the diffusion field increases with particle size.
The growth rate thus decreases because the solute has to diffuse over ever
increasing distances to reach the far-field concentration. Plates or needles can
however grow at a constant rate because solute can be partitioned to their
sides.

The partitioning of interstitial elements during displacive transformation
should lead to diffusion-controlled growth because the glissile interface
necessary for such transformation has the highest mobility. Iron and any sub-
stitutional solute atoms do not diffuse so their role is purely thermodynamic.

Trivedi (1970) has solved for the diffusion-controlled growth of plates whose
shape approximates that of a parabolic cylinder (Fig. 6.12). The plate lengthen-
ing rate V; at a temperature T for steady state growth is obtained by solving:

X, —X
fi= X, — x*7
\% T
fi = (np)"” exp{plerfe{p"} |1+ 2 AiS1{p} + *fiS:{p} (6.20)
where the Péclet number is
p = Vir/2D (6.21)

Parabolic
cylinder

(b)

Fig. 6.12 (a) An illustration of the shape of a parabolic cylinder. (b) Definitions of
the tip radius r, the focal distance f, and the coordinates.
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The weighted-average diffusion coefficient D for carbon in austenite is given
by integrating D (the diffusivity at a specific concentration) over the range X to
x,, and then dividing the integral by this range.

The function S,{p} of equation 6.21 depends on the Péclet number (Fig. 6.13);
it corrects for variation in composition due to changing curvature along the
interface and has been evaluated numerically by Trivedi. The term containing
Sy is prominent when growth is not diffusion-controlled; V. is the interface-
controlled growth velocity of a flat interface. For diffusion-controlled growth,
which is discussed first, V., is very large when compared with V; and the term
containing it can be neglected.

x, is the carbon concentration in the austenite at the plate tip. It may differ
from the equilibrium carbon concentration x™ because of the Gibbs—-Thompson
capillarity effect (Christian, 1975); x, decreases as interface curvature increases,
and growth ceases at a critical radius r, when x, = x. For a finite plate tip
radius,

x, = x"[1+ (T'/r)] (6.22)
where I is the capillarity constant given by (Christian, 1975):

W (X [, dlnfe(x))]

r
RT (x* —x7%) d(Inx7)

(6.23)

where 07 is the interfacial energy per unit area, fc is the activity coefficient of
carbon in austenite, and V,, is the molar volume of ferrite. This assumes that
the ferrite composition is unaffected by capillarity, since x*” is always very
small. The critical plate tip radius 7, can be obtained by setting x, = x.

10.0

10¢F 31 Ro

0.1

0.01 L n
0.01 0.1 1.0 10.0

p

Fig. 6.13 Dependence of Trivedi’s functions S;, S, R; and R, on the Peclet
number p.
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Trivedi’s solution for diffusion-controlled growth assumes a constant shape,
but the solution is not strictly shape-preserving. The concentration x, varies
over the surface of the parabolic cylinder which should lead to a deviation
from the parabolic shape. Trivedi claims that the variation in x, has a negligible
effect provided the tip radius is greater than 3r..

Plate growth theory provides a relation between velocity and tip radius (Fig.
6.14). Additional theory is required to enable the choice of a particular tip
radius and hence to fix V;. Small tip radii favour fast growth due to the
point effect of diffusion, but this is counteracted by the capillarity effect.
Zener proposed that the plate should tend to adopt a tip radius which allows
V) to be maximised but this remains a hypothesis. Work on the dendritic
growth of solid from liquid (formally an almost identical problem) has
shown that the dendrites do not select the radius corresponding to the max-
imum velocity. The radius is determined instead by a shape stability criterion
(Glicksman et al., 1976; Langer and Muller-Krumbhaar, 1978). If these results
can be extrapolated to displacive transformations, and it is doubtful that they
can given that the shape is constrained by strain energy minimisation, then
calculated velocities would be greatly reduced. This does not fit experimental
data where the lengthening rate is slightly higher that the maximum velocity
predicted theoretically (Bhadeshia, 1985a).

The shape of ferrite plates is sometimes more needle-like (lath) than plate-
like. Trivedi has obtained a steady-state solution for the diffusion-controlled
growth of paraboloids of revolution (i.e. needles):

= pexp(pIEi(p} 1+ fiRi(p} + “fiRap) (624)

The tip radius 7, is twice as large as that for plates because there are two radii
of curvature for a needle tip.

Without
capillarity

With
capillarity

Lengthening rate

Plate tip radius

Fig. 6.14 Variation in lengthening rate as a function of the plate tip radius.

145



Bainite in Steels

6.6.2 Growth Rate of Sheaves of Bainite

After nucleating at austenite grain surfaces, sheaves of bainite propagate by the
repeated formation of sub-units, each of which grows to a limited size. New
sub-units are favoured near the tips of existing platelets; nucleation in adjacent
positions occurs at a much lower rate. Therefore, the overall shape of the sheaf
is also that of a plate in three dimensions with growth limited only by austenite
grain or twin boundaries.

Most direct observations have used optical microscopy and hence monitor
the growth of sheaves rather than of the transformation unit which is only about
0.2 um in thickness. Suppose that a sub-unit reaches its limiting size in a time
period f¢, and that a time interval At elapses before the next one is stimulated,
then the lengthening rate, Vs, of a sheaf is given by:

VS:V,< fe > (6.25)

tc + At

where V) is the average lengthening rate of a sub-unit.

Bainite sheaves lengthen at a constant rate although the data show con-
siderable scatter, attributed to stereological effects (Speich and Cohen, 1960;
Goodenow et al., 1963; Hawkins and Barford, 1972). Greater concentrations of
carbon, nickel or chromium concentration reduce V. The growth of sheaves
seems to occur at a constant aspect ratio although thickening continues when
lengthening has stopped. This is not surprising since the sheaf can continue to
grow by the sub-unit mechanism until the T; condition is achieved.

An assessment of sheaf data shows that the lengthening rate is greater than
expected from diffusion-controlled growth, Fig. 6.15. This includes measure-
ments on Fe-Ni-C alloys which are frequently (incorrectly) used to justify the
existence of some sort of a solute drag effect.

6.6.3 Growth Rate of Sub-Units of Bainite

The growth rate of martensite can be so fast as to be limited only by the speed
of sound in the metal. Although bainite grows rapidly, the lengthening rate is
much smaller than that for martensite. The interface moves relatively slowly
even though it is glissile. This is probably because of the plastic work that is
done as the bainite grows. A good analogy is to compare brittle failure in a
glass where cracks propagate rapidly, with cleavage failure in metals which is
not as rapid because of the plastic zone which has to move with the crack tip.

The lengthening rate of sub-units has been measured using hot-stage photo-
emission electron microscopy. Electrons are excited from the surface of the
sample using incident ultraviolet radiation, and it is these photo-emitted elec-
trons which form the image. The technique can resolve individual sub-units of
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Fig. 6.15 Comparison of published data on the lengthening rate of bainite sheaves
against those calculated assuming paraequilibrium carbon-diffusion controlled
lengthening (Ali and Bhadeshia, 1989).

bainite. Fig. 6.16 illustrates a series of photoemission electron micrographs
taken at 1 s intervals, showing the growth of bainite sub-units. The measured
lengthening rate of the arrowed sub-unit is 75ums'. This is many orders of
magnitude larger than calculated assuming paraequilibrium at the transforma-
tion front (0.083ums '). Lengthening occurs at a rate much faster than
expected from carbon diffusion-control growth.

There are interesting observations on the thickening of bainite sub-units. The
thickness can increase even after lengthening has halted. An elastically accom-
modated plate tends to adopt the largest aspect ratio consistent with a balance
between the strain energy and the free energy change driving the transforma-
tion, Fig. 6.17, in order to achieve thermoelastic equilibrium (Olson and Cohen,
1977).

Bainite plates are not elastically accommodated but it should be possible for
the thickness of a plate to increase at constant length if the process is captured
at an early stage. Fig. 6.17b shows a large plate of bainite which formed first
followed by smaller orthogonal plates. The larger plate is seen to bow between
the smaller plates whose tips act as pinning points. The smoothly curved
regions of the interface between the pinning points prove that the interface
moves continuously rather than by a step mechanism.

6.6.4 Solute Drag

Solute drag is a process in which free energy is dissipated in the diffusion of
solute atoms within the interface; these are the atoms which in a stationary
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Fig. 6.16 Photoemission electron microscope observations on the growth of indi-
vidual sub-units in a bainite sheaf (Bhadeshia, 1984). The pictures are taken at 1 s
intervals during transformation at 380 °C in a Fe-0.43C-2.025i-3Mn wt% alloy.
The micrograph at 0 s is fully austenitic, the relief being a residue from an earlier
experiment.
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Fig. 6.17 (a) Effect of thermoelastic equilibrium on the aspect ratio of a plate with a
fixed length. (b) Bowing of «y,/v interface at strong pinning points, particularly
prominent in regions identified by arrows (Chang and Bhadeshia, 1995b).
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interface are said to be segregated or desegregated in the structure of the
interface. The phenomenon is similar to the drag on dislocations when
atoms are attracted to the dislocation cores. Chapter 2 contains a discussion
of the atomic resolution experiments which show that there is no excess con-
centration of solute at the bainite/austenite interface. Consequently, there is no
reason to expect solute drag effects during the bainite reaction.

6.7 Partitioning of Carbon from Supersaturated Bainitic
Ferrite

It is better for the carbon that is trapped in bainite to partition into the residual
austenite where it has a lower chemical potential. Consider a plate of thickness
w with a one-dimensional flux of carbon along z which is normal to the o/~
interface, with origin at the interface and z defined as positive in the austenite
(Kinsman and Aaronson, 1967). A mass conservation condition gives
(Bhadeshia, 1988):

1 (0.0)

JalE—x) = L %, {2, £} — Tdz (6.26)
where x*7 and x"* are the paraequilibrium carbon concentrations in « and ~
respectively, allowing for stored energy. Since the diffusion rate of carbon in
austenite is slower than in ferrite, the rate of decarburisation will be
determined by the diffusivity in the austenite. The concentration of carbon in
austenite at the interface remains constant for times 0 < t < t;, after which it
steadily decreases as homogenisation occurs. The concentration profile in the
austenite is given by:

2(Dty)

(ST,

X, =X+ (7 — f)erfc{

} (6.27)

which on integration gives:
= a1}
g owr—xr (6.28)

4D*(x™ — %)
Some results from this analysis are illustrated in Fig. 6.18.
Equation 6.28 does not allow for the coupling of fluxes in the austenite and
ferrite. It assumes that the diffusivity in the ferrite is so large, that any
gradients there are eliminated rapidly. A flux balance must in general be
satisfied as follows:

ox® —_ox¢
"oz~ P oz
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where D,, is the diffusivity of carbon in the ferrite, x* is the concentration of
carbon in the ferrite at the interface with the gradients evaluated at the inter-
face. Since D,, > D, x* will inevitably deviate from x*” in order to maintain
the flux balance. It will only reach the equilibrium value towards the end of the
partitioning process. The gradients in the ferrite must also increase with x;
the partitioning process could then become limited by diffusion in the ferrite.
As a consequence, the diffusion time as predicted by the finite difference
method becomes larger than that estimated by the approximate analytical
equation when the transformation temperature is decreased or x™ increased,
as illustrated in Fig. 6.18. Typical concentration profiles that develop during
the partitioning process are illustrated in Fig. 6.19.

The assumption throughout that during the decarburisation process x™ is
fixed at the value given by paraequilibrium between ferrite and austenite is
hard to justify since x* # x“". Hillert ef al. (1993) have avoided this assumption;
it is interesting that the results they obtain are not essentially different from
those presented above.
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Fig. 6.18 (a) The time to decarburise a plate of thickness 0.2 pm. Calculations using
the analytical and finite difference methods are illustrated. (b) The effect of adding
an austenite stabilising substitutional solute on the decarburisation time (Mujahid
and Bhadeshia, 1992).
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Fig. 6.19 The concentration profiles that develop in ferrite and and austenite

during the partitioning of carbon from supersaturated bainite (Fe-0.4C wt%,
plate thickness 0.2 pm). (a) 330 °C, the time interval between the concentration
contours in each phase being 0.094 s. (b) 450 °C, the corresponding time interval is
0.007 s. (Mujahid and Bhadeshia, 1992).
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Growth with Partial Supersaturation

A transformation can occur without any composition change as long as
there is a reduction in the free energy. The chemical potential is then
nonuniform across phase boundaries for all of the atomic species. A net
reduction in free energy is still possible because some of the species are
trapped in the parent phase and others in the product. Thus, martensitic
transformation of steel involves the trapping of carbon in the martensite
and iron in the austenite.

Equilibrium transformation requires the partitioning of solutes between
the phases until the chemical potential for each species is uniform in all
locations.

In paraequilibrium only carbon has a uniform chemical potential - the
substitutional and iron atoms are trapped in the parent or product
phases.

three cases of composition-invariant, equilibrium and paraequilibrium
ormation are well-defined. We now deal with the case where the extent

of carbon partitioning is between paraequilibrium and composition-invariant
transformation:

X <x*<Xx and X <x?<x™
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Some of the carbon is trapped in the product phase but a proportion partitions
so that the differences in chemical potential are reduced. The ferrite grows with
a partial supersaturation, the level of which is fixed by kinetic constraints which
we shall now consider.

6.8.1 Stability

In Fig. 6.20, x,, represents the maximum concentration of carbon that can be
tolerated in ferrite which precipitates from austenite of composition x. A higher
concentration cannot be sustained because there would be an increase in free
energy on transformation.

Growth with partial supersaturation, such as the case where the interface
compositions are given by x* = x,, and x” =X is expected to be unstable to
perturbations since the concentration field must tend to adjust towards lower
free energy states. The assembly should then irreversibly cascade towards the
equilibrium partitioning of carbon with x* = x*",x” = x*. Experimental evi-
dence supports this conclusion since the growth rate of Widmanstatten ferrite
is found to be consistent with the paraequilibrium partitioning of carbon at all
transformation temperatures. These considerations do not necessarily rule out
the possibility of carbon trapping because some other physical phenomenon
could provide the necessary stabilising influence (Christian and Edmonds,
1984).

There are many processes, including diffusion, which occur in series as the
ferrite grows. Each of these dissipates a proportion of the free energy available
for transformation. For a given process, the variation in interface velocity with
dissipation defines a function which in recent years has been called an interface

To< TI < Aeg

Free energy —>

- o
Xm X x/

Xa'Y
Carbon concentration —>

Fig. 6.20 Austenite and ferrite free energy curves illustrating the unstable nature
of an assembly in which the ferrite forms with a partial supersaturation of carbon.
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response function. The actual velocity of the interface depends on the simulta-
neous solution of all the interface response functions, a procedure which fixes
the composition of the growing particle.

Figure 6.21 shows an electrical analogy; the resistors in series are the hurdles
to the movement of the interface. They include diffusion in the parent phase,
the transfer of atoms across the interface, solute drag, etc. The electrical-poten-
tial drop across each resistor corresponds to the free energy dissipated in each
process, and the current, which is the same through each resistor, represents
the interface velocity. The relationship between the current and potential is
different for each resistor, but the actual current is obtained by a simultaneous
solution of all such relations.

Following on from this analogy, the available free energy can be partitioned
into that dissipated in the diffusion of carbon, a quantity expended in the
transfer of atoms across the interface, and in any other process determining
the motion of the interface. There are three unknowns: the austenite composi-

INTERFACE RESPONSE FUNCTIONS
An electrical analogy

A4 V2

CURRENT
N
CURRENT
—_

YOLTAGE

Fig. 6.21 An electrical analogy illustrating the dissipations due to processes which
occur in series as the transformation interface moves. The resistors in series are the
hurdles to the motion of the interface, the voltage the driving force and the current
the interface velocity. The way in which voltage (driving force) is dissipated as a
function of current (velocity) across each resistor is different, since each resistor
represents a separate physical process. There is only one interface so all these
processes must yield the same velocity, as indicated by the identical current
passing through all the resistors.
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tion at the interface, the supersaturation and the velocity, so it is necessary to
exploit at least three interface response functions. If the tip radius of the plate is
considered to be a variable, then the number of unknowns is four; for displa-
cive transformations the radius can be assumed to be fixed by strain energy
minimisation. The necessary three interface velocity functions are, therefore,
the diffusion field velocity, the velocity determined from interface mobility and
a carbon trapping function. Each of these is now discussed in detail.

But to summarise first, the response functions all give different velocities for
a given free energy dissipation. The total driving force has to be partitioned
into the individual dissipations in such a way that all the response functions
give an identical velocity.

6.8.2 The Interface Response Functions

6.8.2.1 The Interface Mobility (Martensitic Interface)

The interfacial mobility is formulated using the theory for thermally activated
motion of dislocations (Olson et al., 1989, 1990). This is justified because a
glissile interface consists of an array of appropriate dislocations. The interfacial
velocity V; is then given by:

*
Vi=V,exp { — S_T } (6.30)
where G™ is an activation free energy and the pre-exponential factor V,, can be
taken to be 30ms ' based on experimental data from single-interface
martensitic transformations (Grujicic ef al., 1985). The activation energy G" is
a function of the net interfacial driving force G;; through the relation (Kocks
et al., 1975):

Gia
G = J v"dG (6.31)
Gi[i

where Gj; is the maximum resistance to the glide of interfacial dislocations and
v is the activation volume swept by the interface during a thermally activated
event. For a wide range of obstacle interactions, the function G*{G;;} can be

represented by:
INE
G =G [1 _ (@> ] (632)
Gl

where G, is the activation free energy barrier to dislocation motion in the
absence of an interfacial driving force. The constants y and z define the
shape of the force-distance function and for solid-solution interactions in the
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Labusch limit (where hardening is due to the average effect of many strain
centres), it may be assumed that y = 0.5 and z = 1 (Nabarro, 1982)."

Analysis of kinetic data for the interface-controlled nucleation of martensite
gives

G =031 (6.33)

where p is the shear modulus of the matrix and € is the volume per atom.
Based on the behaviour of Fe-Ni-C alloys (Olson, 1984), G, is taken to be:

Gy=122x10"3u (6.34)

6.8.2.2  The Interface Mobility Based on Absolute Reaction Rate Theory

An empirical model is sometimes used to represent the interface mobility for
displacive transformations (Hillert, 1960; Agren, 1989). It uses chemical rate
theory, one of the assumptions of which is that the ‘reaction” consists of the
repetition of unit steps involving the interaction of a small number of atoms.
Whereas this may be justified for a process like solidification, the assumptions
of chemical rate theory are unlikely to be applicable to displacive transforma-
tions in which a large number of atoms move in a disciplined manner.

The interface velocity is given by (Christian, 1975):

vosror{-Sliep{ -V e

where ¢, is the thickness of the interface, and f* is an attempt frequency for
atomic jumps across the interface. For small G;; the equation simplifies to

Vi - MGid (636)

where M is a mobility, estimated by Hillert (1975) for reconstructive transfor-
mations to be:

177
M = 0.035exp { - TOO} m*] s (6.37)

6.8.2.3 The Diffusion Field Velocity

The diffusion field velocity depends on the compositions of the phases at the
interface. These compositions are illustrated in Fig. 6.22, on a free energy dia-
gram as a function of the amount G, of free energy dissipated in the diffusion

'The relationship between the activation energy and driving force is here nonlinear, compared
with equation 6.10 of the nucleation theory. The nonlinear function is a better approximation but
the linear relation of equation 6.10 suffices for most purposes.
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Fig. 6.22 (a) Constant temperature free-energy curves showing the quantities G,
and Gj; for the case where the interface compositions are as illustrated in (b). Note
that the net free energy available for interfacial motion after allowing for strain
energy and interface energy contributions is AG, which is the sum of the two
dissipations G4y and Gj.

of solute ahead of the interface. The concentrations x* and x; are not indepen-
dent because the choice of either fixes the value of the other uniquely.

The Trivedi solution for plates is probably the best available for diffusion-
controlled growth, but there are more convenient approximations. One of these
is due to Ivantsov (1947), in which the growth of a parabolic cylinder shaped
particle is treated without the inclusion of interface mobility and capillarity
effects. The velocity V; for steady state growth of ferrite of constant composi-
tion x” in a steel of composition ¥ is given by:

L — (np)? exp{p}erfc{p?} (6.38)

o
X" — Xy

X—Xx

where x; is the carbon concentration in the austenite at the interface and p is the
Péclet number.

6.8.2.4 Solute Trapping Law

Atoms are forced into the product phase during martensitic transformation.
The chemical potential of some of these atoms increases as they are engulfed by
the martensite. Similarly, during paraequilibrium transformation some of the
immobile substitutional-solutes are forced into the growing crystal. A solute or
solvent is said to be trapped when its chemical potential increases on transfer
across the interface. The term solute trapping is relatively recent (Baker and
Cahn, 1969, 1971) but the phenomenon has been known for much longer in
the context of transformations in steels.
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Figure 6.23 illustrates a transformation front between the shaded and
unshaded crystals, in a binary alloy containing A (solvent) and B (solute)
atoms. The smaller solute atoms prefer to be in the parent phase (). The
atoms in the central layer have to move along the vectors indicated in order
to transform into the product phase (a). A is a typical diffusion jump distance
for the solute atom; the motions required for the atoms in the interfacial layer
to adjust to the new crystal structure are rather smaller.

Solute will be trapped if the interface velocity Vy is greater than that at which
solute atoms can diffuse away. The maximum diffusion velocity is approxi-
mately D/ since ) is the minimum diffusion distance, so that trapping occurs
when V. > D/é;.

The Aziz model (1982, 1983) relates interfacial velocity to the partitioning
coefficient kp, which is the ratio of the concentration in the product phase at the
interface to that in the parent phase at the interface:

k, = x"/x (6.39)
and k, = k, where k, is the equilibrium partition coefficient.

There are two basic mechanisms of interface displacement, one involving
propagation by the displacement of steps, and the other by the displacement of
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Fig. 6.23 Choreography of solute trapping, adapted from Aziz (1982). The solvent
is labelled A, solute B and the product phase is shaded dark. The transformation
front is advancing towards the right.
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all elements of the boundary; this latter mechanism is called ‘continuous’
motion. Aziz has derived slightly different trapping models for these two
cases. The step model only permits transformation below the T temperature
of the austenite in the vicinity of the interface. This is in general too restrictive
and certainly inapplicable for transformations at temperatures above the T
temperature, of the type being considered here. Goldman and Aziz (1987) have
proposed another model for stepped growth, which they call the aperiodic step
model, in which the steps are assumed to pass at random intervals with trans-
formation restricted to below the T temperature of the parent phase at the
interface. The trapping law turns out to be the same as for the continuous
growth model which is suitable for transformation above Tj.
The trapping model gives a velocity function of the form

_ D{xi}k, — k.

Ve=—) 1-k,

(6.40)

where ), the intersite jump distance is about 0.25 nm and D{x;} is the diffusion
coefficient of carbon in austenite of composition x;. The quantity D{x;}/\ is the
diffusion velocity of carbon and trapping becomes prominent when the inter-
face velocity approaches this value. Since the carbon atoms execute jumps
across a glissile semi-coherent interface it is appropriate to take the coefficient
for volume diffusion of carbon.

We now have the third interface response function (equation 6.40) which
varies smoothly with x“ and x;. Note that as x* approaches ¥, the diffusion field
velocity diverges (tends towards infinity) and the interfacial dissipation then
imposes the condition that x; = X such that the trapping velocity Vj also tends
towards infinity in the full trapping limit.

6.8.3 Calculated Data on Transformation with Partial
Supersaturation

We now consider results from the two main models for growth involving a
partial supersaturation of carbon, that due to Olson et al. (1987, 1989, 1990) and,
due to Hillert (1960, 1975) and Agren (1989).

With the three interface response functions, the diffusion field velocity
(Ivantsov model, with a plate-tip radius fixed at 1.5 nm), the glissile-interface
mobility function and the Aziz solute trapping function, Olson et al. solved for
the interfacial velocity and phase compositions as a function of transformation
temperature. Some of their results are presented in Fig. 6.24a, for a Fe-0.4C
wt% alloy, illustrating how the supersaturation might vary with the transfor-
mation temperature for both the nucleation and growth stages. With a variety
of assumptions about the strain energy of transformation and about the
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Fig. 6.24 (a) Plot of calculated normalised supersaturation (x*/x) of carbon in
ferrite versus the isothermal transformation temperature, for a Fe-0.4C wt%
alloy, with the data obtained by the simultaneous solution of the interfacial mobi-
lity, diffusion field velocity and trapping velocity functions. Martensitic transfor-
mation is when both nucleation and growth become diffusionless. (b) The
interfacial velocities during the ‘nucleation” and growth processes.

nucleation behaviour, the model has been shown to compare favourably with
the measured TTT diagram.

The calculations have been extended to cover a wider range of carbon con-
centrations. Malecki (1990) found that for high carbon steels the model is not
able to predict the acceleration of the bainite reaction at temperatures just
above Mg, first noted by Howard and Cohen (1948) and discussed later in
this Chapter. Mujahid and Bhadeshia (1993) found that the Mg temperature
is predicted accurately if it is assumed that both nucleation and growth are
diffusionless for martensite. The variation in the Bg temperature as a function
of the carbon concentration could also be estimated. However, the absolute
values of Bg could only be brought into agreement with experimental data by
allowing the stored energy to be a function of temperature.

The model by Hillert and Agren is founded on the theory for reconstructive
transformations. The interface mobility function used relies on absolute reac-
tion rate theory, which is not appropriate for glissile interfaces. The radius of
curvature at the plate tip is treated as a free variable. It is assumed that the
curvature adopted is that which gives the highest growth rate. Strain energy
due to the mechanism of transformation is neglected. To solve for the three
unknowns (austenite and ferrite compositions and the interfacial velocity), a
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solute drag function due to Hillert and Sundman (1976) is utilised in addition
to the interface mobility and diffusion field velocity response functions. It is
predicted that there is a gradual transition from diffusion-controlled to diffu-
sionless growth as the driving force is increased, although the plate shape is
then lost because diffusionless growth occurs with zero interface curvature, i.e.
a flat interface!

6.8.4 Summary

Both of the models predict an increase in carbon trapping as the trans-
formation temperature is reduced. They establish the possibility that the
transition from bainite to martensite is gradual. However, there remain
numerous difficulties.

An increasing supersaturation with undercooling is inconsistent with the
fact that the bainite reaction stops when the carbon concentration of the resi-
dual austenite approaches the T; curve. According to the calculations the car-
bon concentration of the austenite when transformation stops should be that
given by the Ae; phase boundary at high temperatures but by the T curve at
low temperatures.

It is assumed that the supersaturation in the ferrite is constant for any given
isothermal transformation temperature. On the other hand, there is no reason
why the supersaturation should not decrease continuously towards equili-
brium as the fraction of transformation increases at a constant temperature.
This simply does not happen, e.g. we do not see martensite evolving into
Widmanstdtten ferrite. In other words, the models are theoretically elegant
but do not reflect reality.

6.9 Cooperative Growth of Ferrite and Cementite

Ferrite and cementite grow together with a common transformation front dur-
ing the formation of a pearlite colony. Hultgren (1947) proposed that the
essential difference between pearlite and bainite is that in the latter case the
cementite and ferrite do not grow cooperatively (Fig. 6.25). The microstructural
evolution illustrated is now known to be incorrect, but it is nevertheless often
argued that bainite is simply the product of a non-lamellar eutectoid reaction
in which the component phases no longer share a common front with the
austenite. This is doubtful for a variety of reasons, one of which is that bainitic
ferrite can form without any carbide precipitation at all.

There have been attempts to revitalise Hultgren’s ideas by adopting a gen-
eralised definition of bainite as the product of a non-lamellar, noncooperative
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Fig. 6.25 Hultgren's interpretation of the cooperative and noncooperative growth
modes of pearlite and bainite respectively.

mode of eutectoid decomposition. It is further assumed that both pearlite and
bainite grow by a reconstructive mechanism in which the transformation front
propagates by a ledge mechanism (Lee et al., 1988). It is then claimed that the
transition from pearlite to bainite occurs when the cementite and ferrite can no
longer grow at the same rate from austenite. The ferrite and cementite cease to
grow at the same rate when:

ha, h0
Swabw (6.41)

where h and X represent the height and interledge spacing respectively. The
phases can grow with a common front as long as this ratio is identical for both.
The ledges are supposed to move in a direction parallel to the transformation
front. They are therefore shared, i.e., they can traverse both ferrite and cemen-
tite. Cooperative growth fails when:

hava , hos
N TN

(6.42)

where ©° is the step velocity. The ledge velocity must change when it moves
from the ferrite to the cementite phase to account for the change in the phases
which are in local equilibrium, but this is neglected in the analysis.

It is doubtful whether this criterion identifies the essential difference
between bainite and pearlite. The character of the transformation interface,
whether it is glissile or sessile, is not a part of the analysis.
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6.10 Overall Transformation Kinetics

6.10.1 Isothermal Transformation

A model for a single transformation begins with the calculation of the nuclea-
tion and growth rates, but an estimation of the volume fraction requires impin-
gement between particles to be taken into account. This is generally done using
the extended volume concept of Johnson, Mehl, Avrami, and Kolmogorov
(Christian, 1975). Referring to Fig. 6.26, suppose that two particles exist at
time ¢; a small interval ¢t later, new regions marked 4, b, c & d are formed
assuming that they are able to grow unrestricted in extended space whether or
not the region into which they grow is already transformed. However, only
those components of 4, b, ¢ & d which lie in previously untransformed matrix
can contribute to a change in the real volume of the product phase («a):

dve = (1 - V7>dvg* (6.43)

where it is assumed that the microstructure develops randomly. The subscript
e refers to extended volume, V¢ is the volume of « and V is the total volume.
Multiplying the change in extended volume by the probability of finding
untransformed regions has the effect of excluding regions such as b, which
clearly cannot contribute to the real change in volume of the product. For a
random distribution of precipitated particles, this equation can easily be inte-
grated to obtain the real volume fraction,

time =t time = t+ At

Fig. 6.26 An illustration of the concept of extended volume. Two precipitate par-
ticles have nucleated together and grown to a finite size in the time ¢. New regions
c and d are formed as the original particles grow, but a & b are new particles, of
which b has formed in a region which is already transformed.
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The extended volume V¢ is straightforward to calculate using nucleation
and growth models and neglecting completely any impingement effects.
Consider a simple case where the a grows isotropically at a constant rate G
and where the nucleation rate per unit volume is I,. The volume of a particle
nucleated at time 7 is given by

4
v, = gﬂ'GB(t —7)

The change in extended volume over the interval 7 and 7 + dr is
4
avy = gﬂ'Ga(t — 7’ x I, x V xdr
On substituting into equation 6.43 and writing { = V*/V, we get

o (1-VV 4 c - oy
dv —<1 V)37TG (t —7)°Iydr
t
sothat  —In{l —¢} :§7TG3IV J (t— s (6.44)
0

and ¢ =1—exp{—nG’I,*/3}

This equation has been derived for the specific assumptions of random nuclea-
tion, a constant nucleation rate and a constant growth rate. There are different
possibilities but they often reduce to the general form:

£ =1—exp{—kut"} (6.45)

where k, and 7 characterise the reaction as a function of time, temperature and
other variables. This equation is frequently used empirically as an economic
way of representing experimental data (Radcliffe et al., 1963; Okamoto and
Oka, 1986). The temptation to deduce mechanistic information from an
empirical application of the Avrami equation should be avoided even when
the equation accurately fits the data, since the fitting parameters can be
ambiguous.

6.10.2 Mechanistic Formulation of the Avarmi Equation

Reasonable trends can be obtained using an Avrami model founded on the
mechanism of the bainite (Singh, 1998). Each nucleus is assumed to transform
into one sub-unit of bainite of volume u. The time required to nucleate is
considered to be much greater than that for growth so that the change in
extended volume over the interval 7 and 7+ dr is given by
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dvy = Iy, Vudr

If ¢ is defined as a normalised fraction of bainite, i.e. the fraction of bainite
divided by its maximum fraction:

VCY

XT() —X
&= v V s where Vopax =

xT[r) —xY
then the conversion from extended to real volume becomes
ave = (1 -¢&dvy
= (1= Vulydr (6.46)
or V,.dé=(1-8ulydr

For every successful nucleation event, a further number p of nucleation sites is
introduced autocatalytically. It follows that over a period 7 there will be ply, T
new nucleation sites introduced in addition to those originally present. The
total number density Ny of sites at time 7 therefore becomes

Ny =Ny + plyt

where Ny is the initial number density’. The nucleation rate (equation 6.15)
therefore becomes time-dependent:

G 2G*
_ AJ0 S 0.2 _ -
Iy = Nyvexp { RT} + Nyv'tpexp { RT }

On substitution into equation 6.46 we get

Viax J ¢ de Jt G
== 1+prvexpy — 5=
uNYv Jo exp{—gT 0 P P RT
which after integration and manipulation gives the time ¢ to achieve a specified
amount of transformation as:

—1+ \/1 — Vs pIn{1 — ¢}
t: v G*
pvexp{— 7}

Some example calculations are shown in Fig. 6.27 which illustrates the advan-
tages of formulating the Avrami theory on the basis of transformation mechan-

(6.47)

Tzeng (2000) has attempted to introduce autocatalysis differently, by considering nucleation at
the bainite/austenite surface. However, his mathematical derivations are wrong because his
model is formulated to allow nucleation on extended area rather than real area. This is why
his calculation of the bainite/austenite surface per unit volume tends to infinity. Similarly, w in
his equations is an extended volume which should not be multiplied by I,.
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Fig. 6.27 The calculated influence of (a) transformation temperature and (b) man-
ganese concentration on the kinetics of the bainite reaction (Singh, 1998).

ism. The maximum fraction decreases as the transformation temperature is
raised towards the Bg temperature, consistent with the incomplete transforma-
tion phenomenon. Similarly an increase in the stability of the austenite (change
in manganese) retards transformation.

6.10.3 Austenite Grain Size Effect

The bainite transformation is much less sensitive to the austenite grain size
than is pearlite (Umemoto et al., 1980). Furthermore, elements like boron,
which increase the hardenability by segregating to the grain boundaries,
have a much smaller effect on bainite than on ferrite. This is because for
each bainite plate nucleated at a grain surface, there are a number which are
autocatalytically stimulated; the majority of plates in a sheaf do not touch the
austenite grain boundaries.

A reduction in the austenite grain size should, nevertheless, lead to an
increase in the rate of transformation because of the greater number density
of grain boundary nucleation sites (Barford and Owen, 1961). However,
Davenport (1941) argued that the grain size has no appreciable effect on the
transformation kinetics. By contrast, Graham and Axon (1959) suggested that
because the growth of a bainite plate is resisted by the matrix, a smaller grain
size should retard growth.

The austenite grain size is best defined by its mean line lineal intercept L
because it is related inversely to the grain surface per unit volume Sy, and
hence to the number density of nucleation sites N{:

1

2
Sy = I and therefore, Ny o = (6.48)

~
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It follows that the nucleation rate must increase as the austenite grain size
decreases. If this is the only effect then the overall rate of transformation
must increase as L decreases.

There is, however, another effect since the maximum volume V5, of a sheaf
which starts from each grain boundary nucleus must be constrained by the
grain size, i.e.

=3
Vo oL

If this effect is dominant then the overall rate will decrease as the austenite
grain size is reduced. Thus, it has been demonstrated experimentally that there
is an acceleration of transformation rate as L is reduced when the overall

Fig. 6.28 (a) Bainite in a steel where nucleation is sparse and sheaf-growth is rapid.
The austenite grains constrain the amount of transformation that each nucleus can
cause. Reducing the austenite grain size then causes a net reduction in the overall
rate of transformation. (b) Bainite in a steel where the growth rate is small so that
the effect of the austenite grain size is simply to promote the nucleation rate. After
Matsuzaki and Bhadeshia (1999).
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reaction is limited by a slow growth rate, i.e. when the sheaf volume remains
smaller than V7, and hence is unconstrained by the grain size. Conversely, for
rapid growth from a limited number of nucleation sites, a reduction in the
austenite grain size reduces the total volume transformed per nucleus and
hence retards the overall reaction rate. The two circumstances are illustrated
in Fig. 6.28.

6.10.4 Anisothermal Transformation Kinetics

A popular method of converting between isothermal and anisothermal trans-
formation data is the additive reaction rule of Scheil (1935). A cooling curve is
treated as a combination of a sufficiently large number of isothermal reaction
steps. Referring to Fig. 6.29, a fraction £ = 0.05 of transformation is achieved
during continuous cooling when

At
Z—t' =1 (6.49)
i

with the summation beginning as soon as the parent phase cools below the
equilibrium temperature.

The rule can be justified if the reaction rate depends solely on ¢ and T.
Although this is unlikely, there are many examples where the rule has been
empirically applied to bainite with success (e.g. Umemoto et al., 1982).
Reactions for which the additivity rule is justified are called isokinetic, imply-
ing that the fraction transformed at any temperature depends only on time and
a single function of temperature (Avrami, 1939; Cahn, 1956).

cooling
curve &€ =0.05

=11
'

£=0.10

isothermal
transformation
curves

Temperature

Time

Fig. 6.29 The Scheil method for converting between isothermal and anisothermal
transformation data.

168



Kinetics

6.11 Simultaneous Transformations

A simple modification for two precipitates (o and () is that equation 6.43

becomes a coupled set of two equations,

Ve 4+ Vo
Vv

Ve + Vﬁ

ave = (1-
( v

)dV§ and dV’= <1 — )dvf (6.50)

This can be done for any number of reactions happening together (Robson and
Bhadeshia, 1997; Jones and Bhadeshia, 1997). The resulting set of equations
must in general be solved numerically, although a few analytical solutions are
possible for special cases which we shall now illustrate (Kasuya et al., 1999).

6.11.1 Special Cases

For the simultaneous formation of two phases whose extended volumes are
related linearly:

VI=BV®4+C with B>0 and C>0 (6.51)

then with & = V;/V, it can be shown that

1+ BV +CYdVe o
£a:Jexp{—( + 1/ + } v and ¢’ = B¢ (6.52)

If the isotropic growth rate of phase « is G and if all particles of a start
growth at time t = 0 from a fixed number of sites Ny, per unit volume then
Ve = NV%”GB’te’. On substitution of the extended volume in equation 6.52
gives

13 —1+Bexp{—‘—/}[l—exp{— v H with &7 = B¢

(6.53)

The term exp{—C/V} is the fraction of parent phase available for transforma-
tion at f = 0; it arises because 1 — exp{—C/V'} of § exists prior to commence-
ment of the simultaneous reaction at t = 0. Thus, §ﬂ is the additional fraction of
B that forms during simultaneous reaction. It is emphasised that C > 0. A case
for which C =0 and B = 8 is illustrated in Fig. 6.30.

For the case where the extended volumes are related parabolically (Kasuya
et al., 1999):
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Fig. 6.30 Simultaneous transformation to phases a =1 and § = 2 with C =0 and
B =8.

ool ) M) o o)
- erf{ % })] (6.54)
ga_exp{ _‘gf}[l _exp{ _A<V3>2+V<1+B>VSH o

The volume fractions ¢ again refer to the phases that form simultaneously and
hence there is a scaling factor exp{—C/V} which is the fraction of parent phase
available for coupled transformation to o and f£.

6.11.2 Precipitation in Secondary Hardening Steels

Whereas the analytical cases described above are revealing, it is unlikely in
practice for the phases to be related in the way described. This is illustrated for
secondary hardening bainitic and martensitic steels of the kind used com-
monly in the construction of power plant. The phases interfere with each
other not only by reducing the volume available for transformation, but also
by removing solute from the matrix and thereby changing its composition. This
change in matrix composition affects the growth and nucleation rates of all the
participating phases.

The calculations must allow for the simultaneous precipitation of M,X,
My3Cq, M7Cs, MgC and Laves phase. M;C is assumed to nucleate instanta-
neously with the paraequilibrium composition. Subsequent enrichment of
M;C as it approaches its equilibrium composition is accounted for. All the
phases, except M;C, are assumed to form with compositions close to equili-
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brium. The driving forces and compositions of the precipitating phases are
calculated using standard thermodynamic methods.

The interaction between the precipitating phases is accounted for by con-
sidering the change in the average solute level in the matrix as each phase
forms. This is frequently called the mean field approximation. It is necessary
because the locations of precipitates are not predetermined in the calculations.

A plot showing the predicted variation of volume fraction of each precipitate
as a function of time at 600 °C is shown in Fig. 4.16. It is worth emphasising that
there is no prior knowledge of the actual sequence of precipitation, since all
phases are assumed to form at the same time, albeit with different precipitation
kinetics. The fitting parameters common to all the steels are the site densities
and interfacial energy terms for each phase. The illustrated dissolution of
metastable precipitates is a natural consequence of changes in the matrix che-
mical composition as the equilibrium state is approached.

Consistent with experiments, the precipitation kinetics of M»3C¢ are pre-
dicted to be much slower in the 2.25Cr1Mo steel compared to the 10CrMoV
and 3Cr1.5Mo alloys. One contributing factor is that in the 2.25Cr1Mo steel a
relatively large volume fraction of MpX and M;C; form prior to M»3Cs. These
deplete the matrix and therefore suppress M»3Cq precipitation. The volume
fraction of M,X which forms in the 10CrMoV steel is relatively small, so
there remains a considerable excess of solute in the matrix, allowing My3Cq
to precipitate rapidly. Similarly, in the 3Cr1.5Mo steel the volume fractions of
M,X and M;C; are insufficient to suppress My3C¢ precipitation to the same
extent as in the 2.25Cr1Mo steel.

It is even possible in this scheme to treat precipitates nucleated at grain
boundaries separately from those nucleated at dislocations, by taking them
to be different phases in the sense that the activation energies for nucleation
will be different.

6.11.3 Time-Temperature-Transformation (I'TT) Diagrams

Transformation curves on TTT diagrams tend to have a C shape because reac-
tion rates are slow both at high and at low temperatures. The diffusion of
atoms becomes difficult at low temperatures whereas the driving force for
transformation is reduced as the temperature is raised. The phase diagram
thus sets the thermodynamic limits to the decomposition of austenite (Fig. 6.31).

Most TTT diagrams can be considered to consist essentially of two C curves,
one for high temperatures representing reconstructive transformations to fer-
rite or pearlite. The other is for the lower temperatures where substitutional
atoms take too long to diffuse, so that reconstructive transformations are
replaced by displacive transformations such as Widmanstétten ferrite and
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Fig. 6.31 The relationship between a TTT diagram for a hypoeutectoid steel with a
concentration X of carbon, and the corresponding Fe-C phase diagram.

bainite. The martensite-start temperature generally features on a TTT diagram
as a horizontal line parallel to the time axis (Cohen, 1940).

There are two major effects of alloying additions on transformation kinetics.
Solutes which decrease the driving force for the decomposition of austenite
retard the rate of transformation and cause both of the C curves to be displaced
to longer times. At the same time they depress the martensite-start temperature
(Fig. 6.32). The retardation is always more pronounced for reconstructive reac-
tions where all atoms have to diffuse over distances comparable to the size of
the transformation product. This diffusional drag exaggerates the effect of
solutes on the upper C curve relative to the lower C curve.

For steels where the reaction rate is rapid, it becomes difficult experimentally
to distinguish the two C curves as separate entities. For plain carbon and very
low-alloy steels, the measured diagrams take the form of just a single C curve
over the entire transformation temperature range. This is because the different
reactions overlap so much that they cannot easily be distinguished using con-
ventional experimental techniques (Hume-Rothery, 1966). Careful experiments
have shown this interpretation to be correct (Brown and Mack, 1973; Kennon
and Kaye, 1982). Sometimes the degree of overlap between the different trans-
formation products decreases as the volume fraction of transformation
increases (Fig. 6.33). This is because the partitioning of solute into austenite
has a larger effect on reconstructive transformations.

As predicted by Zener (1946), when the two curves can be distinguished
clearly, the lower C curve has a flat top. This can be identified with the
Widmanstdtten ferrite-start or bainite-start temperature, whichever is the lar-
ger in magnitude (Bhadeshia, 1981a).
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Fig. 6.32 Calculated TTT diagrams showing the C-curves for the initiation of
reactions for a variety of steels.

800 T T

700} En21

6007 < 5

500

400t :
transformation

Temperature / °C

io0' 10° 10" 10® 10° 10* 10°
Time / s

Fig. 6.33 TTT diagram for Steel En21 (BISRA, 1956). The continuous lines are
experimental. The separation of the two constituent C curves, which is not appar-
ent for the 0% curve is revealed as the extent of reaction increases. The dashed
curves are calculated for 0% transformation.

There is more detail than implied in the two C curve description. The upper
and lower bainite reactions can be separated on TTT diagrams (Schaaber, 1955;
White and Owen, 1961; Barford, 1966; Kennon, 1978; Bhadeshia and Edmonds,
1979a). There is even an acceleration of the rate of isothermal transformation
just above the classical Mg temperature, due to the formation of isothermal
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martensite (Howard and Cohen, 1948; Schaaber, 1955; Radcliffe and Rollason,
1959; Smith ef al., 1959; Brown and Mack, 1973a,b; Babu et al., 1976; Oka and
Okamoto, 1986, 1988).

Isothermal martensite plates tend to be very thin and are readily distin-
guished from bainite. Although the overall rate of martensitic transformation
appears isothermal, the individual plates are known to grow extremely
rapidly. The isothermal appearance of the overall reaction is therefore due to
the nucleation process (Smith et al., 1959). The stresses caused by bainitic
transformation seem to trigger induced isothermal martensite. The rate even-
tually decreases as the transformation temperature is reduced below the Mg
temperature, giving the appearance of a C-curve with the peak transformation
rate located below M (Fig. 6.34).

6.11.4 Continuous Cooling Transformation (CCT) Diagrams

Steels are not usually isothermally transformed. It is more convenient to gen-
erate the required properties during continuous cooling from the austenitic
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Fig. 6.34 (a) TTT diagram for a Fe-0.39C-0.70Mn-1.7Ni-0.76Cr—0.2Mo-0.285i-
0.22Cu wt% alloy austenitised at 900 °C for 15 minutes. Note the acceleration in
the rate of transformation as the Mg temperature is approached (data from Babu
et al., 1976). (b) Similar data for a plain carbon steel (Howard and Cohen, 1948).
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condition. Continuous-cooling-transformation (CCT) diagrams are then used
to represent the evolution of microstructure (Fig. 6.35).

The rate of transformation in a given steel with a known austenite grain size
can be described with just one TTT diagram. However, a different CCT dia-
gram is required for cooling function, e.g. whether the cooling rate is constant
or Newtonian. It is therefore necessary to plot the actual cooling curves used in
the derivation of the CCT diagram (Fig. 6.35). Each cooling curve must begin at
the highest temperature where transformation becomes possible (usually the
Ae; temperature).

Each CCT diagram requires a specification of the chemical composition of
the steel, the austenitisation conditions, the austenite grain size and the cooling
condition. The diagrams are therefore specific to particular processes and lack
the generality of TTT diagrams.

The CCT diagram is usually partitioned into domains of microstructure; Fig.
6.35 shows the conditions under which bainite and ferrite form. Mixed micro-
structures are obtained when a domain boundary is intersected by a cooling
curve. The constant volume fraction contours must be continuous across the
domain boundaries to avoid (incorrect) sudden changes in volume fraction as
the boundary is crossed (e.g. points a, b on Fig. 6.36). The contours represent
the fraction of austenite which has transformed into one or more phases. It
follows that there are constraints on how the zero percent martensite and
bainite curves meet, avoiding the double intersection with the cooling curve
illustrated in Fig. 6.36b,c. Cooling curve X which leads to a fully martensitic

20%
40%

Temperature

logarithm of time

Fig. 35 CCT diagram illustrating the cooling curves, constant volume percent
contours and transformation temperatures.
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Fig. 6.36 Schematic CCT diagrams illustrating the continuity of constant volume
percent contours across microstructure domain boundaries and the correct way in
which the zero percent curves of different domains must meet at the point c.

microstructure, intersects the 0% transformation curve at just one point, with-
out intersecting the region cd. Cooling curve Y, on the other hand, produces a
mixed microstructure with less than 20% of bainite, the remaining austenite
transforming to martensite on cooling. The temperature at which martensitic
transformation begins (line abc) is depressed if bainite forms first and enriches
the residual austenite with carbon.

The bainite curve in Fig. 6.36 approaches the Bs temperature asymptotically
along ef as the cooling rate decreases consistent with the flat top of the bainite
C curve in the TTT diagram. This is not always the case as shown schematically
in Fig. 6.37. (Kunitake, 1971; Schanck, 1969; Lundin et al., 1982). Any transfor-
mation which precedes bainite alters the chemical composition of the residual
austenite. The main changes occur in the region associated with the vertical
line ‘c” in Fig. 6.37 The temperature at which the bainite first forms is depressed
by the changed composition of the austenite. Because the ferrite and bainite
domains are separated by a time gap, the continuity of constant volume
fraction contours is interrupted. The contours must still be plotted so that
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Fig. 6.37 TTT diagram in which the bainite region is strongly influenced by the
initial formation of ferrite during continuous cooling transformation.

their loose ends are connected by a cooling curve as illustrated by ‘ab” on
Fig. 6.37.

Although bainite is depressed to lower temperatures by the prior formation
of allotriomorphic ferrite as the cooling rate decreases, the temperature range
over which bainite forms is eventually reduced. This is because very slow
cooling rates give ample opportunity for transformation to be completed
over a smaller temperature range as illustrated by the rising curve ‘de’ on
Fig. 6.37.

All of the features described here can be found in actual TTT and CCT
diagrams, for example, the measured diagrams for a 2.25Cr1Mo’ steel which
is used widely in the bainitic condition for power plant applications (Fig. 6.38).

6.11.5 Boron, Sulphur and the Rare Earth Elements

The early commercial development of bainitic steels relied on the effect of
boron on the transformation characteristics of low-carbon steels (Chapter 1).
Boron retards the heterogeneous nucleation of allotriomorphic ferrite at the
austenite grain surfaces, to a greater degree than that of bainite (Fig. 6.39).
This in turn permits boron-containing steels to be cooled continuously into
fully bainitic microstructures. Elements like manganese are not suitable
because they improve the martensite hardenability and hence favour a
mixed microstructure of bainite and martensite.
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Fig. 6.38 Corresponding TTT and CCT diagrams for a 2.25Cr1Mo steel (Lundin
et al., 1982). The CCT diagram shows the terminology used in describing air-cool-
ing from the austenitisation temperature (i.e., normalising) and furnace cooling
(i.e. annealing).
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Fig. 6.39 (a) The effect of boron and its analogues (the rare earth elements) on the
TTT diagram. There is a pronounced effect on the allotriomorphic ferrite trans-
formation but only a minor retardation of bainitic reaction. (b) Change in the
incubation time for the allotriomorphic ferrite reaction as a function of the soluble
boron concentration. (After Pickering, 1978).
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Boron segregates to austenite grain boundaries. In doing so it reduces the
grain boundary energy and hence makes the boundaries less effective as het-
erogeneous nucleation sites. A typical boron addition of ~ 0.002 wt% is suffi-
cient to have a profound effect on transformation kinetics, although the exact
amount must clearly depend on the austenite grain size. Too much boron
precipitates as borides which stimulate the nucleation of ferrite. The boron is
only effective in enhancing hardenability when present in solid solution, not
when precipitated as oxides or nitrides (Fig. 6.40). It is for this reason that
boron containing steels are usually deoxidised with aluminium. Titanium is
added to tie up any nitrogen which may otherwise combine with the boron and
render it impotent.

Carbon also tends to segregate to austenite grain boundaries. In low carbon
steels, niobium or titanium forms carbides thereby reducing the quantity avail-
able for segregation. This leaves the boundaries open to receive boron
(Tamehiro et al., 1987a,b). Otherwise the boron can be displaced from the
grain boundaries by the preferential segregation of carbon.

The efficacy of boron is influenced by the presence of nonmetallic inclusions,
especially in steel welds or in inoculated steels where inclusions are added
deliberately to induce the precipitation of desirable forms of bainite. For exam-
ple, MnS and Al,O; particles seem to act as heterogeneous nucleation sites for
BN and M,;C¢ during fabrication (Saeki et al., 1986). This reduces the free boron
available for segregation to the ferrite nucleation sites (Dionne et al., 1988).

Quite small concentrations of sulphur (=~ 0.005 wt%) can sometimes stimu-
late the nucleation of bainite (Umemoto et al., 1986b). Iron-rich sulphides pre-
cipitate at the austenite grain boundaries and form potent sites for the
nucleation of bainite.

100 F
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qg’ 80 N soluble boron + . /b ¢
S 60 boron nitrides ’ oron-iree
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& 40F e
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oL L | Ll
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Fig. 6.40 Experimental data due to Ueda et al. (1980) for three steels. The rate of
reaction is slow in the sample containing soluble boron and fast in the one con-
taining boron nitride, compared with the boron-free steel.
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Rare-earth elements including cerium, neodymium, lanthanum and yttrium
are believed to act in a manner similar to boron (Jingsheng et al., 1988).
Attention has been focused on cerium additions of up to 0.134 wt%, where it
is found that allotriomorphic ferrite formation is retarded relative to that of
bainite. The mechanism is said to involve the segregation of cerium to the
austenite grain boundaries. The effect of cerium is dramatically reduced if
the phosphorous content exceeds ~ 0.02wt%, although the mechanism of
this interaction is not yet established.

An indirect role of elements such as yttrium comes from their ability to
getter sulphur, especially in the presence of sulphides which influence the
nucleation frequency of ferrite (Abson, 1987).

6.12 Superhardenability

Transformations in a moderately hardenable steel can be retarded by super-
heating the melt to about 1650 °C during steelmaking, as long as the aluminium
concentration is in the range 0.03-0.05 wt% (Brown and James, 1980). This
phenomenon is dubbed the superhardenability effect; the effect on TTT diagrams
is shown in Fig. 6.41.

The effect is most pronounced with high hardenability steels; it is also
enhanced by increasing the aluminium concentration to about 0.06 wt% before
it saturates (Mostert and van Rooyen, 1982). Superhardenability is not influ-
enced by prolonged holding at the austenitisation temperature, as sometimes
happens with hardenability increments due to boron additions. Some of the
samples used in the original experiments were cast in air, the others in argon,
and tests were carried out for both superheated (1650 °C) and conventional
melts (1550°C), at varying concentrations of aluminium. The superheated
melts were held at 1650°C for a few minutes and then cooled to 1550°C,
where alloying additions were made before casting.

The superheat apparently causes the breakdown of clusters of alloying
atoms in the liquid and this influences hardenability (Sachs et al., 1980). This
fails to explain why holding a superheated melt at a lower temperature before
casting does not reform the clusters and hence eliminate the superhardenabil-
ity. Furthermore, superheating is not necessary when the melting is carried out
under an inert atmosphere.

An alternative interpretation is based on nonmetallic inclusions such as
manganese oxysulphides or titanium oxides in the steel. These can help nucle-
ate ferrite and so reduce hardenability (Chapter 10). Aluminium is a stronger
oxidising element than Mn, Si, or Ti. It forms alumina which is ineffective as a
heterogeneous nucleation site for ferrite. The preferential formation of alumina
would therefore lead to an increase in hardenability. This hypothesis explains
several features of the superhardenability effect:
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Fig. 6.41 The superhardenability effect. Curves A and B represent steels which
were cast using melt temperatures of 1550 and 1650 °C respectively. The steels
have similar compositions but their aluminium concentrations are 0.03 and 0.09
wt% respectively. After Mostert and van Rooyen (1982).

(i) The need to add aluminium.

(ii) That superheat is not needed when an inert gas cover is used during
steelmaking. This would lead to a reduction in the oxygen concentration
and hence the number density of the oxide nucleation sites.

(iii) Consistent with experimental data, an inclusion effect should not fade
during prolonged austenitisation.

(iv) The additional nucleation sites on inclusions can only contribute signif-
icantly in steels which already have a reasonable hardenability, i.e.
where any enhancement of nucleation kinetics would have a noticeable

outcome.

The potent influence of inclusions is well established in welding metallurgy
(Chapter 10). Controlled experiments are now needed, in which the trace ele-
ment concentrations (Al, Ti, O, N, S, B) are carefully monitored.
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6.13 The Effect of Chemical Segregation

Commercial steels do not have a uniform chemical composition. The thermo-
mechanical processing used in the manufacturing process improves matters
but the final product still is heterogeneous. Solute segregation can have a
profound effect on the development of microstructure, for example, in the
development of bands of transformation products (Fig. 6.42). The segregation
structure of solidification is spread out into bands parallel to the rolling plane
during deformation. The microstructural bands follow the segregation pattern
because it is the local chemical composition that determines the onset of trans-
formation.

The scale of segregation compares with the spacing of the secondary den-
drite arms of the solidification microstructure, with a repeat distance of a few
tens of micrometers. The peak concentrations are about factor of two of the
mean values. Any coherency strains caused by variations in lattice parameter
due to these composition gradients can therefore be neglected. Such strains
become important in the theory of spinodal decomposition (or artificial multi-
layered structures) where the gradients are much larger.

It is the segregation of substitutional solutes which is the real cause of band-
ing. Carbon diffuses rapidly and becomes homogeneous in the austenite; there
may be small concentration variations as the carbon attempts to achieve a
uniform chemical potential in the presence of substitutional solute gradients
(Kirkaldy et al., 1962).

T ey

-

Fig. 6.42 (a) Optical micrograph illustrating the banded microstructure obtained in
a heterogeneous steel (300M) after isothermal transformation to bainite; (b) corre-
sponding optical micrograph for the sample which was homogenised prior to
isothermal transformation to bainite (Khan and Bhadeshia, 1990a).
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Although carbon is homogeneously distributed in the austenite, the prefer-
ential formation of ferrite in the substitutional-solute depleted regions causes a
partitioning of carbon into the adjacent substitutionally-enriched regions. The
resulting carbon-enriched bands have a profound influence on the develop-
ment of microstructure, but it is important to realise that the redistribution of
carbon is a consequence of solid state transformation and only indirectly due to
the solidification process.

Davenport (1939) compared the isothermal transformation kinetics of steels
containing banding with those which had been homogenised by annealing in
the austenitic condition. It is expected that transformation should start first in
the solute-depleted regions, and at a temperature which is higher than that for
a homogenised steel. The early part of the TTT diagram of segregated steels is
expected to reflect the behaviour of the solute-depleted regions. Conversely,
the C curves for the later stages of transformation should reflect slower trans-
formations in the solute-enriched regions. Davenport’s experiments did con-
tirm this; the C curves for the initiation of bainite in the segregated steels were
frequently found to be at longer times when compared with homogenised
steels.

The observations are summarised in Fig. 6.43. The reaction is faster in the
heterogeneous sample at high transformation temperatures, but not as the
undercooling below the Bs temperature increases. The rate is always found
to be slower in the heterogeneous samples when considering the later stages of
transformation. Experiments by Grange (1971) are consistent with these obser-
vations. The fact that the C curves of the homogeneous and heterogeneous
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Fig. 6.43 The effect of chemical segregation on the bainite C curves of TTT
diagrams.
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samples cross is difficult to understand if it is argued that transformation
should always be easier in the solute-depleted regions.

The peculiar behaviour illustrated in Fig. 6.43 has been explained quantita-
tively (Khan and Bhadeshia, 1990a). The segregated steel is able to transform in
its solute-depleted regions at temperatures above Bs for the homogeneous
alloy. This advantage is maintained at small undercoolings. However, at
higher undercoolings the homogeneous steel is able to transform faster because
bainite can nucleate uniformly in all regions, whereas it is only able to form in
the depleted regions of the heterogeneous alloy.

The carbon partitioned during transformation is localised near the platelets
so on a coarser scale it is more uniformly distributed in the homogeneous
sample where the bainite grows everywhere. By contrast, most of the parti-
tioned carbon remains in the substitutional solute depleted regions of the
segregated sample and retards the development of transformation. The effect
is prominent at large undercoolings because the maximum fraction of bainite
that can form is greater. Anything which enables the distribution of carbon to
become more uniform gives heterogeneous steels a kinetic advantage. For
example, slow cooling through the transformation range (Fig. 6.44).

To summarise, when bainite forms during continuous cooling transforma-
tion, the reaction may begin at a higher temperature in segregated steels, but
both the extent and rate of subsequent transformation should be larger in
homogenised alloys.

4 °C min™ 1 0.1 °C min” !
0.6 0.6

Qo heterogeneous Q heterogeneous
= £
= 5
0 0.4 Q 04f
G S
c y homogeneous c
8 0.2 e g 0.2k
© . 13}
© K o]
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LL 18 homogeneous K

0 1 I 0 I , B
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Fig. 6.44 Experiments on homogenised and heterogeneous steel samples in which
bainitic transformation was obtained by continuous cooling: (a) 4°Cmin""; (b)
0.1°Cmin". The slower cooling conditions permit a more uniform distribution
of carbon in the residual austenite, in which case the heterogeneous sample trans-
forms to a greater extent relative to the homogenised sample, at all temperatures.
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6.14 Martensitic Transformation in Partially Bainitic
Steels

The formation of bainite enriches the residual austenite and introduces strains
and defect. This must influence the way in which the residual austenite trans-
forms subsequently to martensite.

The progress of the athermal martensitic transformation is usually described
empirically using the Koistinen and Marburger (1959) equation:

1—&=exp{-Ce(Ms —To)} (6.55)

where ¢ is the volume fraction of martensite, T, is a temperature to which the
sample is cooled below Mg and Cg ~ 0.011 K™ is a constant obtained originally
by fitting to experimental data.

Magee (1970) justified this equation by assuming that the number density of
new plates of martensite per unit volume of austenite, dN, is proportional to
the change in the driving force AG™ on cooling below Mjs:

AN = —C,d(AG™)

where C; is a proportionality constant. The change in the volume fraction of
martensite is therefore given by:

where dNy, is the change in the number of new plates of martensite formed per
unit volume of sample, given by dNy = (1 — £)dN. On combining these equa-
tions and substituting [d(AG™)/dT]dT for d(AG™) we get:

= d(AG™)
a¢=-Vv(1 - §)C7TdT
which on integration between the limits Mg and T, gives
— . d(AG™
Inf1 - &) = 76, "2, - 1)
or
Yoo

which has a similar form as the equation used by Koistinen and Marburger.

6.41.1 Autocatalysis

The initial number density N} of the defects responsible for the nucleation of
martensite is not large enough to explain the observed rate of martensitic
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transformation (Shih et al., 1955; Pati and Cohen, 1951; Olson and Cohen, 1981).
The extra defects necessary to account for the shortfall are obtained by auto-
catalysis. Each plate of martensite creates new embryos in the austenite. Their
number density is given by integrating (Lin, 1987):

AN = dN; +d(&p)

where N; is the number density of original nucleation sites which survive at
any stage of transformation:

N; = (1-&N/p (6.57)

where p is number of autocatalytic sites generated per unit volume of sample,
assumed to be related linearly to the volume fraction of martensite and hence
to &,

p=Cg+ Cof
sothat  dN = (=N + Cg + 2Co€)d¢
Since V is assumed to be constant,

d¢/V = (1 - €)dN

so that
dg 0
=———=|(—N; 2C,€)d¢. :
J7i g = Jeont e acigas (6.58)
Integration gives
p=N?— 1“{27_‘;5} (6.59)

It is found experimentally that:
p—N{ =Cy+ Cry(Ms — To)
On setting M5 — Tg = 0, it is found that C;y = 1/V. It follows that

Infl-g)
£

This is an alternative kinetic model for the development of martensitic trans-
formation as a function of undercooling below the Ms temperature. It has been
used to rationalise martensite transformation kinetics in fully austenitic sam-
ples as well as those which are first partially transformed to bainite.

Although a reasonable fit has been demonstrated (Fig. 6.45), the model tends
to overestimate the fraction transformed when the amount of martensite is
small.
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Fig. 6.45 Comparison of experimental results with those calculated by fitting
equation 6.60 to the experimental data. After Khan and Bhadeshia, 1990b.

6.15 Summary

Both the individual platelets and the sheaves of bainite lengthen at rates much
faster than permitted by the diffusion of carbon. It must be concluded that they
grow with a supersaturation of carbon, the ferrite inheriting the composition of
the parent austenite. The excess carbon is soon afterwards partitioned into the
residual austenite or precipitates as carbides.

It is possible that not all the carbon is trapped in the ferrite during transfor-
mation. However, neither the experimental evidence nor the theory for growth
with partial supersaturation is convincing.

Carbon must partition during the nucleation of bainite. The nucleation prob-
ably occurs by a displacive mechanism akin to martensite, but with the most
potent sites confined to the austenite grain surfaces. Autocatalytic nucleation
plays a role but it is not as prominent for bainite as it is for martensite. The
activation energy for nucleation varies linearly with the driving force.
Nucleation does not therefore rely on heterophase fluctuations, but rather on
the dissociation of dislocation clusters. The activation energy is in these cir-
cumstances from the resistance to interfacial motion.

The calculation of overall transformation kinetics remains challenging.
Whereas some important trends are reproduced, accurate predictions using
few parameters are not yet possible. This indicates that important variables
remain to be identified. A qualitative result is that bainitic transformation is
less sensitive to the austenite grain size when compared with pearlite. This is
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because sheaf growth occurs by the propagation of sub-units at sites away
from the austenite grain surfaces.

Except at temperatures close to Bs, homogeneous steels transform more
rapidly than those containing chemical segregation. The martensitic decompo-
sition of austenite left untransformed after the growth of bainite can be
described adequately by the theory for the martensitic decomposition of
fully austenitic samples.
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