Mechanical Properties of Low-Temperature Bainite

Yield strength / GPa

Carlos Garcia-Mateo Francisca Garcia-Caballero Harry Bhadeshia

-Steel design, heat treatment

-Microstructure, characterization

-Mechanical properties

- Microstructure \iff Mech. properties

Bainite Phase Transformation Theory (*)

Paraequilibrium Nucleation $\Delta G_m < G_N$ (only C diffuses)

Diffusionless growth

$$\Delta G^{\gamma \to \alpha} < -G_{SB}$$

Bs

(*) H.K.D.H Bhadeshia. Bainite in Steels. 2nd edition The Institute of Materials (2001)

Bainite Phase Transformation Theory

Paraequilibrium Nucleation (only C diffuses)

Diffusionless growth

 $\Delta G^{\gamma \to \alpha} < -G_{SR}$

 $\Delta G_m < G_N$

Some simple metallurgical considerations

Low transformation temperature
Reasonable transformation times
Bainitic hardenability

- •Elimination of cementite
 - •Avoidance of temper embrittlement

		Alloy				wt%	
С	Si	Mn	Мо	Cr	Со	P/S	
0.8	1.59	2.01	0.24	1	1.51	< 0.002	

$$B_{S} = 360^{\circ}C$$

 $M_{S} = 120^{\circ}C$

Very Simple Procedure

-Steel design, heat treatment

-Microstructure, characterization

-Mechanical properties

- Microstructure \Leftrightarrow Mech. properties

X-ray

T.E.M

X-ray

X-ray (peak broadening)

-Mechanical properties

Test at room temperature crosshead speed 0.1 mm/min.

Transformation temperature / °C

- Microstructure \Leftrightarrow Mech. properties

- Microstructure \Leftrightarrow Mech. properties

Transformation temperature / °C

Conclusions

- Bainitic phase transformation theory + simple metallurgy
- Low transformation temperatures
- •Mainly ferritic. Extremely fine and highly dislocated
- •Main strengthening mechanism—slender ferrite plates
- Strength/ductility combinations never reported before