
Svetsaren No.1 1999 53

Abstract
High-strength weld metals fre-
quently have a microstructure
consisting of martensite or a mix-
ture of martensite and acicular
ferrite. The alloying of the weld
metal has to be designed so that
sufficient hardenability to gener-
ate the required microstructure
during cooling is obtained. It has
been observed that the yield
strength of such alloys can exhibit
considerable variation in the
range of 700-950 MPa for the
same consumable electrode. The
work presented here reveals one
reason for these variations — that
the cooling curve of the weld is
close to the limit of hardenability
of the material. This means that
the microstructure obtained be-
comes sensitive to variations in
the interpass temperature in mul-
tirun welds.

Introduction
Making a high-strength steel us-
ing a variety of well-established
strengthening mechanisms is a
straightforward procedure.
Achieving toughness, which is the
ability of the metal to absorb en-
ergy during fracture, is far more
difficult. The essence of most al-
loy design is to obtain a reason-
able compromise between
strength and toughness.

Unlike wrought steels, welds
cannot usually be processed to
enhance the microstructure and
properties once the joint is com-
pleted. Many welds that are used
for structural steels cannot even
be heat treated after deposition.
As a result, there are limitations
to the maximum strength that can
usefully be exploited. A high-
strength weld is therefore cur-
rently limited to a yield stress of
about 900 MPa for most practical
circumstances.

Untempered microstructures
capable of resisting deformation

at such large stresses are based
on martensite or on mixtures of
martensite/bainite/acicular ferrite.
The alloys must therefore contain
a sufficient content of austenite-
stabilising elements consistent
with the hardenability required to
avoid other phase transforma-
tions. At the same time, the car-
bon concentration must be mini-
mised to avoid excessive hardness
when the weld is deposited. So,
elements such as manganese,
nickel, chromium and molybde-
num are added as they improve
hardenability and yet do not ex-
cessively strengthen the steel. A
typical weld metal composition
for manual metal arc welding is
therefore:
Fe-0.05C-0.5Si-1Mn-3Ni-0.5
Cr-0.5Mo wt%
with a strength of about 900 MPa
and a Charpy notch toughness at
–60°C of about 60 J.

It has been found that the me-
chanical properties of this and
similar higher strength welds are
variable, even though the chemi-
cal composition of the deposit
does not change (1). In particular,
the yield strength can vary (150
MPa), whereas the ultimate ten-
sile strength does not vary as
much. This is unsatisfactory from
the customer’s point of view and
indeed for the electrode manufac-
turer who has to supply elec-
trodes to specification.

The purpose of the present
work was to investigate the vari-
ability in the mechanical proper-
ties of these high-strength weld
deposits.

Experimental details
Weld specifications
An experimental weld (multirun
MMA) was fabricated according
to ISO 2560 using a 20 mm thick
plate filled with 30 runs (three
beads per layer). An interpass
temperature of 250°C was used.

This configuration causes little di-
lution of the weld metal, thereby
permitting the accurate isolation
and measurement of weld metal
properties. Welding was per-
formed at 24 V, 180 A and a heat
input of 1kJ/mm. The nominal
composition data for the weld are
shown in Table 1.

Mechanical testing
Two tensile specimens and 20
Charpy-V impact specimens were
machined. Prior to tensile testing,
the specimens were degassed at
250°C for 16 hours. The impact
specimens were tested at four dif-
ferent temperatures and five
specimens were tested at each
temperature. The test tempera-
tures were +20°C, 0°C, –20°C,
–40°C and –60°C.

Specimens for microscopy
Specimens for light microscopy
were produced by hot mounting
the weld material in bakelite. Fol-
lowing grinding and polishing
down to a 1 µm diamond grit fin-
ish, the samples were etched with
2% nital.

Transmission electron micros-
copy samples were made from cy-
lindrical rods with a diameter of 3
mm machined from sections of
weld metal. The final prepara-
tions were performed using a
twin jet electropolisher at ambi-
ent temperature and a potential
of 50V. The electropolishing solu-
tion comprised 5% perchloric
acid, 10% glycerol and 85% etha-
nol (Brammar, 1965). Imaging
was performed in a Philips 400ST
transmission electron microscope
operating at 120 kV.
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C Mn Si Cr Mo Ni

05 2.0 0.3 0.4 0.6 3.0

Table 1 Concentration (in weight%)
of the major alloying elements in the
experimental weld.
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Figure 1. Dark-field optical micro-
graph showing little resolvable detail.

Rp0.2 Rm A5 (%) Z (%) Impact toughness (J)
(MPa) (MPa)

+20°C 0°C –20°C –40°C –60°C
872 922 22 67 102 95 87 79 64

Figure 2. TEM micrograph showing
the bainitic microstructure of the weld
metal.

Figure 3. Electron diffraction pattern
showing ferrite and austenite spots in
an approximate Kurdjumov-Sachs
orientation.

Dilatometry
A Thermecmastor Z thermo-
mechanical simulator was used to
study the phase transformations
occurring within the weld metal
as a function of the applied cool-
ing rates. The transformations
were monitored using laser dila-
tometry. Specimens for use in the
simulator were machined into cyl-
inders with a length of 12 mm
and a diameter of 8 mm. A hole
with a diameter of 5 mm was dril-
led along the central length of the
specimens, the reduction in mate-
rial volume producing more accu-
rate data. Heating the specimens
was effected via an induction coil
and cooling was similarly con-
trolled using a combination of in-
duction coil heating and jets of
helium quenching gas.

In the production of a continu-
ous cooling transformation
(CCT) curve, the specimens were
austenitised at 1,200°C for 10
minutes in order to reduce the ef-
fect of the austenite microstruc-
ture before each specific cooling
cycle was applied.

Results
Mechanical testing
The results of the tensile and im-
pact toughness tests are present-
ed in Table 2.

Microstructure
Light microscopy has a resolution
of about 0.5 µm at most. Observa-
tions revealed apparently plate-
like features, but they were be-
lieved to represent clusters of pla-
tes which are much finer. The fine
structure could not really be 
revealed and was not found to
change much with its position
within the multirun weld 
(Figure 1).

Thin foil observations using
transmission electron microscopy
revealed a fine microstructure
comprising bainite plates with a
width of the order of 0.3 µm. A

typical TEM micrograph is shown
in Figure 2. Electron diffraction
proved the presence of retained
austenite films between the bai-
nitic ferrite plates. The crystallo-
graphic orientation between the
austenite and adjacent ferrite was
found to be consistent with that
expected from a rational Kurdju-
mov-Sachs (KS) relationship
(Figure 3).

The alloy contains a fairly low
carbon concentration, so the rea-
dy observation of reasonably
thick retained austenite films
might be considered surprising at
first sight. However, carbon is
partitioned from the bainite after
it stops growing and this stabilises
the austenite which is enriched in
carbon (2). In fact, the observa-
tion of these thick films can be
safely taken to indicate the pres-
ence of bainite, which in low-alloy
steels can be difficult to distin-
guish from martensite. Carbide
precipitation was never found in
spite of extensive investigations.

Dilatometry to produce a CCT
curve
Further experiments using dila-
tometry were conducted to verify
that the fine plates with interven-
ing austenite represented bainite
rather than martensite. If the ob-
served transformation tempera-
ture remains constant for differ-
ent cooling rates, it can be con-
cluded that the final microstruc-
ture must be martensitic, since
the martensite-start (Ms) temper-
ature does not depend on the
cooling rate for low-alloy steels
(3). On the other hand, the tem-
perature at which a detectable
fraction of bainite forms does de-
pend on the cooling rate, because
the overall kinetics of the reac-
tion can be described in terms of
a C curve on a continuous cool-
ing transformation (CCT) dia-
gram.

A CCT curve was produced by
cooling specimens at various rates
ranging from 100°C/s to 0.05°C/s.
Figure 4 shows the experimental
CCT curve, along with the calcu-
lated  Ms temperature (4) and a
calculated MMA weld bead cool-
ing rate with an interpass temper-
ature of 250°C (5) denoted ’250°C
ITP’.

Table 2. Results of mechanical testing.
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The calculated weld bead cool-
ing rate clearly cuts the CCT cur-
ve beyond the limit of harden-
ability in a region which should
produce a bainitic microstructure.
TEM micrographs showed fine
plates which confirm a displacive
mechanism of transformation.
These two curves intersect at a
position at which the gradient of
the CCT curve is very large. Con-
sequently, small variations in the
cooling rate of the material could
drastically alter the transforma-
tion temperature and thereby the
resultant mechanical properties.
This hypothesis led to questions
concerning the possible causes of
such variations. The problem was
approached using a sophisticated
method of pattern recognition,
known more generally as neural
network analysis.

Neural network: the
method
There are difficult problems
(such as welding) in which the
general concepts might be under-
stood but which are not as yet
amenable to rigorous mathemati-
cal treatment. Most people are fa-
miliar with regression analysis
where data are best-fitted to a
specified relationship which is
usually linear. The result is an
equation in which each of the in-
puts xj is multiplied by a weight
wj. The sum of all such products
and a constant C then gives an es-
timate of the output y =

It is well understood that there
are dangers in using such rela-
tionships beyond the range of fit-
ted data.

A more general method of re-
gression is neural network analy-
sis (6–9). As before, the input
data xj are multiplied by weights,
but the sum of all these products
forms the argument of a hyper-
bolic tangent. The output y is
therefore a non-linear function of
xj; the function which is usually
chosen is the hyperbolic tangent
because of its flexibility. The ex-
act shape of the hyperbolic tan-
gent can be varied by altering the
weights (Figure 5a). Further de-
grees of non-linearity can be in-
troduced by combining several of
these hyperbolic tangents (Figure
5b), so that the neural network
method is able to capture almost
arbitrarily non-linear relation-
ships. For example, it is well
known that the effect of chromi-
um on the microstructure of
steels is quite different at large
concentrations than in dilute al-
loys. Standard regression analysis
cannot cope with such changes in
the form of relationships.

One potential difficulty when it
comes to the use of powerful re-
gression methods is the possibil-
ity of overfitting data (Figure 6).
For example, it is possible to pro-
duce a neural network model for
a completely random set of data.
To avoid this difficulty, the ex-
perimental data can be divided
into two sets, a training dataset

and a test dataset. The model is
produced using only the training
data. The test data are then used
to check that the model behaves
when presented with previously
unseen data.

Neural network models in
many ways mimic human experi-
ence and are capable of learning
or being trained to recognise the
correct science rather than non-
sensical trends. Unlike human ex-
perience, these models can be
transferred readily between gen-
erations and steadily developed
to make design tools of lasting
value. These models also impose
a discipline on the digital storage
of valuable experimental data,
which may otherwise be lost with
the passage of time.

Figure 4 Experimental CCT curve.

Figure 6 A complicated model may
overfit the data. In this case, a linear
relationship is all that is justified by
the noise in the data.

Figure 5 a) Three different hyperbolic tangent functions; the “strength” of each
depends on the weights. (b) A combination of two hyperbolic tangents to produce a
more complex model. Details about the methodology can be found in David
Mackay’s article in Mathematical Modelling of Weld Phenomena III.
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Neural network structure
While there are many varieties of
neural network, the type used in
this work can be expressed dia-
gramatically as shown below. In
this case, the network is com-
posed of three “layers”. The first
layer contains the model input
data provided by the user, such as
compositional details (simply as
normalised values), the second
“hidden” layer is an internal stage
and describes the degree of com-
plexity of the substructure of the
network. The third “output” layer
contains the predicted value of
the parameter in question when
running a calculation. Figure 7
shows a simplified network with
five example input parameters.

The circles within the diagram
are called nodes or units, so here
there are five “input nodes”. The
hidden layer comprises three hid-
den nodes and the output layer is
simply a single output node. The
number of nodes in the hidden
layer limits the complexity of the
possible relationships between
the input and output nodes. The
lines connecting the nodes repre-
sent mathematical functions per-
formed on the values as they pass
from the input to the output lay-
er. In this network, hyperbolic

tangent functions are utilised, as
they are always single valued, ex-
hibit both near-linear and non-
linear regions and are relatively
easy to manipulate. When per-
forming a “prediction” using a
neural network, data are operat-
ed on by a hyperbolic tangent
function as they are passed bet-
ween the input and hidden layers.
This function is of the form:-

where xj are the normalised val-
ues of the input variables, wij

(1)

are a set of “weights” associated
with each input and hidden unit
and ui

(1) are bias values analo-
gous to constants found in linear
regression.

The values hi are transferred
from the hidden layer to the out-
put layer via a second function of
the form:–

where y is the value of the output
node (e.g. yield strength), wi

(2)

are a second set of weights and 
u(2) is a further constant known as
a ‘bias’.

The numerous weighting coef-
ficients and constants (wij

(1), – 
ui

(1), wi
(2) and u(2)) are required in

order to provide the flexibility to

calculate accurate output values
from input data. At the heart of
the neural network technique
there are algorithms designed to
evaluate these coefficients and
constants in order to produce sat-
isfactory results.

Training the network
Training involves repeatedly ex-
posing the training algorithms to
data for the network inputs (e.g.
compositions) and, crucially, the
output (e.g. yield stress). The data
must come from a database rele-
vant to the particular application
in question. The quality of this
database determines, at least in
part, the final accuracy of the net-
work predictions. The required
size of the database may vary de-
pending on the complexity of the
problem that is being modelled.
In general, the larger the amount
of accurate data, the better the
predictions of the resulting net-
work. The training algorithms re-
fine the coefficients and variables
in the above equations by com-
paring the predicted and actual
output values of the output node.
Through a complicated back-pro-
pagation process, the computer
program attempts to reduce the
differences between predicted
and actual values until they reach
acceptably low levels. There is an
additional problem with “over-
training”, which means that the
network can learn the examples
in the dataset too well and will
then be unable to predict values
for different unseen composi-
tions. This is analogous with fit-
ting a complicated curve to a set
of points that lie on a straight
line, where the experimental er-
rors have been modelled into the
network rather than just  the
trend. Using a number of differ-
ent hidden nodes and training on
a randomly-selected half of the
available data, the best network
can be picked to strike a balance
between modelling real trends
and overtraining on noise in the
data. The second half of the data-
set is used to compare the predic-
tions of this trained network (Fig-
ure 8). Ideally, plots of predicted
versus measured values for both
the training and testing halves of
the dataset should contain equal
degrees of scatter.

Figure 7 Graphical representation of a neural network. Some examples of input
node parameters are also presented.
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Two types of network were trai-
ned on data from 770 welds drawn
from a variety of sources, the first
giving yield stress as an output, the
second ultimate tensile strength
(10). Nineteen input variables
were provided for each of these
welds, fifteen of which were due to
alloying elements, while the re-
maining four were due to the heat
input, interpass temperature and
tempering time and temperature
values if applicable.

A number of different net-
works were trained and tested. In
the case of the yield stress mod-
els, the five best models were
then combined to create a “com-
mittee”. A committee of net-
works is superior to a single one
as, collectively, they should cap-
ture the trends in the data more
effectively. Each network within
the committee was retrained on
the complete dataset to provide
greater accuracy before commit-
tee predictions were made. Simi-
larly, a committee of four models
was used in the predictions of ul-
timate tensile strength.

Investigation of tensile strength
effects
As stated earlier, previous analy-
ses of the weld microstructure
had provided little insight into
the cause of the observed varia-
tions in strength. However, dila-
tometer data in the form of a
CCT curve had shown that typi-
cal MMA measured cooling rates
could fall in a critical region. The
hardenability of the weld metal
caused plotted weld cooling rates

to fall close to the “nose” of the
bainite curve in a region of par-
ticularly high gradient. A calcula-
tion of this kind indicated that
small variations in the weld cool-
ing rate could considerably affect
the transformation temperature.
It was thought likely that such a
variation in the displacive trans-
formation temperatures of the
material would have a large
enough effect significantly to al-
ter mechanical properties. The
majority of the transformation
occurring at a higher tempera-
ture, for example, would lead to a
reduction in yield stress, as the ef-
fects of diffusion on both carbon
mobility and dislocations are tem-
perature dependent.

Compositional variations alone
could not be held responsible for
the large variations in yield
strength reported for this materi-

al. It would seem more plausible
to consider process parameters as
being responsible. This rationale
eventually led to the identifica-
tion of the interpass temperature
as a possible candidate for caus-
ing the strength variations. Large
joints comprise many passes in
order to deposit the required
amount of material. Welds under
construction cool at a rate deter-
mined by their environment, such
as the degree to which the sur-
rounding material acts as a heat
sink and the temperature of those
surroundings. If the interpass
temperature is high, a subse-
quently deposited bead will cool
at a reduced rate which, it was
surmised, may be significantly
lower, depending upon the tem-
perature. The trained neural net-
work as a research tool was now
useful as it provided a means of

Figure 8 The similar appearance of both training and testing data graphs indicates a good balance between predicting trends
and modelling noise.

Figure 9 Predicted and measured yield and ultimate tensile strengths as a
function of interpass temperature.
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testing this theory without having
to perform lengthy experiments
with real welds.

Predictions were made after
choosing a range of interpass
temperatures. The results were so
significant that it was decided to
perform physical experiments in
order to test the predictions. A
series of three welds, using the
high-strength steel electrode,
were produced with carefully
monitored interpass temperatures
of 50°C, 110°C and 250°C. The re-
sults of the predictions and the
tensile tests on the new welds are
presented in Figure 9.

There is a clearly predicted di-
vergence in the yield stress and
UTS of the weld metal as a func-
tion of the interpass temperature,
a divergence of approximately 1
MPa per °C. A second feature of
the predicted curves is the cross-
ing over of yield stress and UTS
predictions below about 90°C.
This is an example of situations in
which caution should be exer-
cised when using neural network
predictions. The network clearly
has no knowledge of the laws that
determine the behaviour of the
system it is modelling and conse-
quently the user must always en-
sure that they make physical 
sense.

In this case, it is to be expected
that the gap between yield stress
and UTS reduces to a few MPa at
interpass temperatures approach-
ing ambient temperatures. The
experimental results clearly show
a divergence in yield stress and
UTS similar to that predicted. In
this case, the yield stress model
appears to be more accurate, as
the UTS values appear to reduce
as a function of interpass temper-
ature, whereas the UTS network
predicts a slight increase as a
function of interpass temperature.
It is the yield stress values that
are of most interest, particularly
as they approach the UTS values
at low interpass temperatures and
fall off rapidly as this tempera-
ture is increased. Conventionally,
it is desirable to have the yield
stress to UTS ratio closer to 0.8
in the interests of producing duc-
tile failure in the event of the
joint being overloaded. This ratio
is only realised at interpass tem-
peratures of above 200°C. These

results provide a probable cause
for the varying properties in weld
metals of these kinds. Historically,
the interpass temperature has of-
ten not been rigidly monitored
and it is clearly imperative with
this weld composition that pre-
cautions are taken.

The results of these experi-
ments have enabled a recommen-
dation to be made detailing the
strict adherence to the specified
interpass temperature.

Conclusions
There are three major conclu-
sions that can be drawn from this
work. By comparing transmission
electron microscopy and diffrac-
tion data with measurements of
transformation temperatures us-
ing dilatometry, it has been pos-
sible to prove that the high-
strength weld cannot be fully
martensitic at the cooling rates
typical of welding. The micro-
structure will instead consist of a
mixture of martensite and bainite,
the latter consisting of bainitic
ferrite separated by carbon-enri-
ched films of retained austenite.
These methods are recommended
in circumstances where it is oth-
erwise difficult to distinguish bai-
nite and martensite (i.e. when the
microstructure is very fine and
the carbon concentration so small
that carbide precipitation is pre-
vented).

The second conclusion is that
difficulties are to be expected
with respect to the mechanical
properties when the bainite and
martensite transformations occur
at temperatures which are not
much above the nominal inter-
pass temperature. This is because
the cooling rate of the weld bet-
ween the bainite and martensite
start temperatures becomes very
sensitive to the interpass temper-
ature. Failure accurately to con-
trol the interpass temperature
leads to large variations in the
microstructure and hence in the
mechanical properties.

Finally, a neural network mod-
el has been shown to be reliable
in predicting the effect of the
interpass temperature on
strength, both in terms of the ab-
solute values and in the relative
variation in the yield and ultimate

tensile strengths. It is particularly
encouraging that the model pre-
dicted that the difference bet-
ween these two measurements of
strength is a function of the inter-
pass temperature.
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