
(two dislocations of the same sign on the same plane) • These
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dislocation pairs are discussed in more detail in chapters 4 and 5. As

shown in figure 3.8, if the two dislocations are of the same type and sense

then, when ~ is reversed, both the images will move in the same direction

and there will be no change in image spacing (fig. 3.8a). However, if the

dislocations are of opposite sign, then the image spacing will change

when ~ is reversed (fig. 3.8b). Simply, then, if the image spacing changes

on reversing ~ then the dislocation pair is usually a dipole. If it does

not change the dislocation pair is a superdislocation. The technique was

first described and used by Bell, Roser and Thomas (1964) to distinguish

between superdislocations and dipoles in austenitic stainless steels, a-

brasses and Cu-Sn solid solutions. There is one discrepancy which must

be considered when looking at a superdislocation which is dissociated into

four partial dislocations as shown in figure 3.9. If this is the case an

apparent change in image spacing will be observed if ~3 is in contrast for

+~ and out of contrast for -~ and ~2 is out of contrast for +~ and in

If ~.b for the partials is integral, then the image characteristics

contrast for -~.

4
and ~.

2The apparent spacing change will only occur when ~.~=±3

for any ±~ pair will be as for undissociated superdislocations.

The ±~ pair provides a method of distinguishing between dipoles,

superdislocations and dissociated superdislocations.

3.3.8 Contrast from stacking faults

The Howie-Whelan equations stated in eqn. $.2 can be applied to

provide a description of the contrast from stacking faults. If a stacking

fault is present in a lattice and inclined to the surface of the foil, then

the introduction of the phase factor a=2TI~.~ creates interference between

the transmitted and diffracted waves. a can have a range of values from

o to 2TI depending on R.

case in 3.3.9.

The specific case of a=TI is discussed as a special
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By way of example consider a stacking fault on a {111} plane of

an FCC material. As shown in 4.2 stacking faults in L12 structures are

different from those in FCC structures but the principle behind their

identification in the TEM is the same. In FCC materials stacking faults

can be formed either by the splitting of an a/2<110> dislocation under a

shear stress to form a fault bounded by two a/6<211> partial dislocations

or by the growth or aggregation of point defects, the fault being bounded

by an a/3<111> edge loop. Two types of fault exis~ the intrinsic stack-

stacking sequence.

ing fault which is equivalent to the removal of a (111) plane giving an

ABCABABC stacking sequence, or the extrinsic stacking fault which is

equivalent to the inclusion of an extra (111) plane giving an ABCABACABC
1 2 4The fault vector, ~, is ~[lllJ and a=O, ±~, ~,

etc. Whelan and Hirsch (1957a,b) studied the contrast arising from these

faults and they have shown that when g.~ is integral the fault is invisible.

When ~.R is non-integral the bright field image will consist of a series

of dark and bright fringes running parallel to the intersection of the

fault with foil surface (fig. 3.10). In bright field both the outer

fringes are either dark or light and the image is symmetric. In dark

field the outer fringes are not the same and the image is asymmetric. The

intrinsic/extrinsic nature of faults can be determined from this contrast

variation. The simplest method has been described by Gevers, Art and

Amelinckx (1963) which uses the asymmetric dark field image. If the origin

of ~ is placed at the fault centre when ~ points away from the light outer

fringe the fault is extrinsic and if it points towards the light outer

fringe it is intrinsic for Class A reflections ({200}, {222} and {440}) and

the reverse is true for Class B reflections ({400}, {111} and {220}) .

An analysis of the fringe contrast from stacking faults cannot

distinguish between those created by shear and those created by point

defect aggregation because a lattice translation vector can be added to the
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Fig. 3.11. Illustration showing the technique used to identify
superlattice stacking faults from the bounding partial
dislocation for superlattice intrinsic stacking faults (a),
and superlattice extrinsic stacking faults (b).



shear displacement, a/6<211>, to produce an a/3<111> fault. If it is
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necessary to distinguish between the fault types the Burgers vectors of

the bounding dislocations must be determined.

Stacking faults lying parallel to the foil surface (e.g. those

on (111) in a [lllJ foil) do not exhibit fringe contrast. However, the

phase change, a=2n~.~, still occurs and contrast will result from the fault

except when ~.~ takes an integral value. The rules for fault nature

determination as outlined above cannot be applied to faults totally

enclosed within the foil. However, if the Burgers vector of the bounding

partial dislocation and its line sense are determined as described in

3.3.5 and 3.3.6 then the fault nature may be determined as follows.

If the stacking fault lies to the left of a bounding a/3<211> screw partial

dislocation it is an intrinsic stacking fault, but if the stacking fault

lies to the right of the same bounding partial it is an extrinsic stacking

fault (fig. 3.11). Further confirmation of the nature of flat faults can

be gained by use of the anomalous contrast from weak beam images of

extrinsic stacking faults. This effect was first noted in silicon by

Cullis and Booker (1972); they reported that extrinsic stacking faults

showed a marked change in contrast when imaged using +~ and -~ beams but

that intrinsic faults showed no such anomaly. Later, Foll, Carter and

Wilkens (1980) showed that the contrast anomaly was much weaker for

~=(111) than other reflections and that there was a slight but weak anomaly

from intrinsic stacking faults. The origins of the contrast anomaly have

since been studied by Self, Shaw and Stobbs (1982) and Cockayne, Pirouz, Liu,

Anstis and Karnthaler (1984) who used a Bloch wave approach. In this

investigation, where possible, the anomaly has been qualitatively applied

to support the results gained by the determination of the Burgers vector

bounding the faults. Only (200) and (220) reflections have been used and

in many cases any contrast change was indistinguishable from changes in dis-

location contrast as the faults, particularly the intrinsic faults, were very

small.
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3.3.9 Contrast from APBs

The contrast from APBs is similar to that described in 3.3.8

but for fundamental reflections in ordered materials the phase factor,

a=2TI~.~, can only take the values 0, 2TI, 4TI, etc. because ~ is a lattice

vector of the disordered lattice. This means that the APB is always

invisible in fundamental reflections. For super lattice reflections a

can take the values 0, TI, 2TI, etc. so fringe contrast will occur from

inclined faults when a=(2n-1)TI. The contrast is due to the

chon~~,h~~ across the APB because of the change in the,
ordering sequence (4.2.2). When w=0 the dark field and bright field images

are sYmmetric about the centre of the foil. When w>O the bright field

image is still sYmmetric, but the dark field image is not. It has proved

impossible to image APBs using the y' superlattice reflections. This is

probably due to the large extinction distance of y'. No values have been

calculated for the y' of the alloys studied in this investigation but

Oblak and Kear (1972) quote extinction distances for Y' superlattice

reflections in Mar-M 200 (table 3.1) .

3.3.10 Stereo pairs

Many of the dislocation configurations created by deformation and

annealing had complex forms. To aid glide plane determination (6.2.2) and

analysis many stereo pairs were taken using tilts of between 12-140
. A two

beam condition was set up and the image recorded. The foil was then tilted

along the Kikutchi lines associated with the chosen reflection until the

necessary tilt had been applied and an equivalent image recorded with the

same diffraction conditions. After printing and marking ~ onto the micro-

graphs they were viewed in a stereoviewer with ~ along the tilt axis. No

quantitative measurements were performed on these images: they were only

used to give a qualitative representation of the dislocation configurations.



3.3.11 Tilting experiments

To determine the habit plane of a screw superdislocation a

tilting experiment can be performed. If a ~ vector parallel to the

dislocation line is chosen the dislocation can be tilted c6J(uA~ or

~~{t~w around this ~ and if the tilt is measured it is possible to

evaluate the superdislocation habit plane from its change in spacing on
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tilting. An experiment of this type was perfdrmed once in this

investigation.
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CHAPTER 4

PLANAR DEFEcrS AND HEXAGONAL DISLOCATION NETWORKS

4.1 Introduction

Dislocation configurations of many diverse types have been pre-

dicted and observed in L12 structures. Many papers have been published

about these interactions, for instance, Flinn (1960) on all L12 structures,

Kear (1974), Staton-Bevan and Rawlings (1975(a) and (b)) and Nicholls and

Rawlings (1977) on y' in Ni-base alloys, Kear and Wilsdorf (1962) on

CU3AU, Takeuchi, Kuramoto, Yamamoto and Taaka (1973) and Suzuki, Ichihara

and Takeuchi (1979) on Ni3Ga and Howe et al. (1974) on zr3AI. According

to Yamaguchi, Vitek and Pope (1981), almost forty different L12 alloys have

been studied in some way. Most of these studies have been brought

together in the most comprehensive review of the deformation and mechanical

properties of L12 related alloys by Pope and EZZ (1984).

These investigations have shown that the deformation of L12
structures can be temperature and strain rate sensitive, can occur on one or

more planes of the same or different types, and that dislocation interaction

can occur between groups of identical or different dislocations. Because

of the immense complexity of the possible deformation mechanisms, this

chapter and chapter 5 are limited to the interactions observed in the y'

of alloys A-G. Where necessary, reference has been made to the work of

others but no attempt has been made to review all the available literature.

The results presented here are those which were considered to be relevant

to the evaluation of the anti-phase boundary (APB) and superlattice stacking

fault energies (SSF) and those which may help in the explanation of the

alloy deformation mechanisms.



44

Three main types of planar defects can be formed in the L12
structure. They are the APB, the complex fault (CF) and the two SSFs.

This chapter describes the planar defects which can occur and discusses

how these are related to the bounding dislocations when the defects are

created by shear. It goes on to report the dislocation configurations

in annealed, and annealed and deformed TEM foils. The major part of the

chapter, 4.5, is devoted to the formation and observation of superlattice

nodes (supernodes) and hexagonal dislocation networks. The creation of

these networks is shown to be important to the evaluation of the

fundamental defect energies.

4.2 Planar Defects in the L12 Structure

4.2.1 The L12 structure

The ordered L12 structure has the chemical formula A3B. Gamma

prime has the L12 structure and for convenience will be referred to as

Ni3AI or Ni3(AI,Ti), although in most commercial superalloys it contains

significant amounts of alloying additions (1.5). It has already been

reported that the y' of alloys A-G has atomic species other than the Ni and

Al within its structure (2.6.2).

Disordered Ni3AI has the FCC structure where the shortest lattice

repeat distance is a/2<110>. On ordering the structure becomes primitive

cubic; the shortest lattice repeat being a<110>. This lattice can be

thought of as four interpenetrating simple cubic lattices, figure 4.1

(Fisher and Marcinkowski, 1961). The lattice has four lattice sites as

shown: 1 at (0,0,0); 2 at (O,~,~); 3 at (~,O,~) and 4 at (~,~,O).

Perfectly ordered Ni3AI is usually said to have site 1 occupied by Al while

2, 3 and 4 are all occupied by Ni. In fact, anyone of the sites may

be occupied by Al as long as the others are occupied by Ni.
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In many cases the APB
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4.2.2 Antiphase boundaries in L12 structures

In L12 APBs can lie on any plane.

energy is not increased significantly by displacements from the glide

plane (Hirth and Lathe, 1982). In fact, in L12 the APB energy may well

be considerably decreased by such a displacement (Flinn, 1960). The

most important APBs for the purposes of this discussion lie on {Ill} and

{001}. Only these will be discussed in detail, although those displaced

from these planes will be mentioned in 4.5.2.

To create an APB an Al atom must be displaced from a corner site

(1) to a face centred site (2, 3 or 4), see figure 4.1. A (111) section

is shown in figure 4.2. In figures 4.1 and 4.2 the vector R (=a/2[lOl])-a

is the displacement necessary to create an APB on the (111) plane. The

vectors a/2[110] and a/2[01!] are exactly equivalent to a/2[101], there-

fore there are three displacement vectors associated with APBs on each of

the {lll}planes. When an APB is created on {Ill} a certain number of

incorrect nearest neighbours are produced (fig. 4.3b). These nearest

neighbour violations will contribute to the fault energy.

As shown in figure 4.4, the R displacement can also be made-a
to create an APB on the (001) plane. In this case there are only two

equivalent displacement vectors on each {001} plane. When an APB is

created on {OOl}ki~V\Q)~~irst order nearest neighbours J,i~bvttl.im

but ~ 'ts i", ~~ second order nearest neighbours (fig. 4.3c) .

Flinn (1960) derived expressions for the APB energy on both

the {Ill} and {001} planes by calculating the increase in energy when

'wrong' first order nearest neighbour bonds were created by an R-a
displacement. He ignored the second order nearest neighbour interactions

and consequently found the {001} APB energy to be zero. This is clearly

not true as second order interactions do contribute to the overall APB

energy; a better expression considering second order interactions is that

presented by Yamaguchi et al. (1981). Despite the difference in com-
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putation, both authors report that the {DOl} APB has a considerably lower

energy than the {lll} APB and consequently should be more stable.

Yamaguchi et al. studied the stability of APBs, on {lll} and {DOl},

superlattice intrinsic stacking faults (SISFs) and complex faults (CFs),

using a central force potential to calculate the y-surface energy.

In this way they have shown that an APB will always have the

lowest fault energy on a {DOl} plane and will therefore always be the most

stable defect. The energy of an APB on a {lll} plane increases as the

degree of ordering increases; thus they showed that in highly ordered

structures the APB energy may be too high for a stable APB to form.

4.2.3 Complex faults in L12 structures

In,the FCC structure an a/6<211> displacement vector on {lll}

produces an intrinsic or an extrinsic stacking fault. However, when

this displacement is applied to L12 (figs. 4.1 and 4.2), a {lll} APB is

produced in addition to a stacking fault. This combination is known as

a complex fault (Marcinkowski, 1963). The vector shown in figure 4.1 is

a/6[211J and in figure 4.2 is a/6[121J. There are twelve equivalent

a/6<211> dispbcements which will produce complex faults. In common with

the FCC lattice, CFs can be either intrinsic or extrinsic. No CF can

exist on {DOl} becauqe it is not,possible for necessary displacements to

be made on these planes.

It is expected that at room temperature the energy of a CF will

be considerably larger than that of an APB. Yamaguchi et al. (1981) state

that y-surface calculations show that, in some instances, CFs may be

stable in weakly ordered materials when they have energies lower than the

APB energy.

4.2.4 Superlattice stacking faults in L12 structures

As the shortest lattice repeat in L12 is twice that in FCC it is
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logical to assume that the displacement required to produce a fault

equivalent to an FCC stacking fault should be doubled. This is found to

be true and a displacement of a/3[211] (fig. 4.2) produces an SSF. In

common with the CF there are twelve equivalent a/3<211>s which will pro-

duce SSFs. The same fault can also be created by an a/3<111> climb

displacement. The concept of the SSF was first suggested by Carnahan,

Cullen, Oemel, McIlwain, Marcinkowski, Munford, Pahlman, Prevender and

Warner (1967) who showed that the fault could have intrinsic or extrinsic

character and when created the first and second nearest neighbours are

unchanged.

It is worth noting that if the stacking sequence of ordered Ni3Al

is assumed to be ABCABCABC, then the stacking sequence of a super lattice

intrinsic stacking fault (SISF) is ABCABABABC, which is equivalent to four

layers of the 0019 structure or 0024 structure. The stacking sequence

of a superlattice extrinsic stacking fault (SESF) is ABCABACABACABC which

is equivalent to seven layers of the 0024 structure (Kear et al., 1968 and

Kear et al., 1970).

Yamaguchi et al. (1981) found SISFs to be stable irrespective of

ordering energy. They did not study the SESF but the results are expected

to be the same. It is thought that under certain conditions the SSF

energy and APB energy will be similar, and that they will compete for

existence. This competition is likely to have a significant effect on

the mechanical behaviour of the alloys. The effects of this type of

interaction are discussed in detail in chapters 6 and 7.

In their papers, Yamaguchi and co-workers (Yamaguchi et al.,

1981 and Yamaguchi, Paidar, Pope and Vitek, 1982) state that their

computer modelling techniques predict that the displacement vectors of

the faults described may deviate slightly from the exact values. No

attempt was made to measure the exact displacement vectors. It was felt

that any deviation would be so small that it could be assumed to be negligible.
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4.3 Shear Dislocations in the L12 Structure

4.3.1 Nomenclature

In Fee structures a/2<110> dislocations are known as perfect

dislocations because the passage of one leaves perfect crystal behind and

has no effect on the crystal stacking. a/6<211> dislocations are known

as partial dislocations because their passage changes the crystal stacking

sequence.

In L12 an a<110> dislocation is a perfect dislocation. An

a/ <110> dislocation has no effect on the crystal stacking sequence but2
does change the chemical bonding. a/3<211> and a/6<211> dislocations do

change the crystal stacking and are partial dislocations. In this thesis

a total Burgers vector of a<110> will be referred to as a superdislocation,

usually consisting of a pair of a/2<110> dislocations which will simply be

referred to as a/2<110> dislocations, while a/3<211> and a/6<211> will be

referred to as partial dislocations.

4.3.2 Antiphase boundary dislocations

Koehler and Seitz (1947) were the first to suggest that the shear

deformation of ordered material may take place by a pair of perfect dis-

locations from disordered material. Bakish and Robertson (1956) suggested

that for (111) deformation an aC110] superdislocation would split to form

two equivalent a/2[110] dislocations. The first dislocation through the

material destroys the order to create an APB and the second identical

dislocation travelling in the same direction on the same crystallographic

plane restores it (fig. 4.5a). The region between the two dislocations

contains APB and its width will be controlled by a balance between the APB

energy pulling the dislocations together and the repulsion between the

dislocations pushing them apart. By measuring the dislocation spacing it

is possible to compute the APB energy (6.2.1).

Pairs of dislocations forming {111} superdislocations were first
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observed in the TEM by Marcinkowski, Brown and Fisher (1961). They

suggested that if the CF energy was small the a/2<110> dislocations may

each dissociate into two a/6<211> partial dislocations forming a CF on

either side of the APB (fig. 4.5b). Figure 4.5(c) shows the displacement

in terms of Burgers vectors on a (111) section. The dissociation hinders

cross-slip between {lll} planes and from high APB energy {lll} planes,

where the superdislocations are glissile, to the low APB energy {OOl}

planes, where the superdislocations are less mobile. This is because the

a/6<211> partials are unique to one plane and must be constricted to

a/2<110> before cross-slip can occur - as shown for {111} cross-slip in

figure 4.6 and for {111} to {OOl} cross-slip in figure 4.7. Once on

{OOl} the superdislocation is relatively immobile because the non-close-

packed plane will have a high Pierls stress and because any dissociation

of the dislocation will occur on" {111} (fig. 4.7c). If enough energy and

stress are available to constrict the dislocatio~glide on {OOl} may occur

(Yamaguchi et al., 1982, and Paidar, Pope and Vitek, 1984). Otherwise the

dislocations can only move by climb, or cross-slip back onto {111} (figure

4.7d) .

At high temperatures the probability of cross-slip onto {OOl} is

increased. The resulting difficulty of motion once cross-slip has taken

place forms the basis of the Kear-Wilsdorf (1962) strengthening mechanism.

Slip by a/2<110> dislocation pairs on {OOl} has been seen to occur at high

temperatures when the dislocations are constricted - see, for instance,

Copley and Kear (1967), Takeuchi and Kuramoto (1973), and Staton-Bevan and

Rawlings (1975a).

However complex the dislocation dissociation bounding an APB,

the total Burgers vector between the APB and perfect crystal will always

be a/2<110>. Figure 4.5(c) shows the displacements necessary to form an

APB on (111).
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4.3.3 Superlattice stacking fault dislocations

In addition to splitting into two a/2<110> dislocations an

a<110> superdislocation can be split into two a/3<211> partial dislocations

(fig. 4.8a). The fault shown has intrinsic character. The leading

a/3<211> {111} partial dislocation gliding through the y' will create an

SSF. The trailing a/3<211> will destroy the SSF and restore perfect

order. As with the APB, measurement of the partial dislocation spacing

should allow calculation of the SSF energy. However, all the reported

observations of SSF ribbons (Kear, 1974; Howe et al., 1974; and Suzuki

et al., 1979) have either shown faults which passed through more than one

y' particle or were metastable due to interaction with the foil surface.

Spacing measurements made from SSFs in these conditions cannot be used to

calculate fault energies.

Under certain conditions, it has been shown by Kear et al. (1968)

and by Kear et al. (1970) that the a/3<211> partials can dissociate into

six a/6<211> partials.

a[11 0] + eqn. 4.1a

a[110]

eqn. 4.1b

The dissociation is shown for a SISF in figures 4.8(b). It can

be seen that the first a/6<211> partial of the leading dislocation creates

an extrinsic CF, the second creates an APB and the third creates the SISF.

The trailing dislocations reverse the process. It is expected that the

widths of the defects are an inverse function of their energies., In most

practical situations when the APB and CF energies are high relative to the SSF

energy, the bounding dislocation will exhibit the TEM contrast expected from an

a/3<211> partial dislocation because the separation of the a/6<211>

partials will be of the same order as the dislocation image width.

However complex the dislocation structure, the total Burgers
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ducing an SISF and the equivalent a/6<211> partial dislocations (~
to £E) is also shown (c). The symbols have !h~ same mean~ngs as
figure_4.2. The ~u~gers vecto~s are ~1=a/3fl~lJ, ~=a/31211J, EJ=
a/6[!!2J, ~4=a/6[121J, £S=a/6[211J, ~=a/6[121J, ~7=a/6[211J and ~=
a/6[112J. -



vector between the APB and the perfect crystal will be a/3<211>, the

Burgers vector between APB and SSF will always be a/6<211>, and the

Burgers vector between CF and SSF can be a/2<110> or a/6<211>.

The dislocation configuration required to create an SESF has

been constructed in the same way as the SISF and is shown in figure 4.9.

In this configuration, if an SE SF is to form, the cores of the bounding

dislocations must stretch over more than one atomic plane if the lattice

displacement is to be accommodated.

4.3.4 Complex fault dislocations

It is thought that because of the high energy of the CF they do

not occur unless associated with APBs or SSFs (4.3.2 and 4.3.3) . No
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observations of independant CFs have been reported. When observed in

association with other defects, the Burgers vector between the CF and

perfect crystal will be a/ <211>.6 A Burgers vector of a/ <110> has also2
been observed between two CFs (see 4.5.3) .

4.4 Dislocation Structures in L12 Prior to Annealing

4.4.1 Dislocation structure in undeformed crystals

After homogenisation and growth, very few dislocations were

observed in the y' when foils were examined in the TEM. A typical micro-

structure is shown in figure 4.10. In many areas no dislocations were

observed under any imaging condition.

The dislocations which were present tended to form boundaries of

the type shown in figure 4.11. These boundaries were very uncommon.

Because the microstructure contained very few dislocations, there are

correspondingly few nucleation sites for carbide precipitation. It was

found that strings of small FCC MC carbides form along these dislocation

tangles with a cube/cube orientation relationship with the matrix (figure

4.12); the carbide lattice parameter is approximately three times greater
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Fig. 4.9. Dissociation of an a[110J superdislocation on (111) into
a/3<211> partial dislocations (!::1and !::2)bounding an SESF (a).
The a/3<2r1> partial dislocations may each dissociate into three
a/3<211> Shockley partial dislocations (!::3to ~) producing the
faults shown in (b). A plan view on (111) showing the super-
dislocation displacement by two a/3<211> partial dislocations (!::1
and El) producing an SESF and the equivalent a/6<211> partial
dislocations (b3 to BS) is also shown (c). The symbols have the
same meanings as figure 4.2 and the Burgers vectors are the same
as figure 4.S.
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Fig. 4.10. Bright field TEM micrograph showing y/y' microstructure
after homogenisation for 36 hrs at 1570K followed by 16 hrs at
1390K (foil normal: ~[001J).

200

(a) (b) O·Sum·
Fig. 4.11. Bright field (a) and'

of dislocation tangles showing
planar Ni3Ti (B) bounded by an
(foil normal: ~[001J).

weak beam (b) TEM micrograph
globular MC precipitation (A) and
a/3<111> dislocation (C).



Fig. 4.12. Diffraction pattern taken from carbides, on a boundary
similar to that shown in figure 4.11, showing fundamental (f),
superlattice (s) and carbide (c) reciprocal lattice points.
(foil normal: ~[111 J) .



than the Y matrix. MC carbides are rich in Ta, Ti and W (see 2.6.2) .
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The large planar defects visible in figure 4.11 were observed

to be linked to boundaries containing carbides. These defects, which

exhibit stacking fault contrast, were bounded by a/3<111> Frank partial

dislocations (Rae, 1984) demonstrating that they could not have been

formed by shear. The defects could either be stacking faults, formed

by agglomeration of point defects or interstitials, or thin planar pre-

cipitates. They were observed to pass through y and y' without any

change at the interphase boundaries. It is the opinion of Rae and the

author that these large planar defects are planar precipitates of Ni3Ti,

similar to those observed in Udimet 700 by Kear et al. (1970), which are

growing out into the bulk material from the precipitate loaded boundaries.

Further work to confirm this opinion is being undertaken by Rae.

4.4.2 Dislocation structure in deformed crystals

Room temperature deformation considerably increased the dis-

location density (fig. 4.13). The majority of the dislocations generated

were in the y matrix between the y' particles. This is at least in part

due to the difficulty encountered by a/2<110? dislocations trying to

enter the y' at low temperatures. To enter the y' dislocatias must 'pair-

up' to form superdislocations of two a/2<110> dislocations of the same

type on the same plane. At 293K it is highly unlikely that sufficient

cross-slip can occur in the y to produce superdislocations. The few

superdislocations observed in the y' must have formed by the 'pairing-up'

of like dislocations which were lying adjacent on the same plane.

Cold deformation produced inhomogeneous deformation in the form

of slip bands on {111} as shown in figure 4.14. This figures shows that

most of the deformation took place by dislocations looping around the y'.

Some superdislocations, however, were forced through the y'. At the

intersection of the slip bands, superdislocations on different planes were



0·5 JJrn
Fig. 4.13. Bright field TEM micrograph showing dislocations generated

by cold deformation. Most of the dislocations lie in the y matrix
although some are visible in the y'. (foil normal: ~[OOlJ).

Fig. 4.14.
bands.

Bright field TEM micrograph showing intersecting slip
(foil normal: ~[OOlJ).



seen to interact. In the annealed condition these superdislocations
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adopted the supernode configurations described later in this chapter.

Little work was carried out to characterise the dislocation

interactions in the low temperature deformed structures. But they were

carefully examined as it was vital to make certain that the dislocation

structures observed in the annealed structures were not residual inter-

actions left from the cold deformed microscructures.

4.5 Hexagonal Dislocation Networks in Deformed and Annealed Crystals

4.5.1 Theoretical arrangement

As discussed more fully in 5.2.1, during annealing a/2<110>

dislocations in the y matrix climb to form pairs of a/2<110> dislocations

on the same plane. These superdislocations glide into the y' and can inter-

act with other superdislocations. This section describes the formation of

the interaction which is most important in the evaluation of APB and SSF

energies. As part of the annealing process, the superdislocations gliding

through the y' will aim to adopt the lowest energy configuration possible.

In disordered materials the configuration adopted is often a hexagonal

network on a {111} plane (Whelan, 1959).

Whelan stated that when two dislocations of different Burgers

vector AB and A'B' (figure 4.15a) intersect on the same or different planes,

there will be an elastic interaction between the segments of dislocation

line at the point of intersection (Read, 1953 and Amelinckx, 1956). The

interaction will depend upon the Burgers vectors of the dislocations

involved but, in general, if there is an attraction, the dislocations may

when the angle between the dislocation Burgers vectors is 1200

combine to
f'O~lb[,v

wiliA octur

form a third dislocation A"B" (figure 4.15b). The interaction

and if the attraction reduces the total strain energy of the system.

In the rest of this chapter Whelan's ideas for interaction between

single dislocations in FCC are extended to account for similar interactions



B'

B'

(a) (b)

Fig. 4.15. Schematic diagram showing the interaction of two
dislocations AB and A'B' to produce a third A"B".
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For simplicity it will be assumed that the dislocations have

pure screw sharacter. In describing the interactions,Thompson's notation

(Thompson,1951and fig. 4.16) will be used in addition to the normal

notation. This will help the reader to appreciate which planes the

various dislocations inhabit, particularly when the more complex case is

considered.

Two cases are considered. First, when both superdislocations

lie in (111),0. The dislocation reaction will be:

aC011] + aCI01] a[110] eqn 4.2a

2AC +2CB 2AB

Secondly, when aC011] lies in (111),8 and a[IOl] lies in (111) ,a.

This reaction produces a[110] which lies in either (111),0 or (lll),Y

Both interactions will produce the configuration shown in figure

4.17 if it is assumed that each superdislocation is split into two a/2<110>

dislocations.

4.5.2 Observations of the dislocation interaction

The dislocation interactions at the nodal points are complex and

cannot be described adequately without dissociating the a/2<110> dislocations

into their component a/6<211> partials. These reactions are described in

4.5.3 and 4.5.4. However, using the TEM techniques described in this thesis,

no dissociation of the a/2<110> dislocations was observed in the regions

away from the nodal points.

Interactions similar to that shown in figure 4.18 were frequently

observed in the y' of the deformed and annealed foils. Table 4.1 shows some

of the ~.£values for the a/2<110> dislocations shown in figure 4.18. The

dislocations were identified as a/2[OI1] and a/2[110] which have inter-

acted to produce a/2[101], although some residual contrast is visible from

a/2[110] in figure 4.18(b). They have adopted a roughly screw orientation
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(0.)

B

o

(b)

Fig. 4.16. A Thompson tetrahedron from above (a) and in planar
projection (b). In (b) the arrow heads indicate the sense
of the vectors.

-3

1= 0[011]
2

2=a[1011
2

3=a[110]
2

Fig.4.17. Schematic diagram showing the interaction between a super-
dislocation of two a/2[011J dislocations and a superdislocation
of two a/2[101J dislocations to produce a/2[110J.
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(b)

100 nm
(c)

Fig. 4.18. Weak beam dark field TEM micrographs taken in conditions
between W(9..,29..)and W(9..,49..)showing a typical superdislocation
interaction in the y'. The dislocations were identified using
table 4.1 and are shown in (d). Some residual contrast is
visible from a/2[110] in (b). (foil normal: ~[111]).

(Figure continued overleaf)
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1=g.[011]
2

2=a[110]
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3=gJ101]
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(d)

Fig. 4.18. For caption see previous page.



Table 4.1. ~.£values for the a/2<110> dislocations shown in figure 4.18

Micrograph Diffraction vector Burgers vector (b)
(~) ±a/2[01IJ ±a/2[lIoJ ±a!2[lOIJ

(a) 131 ±2 +2 [oJ
(b) 113 ±2 [oJ ±2
(c) 311 [0 J ±2 ±2

Table 4.2. g.b values for the a/2<110> dislocations shown in figure 4.22

Micrograph Diffraction vector Burgers vector (b)(W
±a!2[lOIJ ±a!2[lIOJ ±a!2[OlIJ

(a) 111 [OJ ±1 +1
(b) 111 ±1 [OJ ±1
(c) 111 +1 +1 [OJ
(d) 220 ±1 ±2 +1
(e) 202 ±2 ±1 ±1

[ J - invisible
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but close to the nodal regions the superdislocations have been distorted

and no longer lie in their original glide planes. This non-planarity is

related to the dislocation structure at the nodal points (see 4.5.3).

Planar hexagonal networks were also observed, such as the one

shown in figure 4.25. This network lies on (111) in a [OOlJ foil. The

network is therefore tilted through the foil.

is discussed in more detail later (4.5.3).

The dislocation structure

In many cases the networks adopted a hexagonal equilibrium
oconfiguration of screw superdislocations at 120 . Many APB energies have

As in 4.5.2,

been determined by measuring the equilibrium spacing (6.3.3).

4.5.3 Dislocation interactions at the nodal points

In order to interpret the nodal reactions effectivly it has proved

necessary to split each of the a/2<110> dislocations forming the superdis-

location into two component a/6<211> partial dislocations.

the a/2<110> dislocations considered are all pure screw and the Burgers

vector of these dislocations will always be taken in the same direction as

the dislocation line sense.

First, the interaction between an a/2[011J pair and an a/2[101J

pair at 1200 on (111) will be considered.

will be dissociated as follows:

Each of the a/2<110> dislocations

a/ }011J a/6[112J + a/6[121J

AC OC + AO

and

a/ }10iJ a/6[211J + a/6[112J

CB OB + CO

eqn. 4.3a

eqn. 4.3b

eqn. 4.4a

eqn. 4.4b

If these dislocations were to interact on (111) the initial con-

figuration would be that shown in 4.19(a). The a/6<211> partial dis-

locations crossing at points A, B, C and D would be the same and these will



(bl

Fig. 4.19. Schematic illustration of the proposed interaction between
two superdislocations on (111) showing the initial position (a),
the configuration after parting at A, B, C, D (b), the configuration
after limited glide (c), and the final configuration (d). See
text for details. Each a/2<110> dislocation has been split into
two a/6<211> Shockley partial dislocations. The Burgers vectors
are shown in the triangle to the right of figure (a).

(Figure continued overleaf)
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Fig. 4.19. For caption see previous page.
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interact (when they are coplanar) to produce the configuration shown in

figure 4. 19 (b) . When the two interacting superdislocations glide away,

lengths of partial dislocation will be drawn out between them to form two

three-fold nodes (fig. 4.19c). If it is assumed that the CF energy is

higher than the APB energy, the network will try to lower its energy by

expanding the new APB region marked F. Partials 4 and 5 will be strongly

attracted to form a/2[l10J, thus reducing the total CF area. Partials at the

nodal points are also likely to be attracted to one another, also to lower

their energy by adopting the screw orientation. The dislocations at the

nodal points will balance their energies so that when resolved they equal

zero. This balance may produce three equal sized metastable regions of

CF at some nodes.

figure 4.19 (d) .

The predicted equilibrium configuration is shown in

When two superdislocations, on different glide planes, with

Burgers vectors which intersect at 1200 interact, the dislocation inter-

action will be considerably more complex. Dislocation cross-slip must

occur if a network is to form. a/2<110> dislocations can cross-slip between

{111} planes but if there is any dissociation into a/6<211> partial disloc-

ations, this must be constricted before cross-slip can occur as a/6<211>

dislocations only have one glide plane (fig. 4.7).

Consider the same two superdislocations as previously but in this

case the a/2[011J pair lies in (111),8 and the a/2[101J pair lies in

(111) , a; the a/2 [110 J dislocation pair produced can lie on (111), 0 or

(111),y. It will be assumed to lie on (111),0.

The dislocation dissociations are:

a/2[011J a/ 6[ 121J + a/6[112J eqn. 4.5a

AC = 8C + A8 eqn. 4.5b

a/ CloiJ a/6[112J + a/6[2I1J eqn. 4.6a
2

CB aB + Ca eqn. 4.6b
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and

eqn. 4.7a

BA oA Bo eqn. 4.7b

The expected interaction is shown in figure 4.20. It will be assumed that

the interaction and the dislocations produced by the interaction will lie

on (111),0. However, it is possible that the nodal interaction may lie on

a different plane from the new APB which will be produced. No energy

calculations have been performed to evaluate which plane would be

energetically most favourable. It is thought that this will be related to

the stress direction which was not controlled carefully enough for an

accurate determination to be made.

Figure 4.20(a) shows the first stage of the interaction. The

leading AC and CB dislocations intersect. The two partials 8C and Ca

combine and cross-slip onto 0 forming a very short 8a stair-rod dislocation

at the point of intersection while A8 and aB combine and cross-slip onto

o to form BA. The applied stress and the line tensions of 8C/Ca and

A8/aB will pull BA out along 0 until the trailing CA and CB dislocations

interact. Further cross-slip will produce the dislocation configuration

shown in figure 4.20(b). The reduction of total strain energy will force

this configuration to extend on o. A plan view of the equilibrium

structure, which is similar to figure 4.19(d), is shown in figure 4.20(d).

In this configuration the interacting superdislocations are twisted away

from their original glide planes to meet (111) ,0. If enough energy is

available the APBs and their bounding dislocations will cross-slip to

form a planar network on (111) ,0. The equilibrium structure for a fully

cross-slipped network will be the same as that shown in figure 4.21.

Two types of nodes are evident at the junctions (figs. 4.19,

4 .20 and 4. 21) . In this configuration both are constricted. In certain

conditions they may expand to form the extended nodes discussed in 4.5.5.
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1=~[011]= AC
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2=m101]=CB
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3=gfi12]=a.B
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4=a[211]=Ca.
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5=~[121]=~C
6

6=Sl [11L]=A ~
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7=~[121]= BA
6

8=Sl[211]=BB
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Fig. 4.20. Schematic illustration of the proposed interaction between
two superdislocations on different {Ill} planes showing the
initial position (a), a projection of the interaction at an inter-
mediate point showing that the superdislocations are twisted
from their glide planes (b), a plan of stage (b), (c), and a plan
of the final configuration (d). See text for deta~ls.

(Figure continued overleaf)
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Fig. 4.20. For caption see previous page.
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Fig. 4.21. The equiliprium configuration of a superdislocation
network in a L12 structure (predicted by Amelinckx, 1979).
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If these interactions to form networks are to occur in practice,

a considerable amount of energy will be required. It is likely that the

necessary interactions will only occur by the relief of strain energy

held in highly deformed structures when they are annealed at a temperature

which provides sufficient energy to promote cross-slip by the constriction

of dissociated dislocations. This will initially produce a network which

resides on two, three, or even four {111} planes. Figure 4.20(d) shows

a/2[OlI](I11) and a/2[Io1](lI1) interacting to produce a/2[lIO] on (111).

The nodal reaction has been assumed to be on (111).

4.5.4 Observations of nodal reactions

Many interactions similar to those described above were observed

in deformed and annealed microstructures of alloys A, D and G. Figure

4.22 is part of a ~.~ series of TEM micrographs recorded from an

interaction equivalent to that shown in figure 4.20(b). Table 4.2

lists the ~.b values for the a/2<110> dislocations in this configuration.

It was found that figure 4.22 showed an interaction between an a[101]

superdislocation gliding on (111) and an a[lIO] superdislocation gliding

on (111). The interaction produced two segments of a/2[OlI] which could

lie in either (111) or (111) depending upon the glide plane of the partial

dislocations forming the a/2[OlI] dislocation. The central dislocation

configuration was too fine to be resolved using bright field TEM but if

each of the constituent a/2<110> dislocations is assumed to be dissociated

onto (111) the dislocation would be that shown in figure 4.22(f). No

dissociation of any of the a/2<110> dislocations was observed. As pre-

dicted in 4.4.3, the APBs were twisted from their initial glide planes

by the interaction on (111).

If the interactions were subsequently to follow the scheme

proposed in 4.4.3, a structure similar to that shown in 4.20(d) would be

formed. Figure 4.23 shows that the reaction did occur. This figure
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Fig. 4.22. For figure caption, see overleaf.
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Fig. 4.22. Part of a bright field ~.~ analysis showing an early stage
(fig. 4.20b and c) of the interaction between two a<110> super-
dislocations on two {111} planes. In the schematic diagram of
the interaction (f), it has been assumed that the dislocation
dissociation is on (111). The g.b values of the a/2<110> dis-
locations are given in table 4.2~ - (foil normal: ~[lllJ).
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Fig. 4.23. For figure caption, see overli~k.



1=gJ10 1]
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2=0[110]
2

3=0[011]
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5=0[121]
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6=0(112]
6

A,S &C-Intrinsic
Complex
Faults.

(111)
11

(11'1)

Fig. 4.23. Weak beam dark field TEM micrographs taken in conditions
between W(~,2~) and W(~,4~) showing dislocation configuration,
shown in figure 4.20(d), formed after interaction between two
a<110> superdislocations on different {111} planes. The ~.~
values for the dislocations in the configuration are given in
table 4.3. A schematic representation of the configuration is
shown in (t) assuming that the nodal regions both lie on (111)
(foil normal: ~[lllJ).
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shows a full weak beam ~.~ analysis of the interaction; the ~.~ values

for the identified dislocations are tabulated in Table 4.3 In this case

the interaction occurred between an a[110] superdislocation on (111) and

an a[011] on (111). The superdislocation produced by the interaction

was a[101] on (111). The partial dislocation structure at the nodal

points, which is shown in figure 4.23(1) was essentially the same as that

described in 4.4.3 and shown in figure 4.19(d). The dislocation

analysis can be confirmed by referring to table 4.3. It was not possible

to determine the identity of all of the dislocations due to the fine

structure of the interactions and the possible effect of the complex faults

A, B and C on the images of the dislocations between them. However, the

a/2<110> dislocations forming the superdislocations and the top node

were identified unambiguously as were the a/6<211> partial dislocations

between the complex faults and the unfaulted crystal. The identities of

the remaining dislocations were deduced from the known dislocations and the

image contrast was compared with that predicted in table 4.3. In this way

it was possible to identify all the dislocations of the network shown in

figure 4.23.

From the dislocation analysis it was concluded that faults A, B

and C were intrinsic complex faults. These faults have the highest energy

of any of the planar defects possible in L12 and should consequently be

unstable with respect to the SSFs and APB. It is thought that the CFs are

metastable because the desire of the dislocations to minimise their own

energy by adopting a screw orientation and to balance the forces at the

three-way supernode is greater than the driving force to anihilate the CFs.

Consequently, the configuration shown in figure 4.23 could lower its

energy further if the complex faults were anihilated and replaced by a

lower energy fault. Many of the nodes observed appeared to form extended

nodes with no internal structure and these are discussed below.



Table 4.3. ~ ~ values for the dislocations shown in figure 4.23

Micro- Diffract- Burgers vector ~)
graph ion

vector a/2[ 101J a/}llOJ a/2[011J a/6[211J a/6[112J a/6[121J
(g)

(1) (2) (3) (4) ( 5) (6)

(a) 202 -2 +1 +1 -1 2* [oJ3

(b) 022 +1 +1 -2 [oJ +1 [ -rl-,3...1

(c) 131 [oJ +2 -2 2* 2* 4*
3 ~ ~

(d) 131 [oJ -2 +2 2* 2* 4*
~ 3 3

(e) 113 +2 [oJ -2 2* 4* 2*
"') ~ "')

[oJ 4* 1 2*(f) 311 +2 -2 ~ [--J 33

[oJ 4* 1 2*(g) 311 -2 +2 3 ["')J "')

(h) 111 +1 [oJ -1 [+tJ 2* [ 1J"') ~

[oJ [ .J:.l 2* 1(i) 111 -1 +1 3 [--Jr 3

[oJ [+tJ 1 2*
(j) 111 -1 +1 [--J3 3

(k) 111 [oJ +1 -1 [_lJ [ 1J 2*
3 ~ ~

[ J - Invisible * - See below

* 9:..~ Fault to right Fault to left
of dislocation of dislocation

~ I V

2
3

V I

4
~ V I

4 I
3

V
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4.5.5 Extended nodes in superdislocation networks

The occurrence of extended intrinsic and extrinsic nodes in

disordered materials has frequently been reported; see, for instance,

Aerts, Delavignette, Siems and Amelinckx (1962) in Si, Loretto (1964) in

Au-Sn and Gallagher (1966) in Ag-In. In contrast, the occurrence of

extended intrinsic and extrinsic nodes in L12 has only been reported twice

other than in this investigation. The first observations were made by

Howe et al. (1974) in deformed and annealed Zr3Al; their results are

compared to those gained from this investigation in 4.6. More recently,

Baker, Viens and Schulson (1984) commented on their existence.

Extended nodes were frequently observed in alloys A, D and G.

Figures 4.24 and 4.25 are two examples which will be discussed. Figure

4.24 shows a single node, while figure 4.25 shows a planar network on

(111) containing a number of extended nodes.

A weak beam ~.~ study was undertaken on one defect; selected

micrographs are shown in figure 4.24. The three superdislocations enter-

ing the node were identified as pairs of a/2<110> dislocations. These

were all pure screw and were on (111) at the centre of the node. As

previously discussed, they were displaced from their original glide plane

to form the node. The contrast from the central fault was consistent

with a stacking fault displacement of ±a/3[111J; the fault was visible in

all diffraction conditions other than ~(220) . No fault fringes were

observed because the fault is almost parallel to the foil surface. The

fault must be bounded by six partial dislocations. Segments 1, 3 and 5

(fig. 4.24) were not characterised as any contrast resulting from them

became confused with that from the fault. Segments 2, 4 and 6 were

identified. They could be ±a/ [lllJ, a/ <211> or a/ <211>.
3 6 3

The Frank

partial was quickly eliminated as it would be invisible in all conditions

except ~=(200) . This was clearly not the case as the dislocations under

consideration were clearly seen in other conditions. If the dislocations
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Fig. 4.24. Examples of weak beam
dark field TEM micrographs taken
in W(.2..,2.S.2..) conditions showing
the dislocations and fault·con-
trast at an extended node. The
dislocation configuration
identified by ~.~ analysis is
shown in (d).
(foil normal: ~[lllJ).
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Fig. 4.25. Part of a weak beam dark field TEM ~.~ analysis, using
W(g,2.5g)' showing a planar superdislocation network on (111) with extended
noaes a~ the nodal points. The dislocations identified are shown in (d).
The SESFs are larger than the SISFs. Note the change in contrast from
the SESFs in (020)3g±~ conditions (b and c) may be due to anomalous
contrast from SESFs-(see 3.3.8 for details). (foil normal: ~[OOlJ).
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were a/6<211>, as in the configuration shown in figure 4.23, the defect

would be a CF; if the dislocations were a/3<211> the defect would be a

SSF.

The analysed dislocation configuration is shown in figure 4.24(d) .

Segments 1, 3 and 5 were deduced from the known dislocations to be a/6<211>

partial dislocations. The dislocation line sense was determined using a

±g pair and dislocation 2 was used to determine the fault type. In this

case the fault was found to be a superlattice extrinsic stacking fault.

Figure 4.25 shows a network consisting of two different sizes of

superdislocation nodes. Dislocation analysis similar to that described

above was carried out on the network. It showed that the larger nodes were

SESF while the smaller nodes were SISF (fig. 4.25d). This analysis was

supported by the contrast change observed in weak beam conditions at the

larger nodes on reversing~. This observation was only used to confirm the

dislocation analysis as the contrast from the smaller nodes cannot easily

be observed (3.3.8). The network consisted of alternating intrinsic and

extrinsic nodes joined by screw superdislocations (fig. 4.25d).

Extended nodes form from the metastable structure previously

proposed and observed (figs. 4.19d and 4.20) in the following way. It can

be seen that the central points of the nodes in 4.19(c) contain a small

area of extrinsic or intrinsic SSF. Once the activation energy for SSF

growth has been overcome, it is proposed that this region will extend on

(111) forcing the a/6<211> partial dislocations apart until it eventually

adopts the structure shown in figure 4.26(a). The three a/6<211> partial

dislocations bounding the faults would be so close together that their

spacing is of the order of the image width and in the TEM they will behave

as a a/3<211> partial dislocation. The resultant structure would adopt

the low energy screw configuration (fig. 4.26b). The driving force for

this reaction will be, at least in part, due to the reduction in the area
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Fig. 4.26. Schematic illustration of the dislocation structure at an
extended intrinsic node and an extended extrinsic node on (111). The
structure is shown in terms of a/6<211> partial dislocations (a) and
with the a/6<211> partials summed to produce the configuration
observed in the TEM (b).
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of high energy CF, but it is also likely to be accelerated by the presence of

alloying elements, in this investigation Ti, which will segregate to the

SSFs, particularly the SESF.

6.3.4.

This effect is discussed in detail in

4.6 Conclusions and Comparison of the Networks with those Observed by

Other Workers

By following a similar approach to that adopted for interactions

between a/2<110> dislocations in austenitic stainless steels (Whelan,

1959), the hexagonal dislocation supernodes and networks described

theoretically and observed experimentally in the y' of single crystal

superalloys have been explained. They were formed by interactions between

two a<110> superdislocations, consisting of two a/2<110> dislocations on

the same or different {111} planes bounding an APB and enclosing an

angle of 1200 between their Burgess vectors, to produce a third a<110>

superdislocation. Each of the a/2<110> dislocations was assumed to have

the capacity to dissociate into two a/6<211> partial dislocations on the

{111} habit plane. This scheme of dislocation interactions was shown to

produce networks of superdislocations with supernodes a~ the junction

points. With the nodal reactions in the metastable state (fig. 4.19d),

the networks were found to be equivalent to those predicted by Amelinckx

(1979) (fig. 4.21). In this state the nodal points support large CFs so

that the dislocations can adopt a lower energy pure screw orientation and

balance the forces between the dislocations at the supernodes. In his

This investigation rectifies

paper of 1979 Amelinckx states that up to that time no observations of

hexagonal networks in L12 have been reported.

this situation.

In the configuration shown in figure 4.23 an activation barrier

exists which suppresses the nucleation and growth of a more stable SSF at

the nodal points. It has been shown that once the activation barrier is
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exceeded, SSFs consume the nodal area to create the stable lowest energy

nodal structure of alternating intrinsic and extrinsic SSFs linked by

superdislocations. By measuring the superdislocation spacing and the

size of the supernodes, it was possible to evaluate the APB energy and

the SSF energies from one network. This process is described in 6.3.

No other suitable method for the evaluation of SSF energy has been

developed before this investigation. It was observed that the nodal

SESFs were considerably larger than the nodal SISFs. It is thought that

this may be a function of the concentration of certain alloying elements,

as discussed in 6.3.4.

Howe et al. (1974) published a paper which reported the observation

of hexagonal networks in the L12 compound, zr3AI. Amelinckx (1979) was

clearly not aware of this paper when he wrote his article as no reference was

made to it. In the paper, Howe et al. appear to misinterpret the evidence

in their micrographs. They correctly state that the L12 lattice repeat

is a<110> and that this can be dissociated to form two a/2<110> dislocations

bounding an APB (4.3.2) or to form two a/3<211> dislocations bounding an

SSF (4.3.3). But they incorrectly assume that only one of these dissociation

mechanisms can occur at any time so that any dislocations which dissociate

can do so by only one method. They assume that dissociation of a<110> into

two a/3<211> partial dislocations occurs and interaction between these pairs

produces the network shown in figure 4.27. This allows no segments of

a/2<110> dislocation pairs between the alternating SESFSand SISFS. It is

clear from figure 10 (Howe et al., 1974) that the extended faults are linked

by long straight dislocation pairs which exhibit contrast which is consistent

with superdislocations but inconsistent with screw a/3<211> pairs. It is

suggested that the dislocation networks observed in zr3AI are analogous to

those observed, and described in the y' precipitate of cold deformed and

annealed single crystal superalloys (4.5.5). It is worth noting that Howe

et al. observed the SISFs and SESFs to be equally extended. This is in



~ SISF

~SESF

1= 0[211J
3

2=J;lr1T2J
3

3 = ~[121 J
3

Fig. 4.27. Schematic illustration of the super dislocation network
proposed by Howe et al. (1972). Note that there are no
a/2<110> dislocation pairs between the nodal points.
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marked contrast to this investigation where SESFs were considerably larger

than SISFS- see 6.3.4 for discussion.

Although the interaction to form supernodes was by far the most

significant to be observed, many other dislocation interactions were

observed and some of these, which were relevant to the investigation as a

whole, are discussed in the following chapter.



65

CHAPTER 5

FURTHER DISLOCATION INTERACTIONS

5.1 Introduction

Some of the other dislocation interactions observed in deformed

and annealed y' of alloys A, D and G are discussed in this chapter. It

includes observations of isolated superdislocations, superdislocation

dipoles and large planar faults. Mechanisms for the formation of super-

dislocation dipoles and planar faults are suggested. Consideration is also

given to the formation of square and rectangular dislocation networks by
odislocations with Burgers vectors which enclose an angle of 90 .

5.2 Observations of Isolated Dislocations

5.2.1 Superdislocations in the annealed microscructure

At the annealing temperature of 1173K enough energy is available

to promote climb of the unpaired a/2<110> dislocations in the y matrix.

This process considerably increases the probability of two dislocations of

the same type gliding on the same {lll} plane. These dislocations can

'pair-up' to form superdislocations which then lower the dislocation density

in the y by gliding into the y'. Once inside these superdislocations can

interact with others entering the y' and those already present after

deformation. In many cases these gliding {lll} superdislocations reduced

strain energy by forming hexagonal or square dislocation networks as

discussed in 4.5 and 5.3 respectively. Some superdislocations, however,

remained isolated. Although the majority of these were pure screw a/2<110>

dislocation pairs on {lll} planes some (fig. 5.1) were seen to be curved;

probably due to pinning of the superdislocations at the y/y' interface.

The screw orientation was most usually adopted to reduce the dislocation energy.
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Fig. 5.1. Bright field TEM micrograph showing curved superdislocation in
y I. (foil normal: ~[Oll J) •
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It has been suggested (e.g. by Suzuki et al., 1979) that the

straightness of the superdislocations is an indication that cross-slip onto

{OOl} has occurred to form Kear-Wilsdorf locks (Kear and Wilsdorf, 1962).

This was by no means always the case, although some superdislocations on

{OOl} planes were observed (fig. 5.2). A tilting experiment in the TEM

(3.3.11) showed most of the superdislocations to be resident on {111}

planes. It was also noted that dislocations in the hexagonal networks

invariably adopted a straight screw orientation on {111} planes to

minimise the network energy. The cross-slip necessary to produce these

networks took place between {111} planes, rather than from {111} planes

to {OOl} planes (fig. 4.25). It is concluded that no generalisation which

states that straight screw superdislocations are locked onto {OOl}

planes by the Kear-Wilsdorf mechanism can be made because such dislocations

have been observed on {111} planes.

As stated, slip most commonly occurred on {111} planes in y'.

However, cross-slip from {111} planes to {OOl} planes has been cited many

times to explain the unusual work-hardening characteristics of y' strengthened

alloys (for a review see Pope and Ezz, 1984). Cross-slip onto {OOl} was

seen to occur during the deformation and annealing of alloys A, D and G.

Figure 5.2 shows the dislocations at A have {i/ 1} slip traces while those

at B CCl\ld have {lOO} slip traces. Observations of {OOl} slip traces were

unusual and it was concluded that most of the superdislocations were on

{111} planes. It appeared that cross-slip usually occurred between

different {111} planes rather than from {111} onto {OOl} planes. Very few

superdislocations were observed on {OOl} planes, so it was assumed that

Kear-Wilsdorf locking (Kear and Wilsdorf, 1962) was insignificant in

specimens annealed at 1173K.

5.2.2 Dipoles in annealed microstructures

Analysis of dislocation pairs which exhibited a change in spacing
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Fig. 5.2. Bright field TEM micrograph showing superdislocations
lying on {lll} (A) and~{OOl} (B) planes in y'. (foil
normal: ~[oo1J). ~h~
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when ~ was reversed were all found to have the image characteristics of

dipoles rather than the dissociated APBs suggested in 3.3.8. This was

expected as the dissociation shown in figure 3.9 is extremely unlikely to

occur as it would require opposite dissociations for each a/2<110> dis-

location.

TEM micrographs of dipoles are shown in figure 5.3. It is

thought that each of the lines forming the image is a superdislocation.

Dipoles are of no direct relevance to the calculation of defect energies

but they must be distinguished from superdislocations to prevent mis-

interpretation of the dislocation images. It is interesting to consider

how the dipoles may have been formed. Two methods are to be considered:

the first based on the mechanism of Johnston and Gilman (1960) and the

second based on the mechanism of Tetelman (1962). Both were proposed to

explain dipole formation in disordered structures. These proposals have

been developed to explain dipole formation in L12 structures.

Johnston and Gilman suggested that an undissociated screw

dislocation (AB fig. 5.4a), travelling in its own glide plane, may become

jogged either by interaction with another dislocation (Cottrell, 1953) or

by cross-slip. If the jog formed is more than one atomic spacing high,

the jogged section CD (figure 5.4b) will be sessile on the glide plane.

Movement of AB will then drag out a pure edge dipole (fig. 5.4c) behind

the gliding screw. Under certain circumstances cross-slip may subse-

quently occur to produce an edge dislocation loop in the unfaulted crystal

(fig. 5.4d). If the dislocation is a screw superdislocation, the same

type of process would occur as shown in figure 5.5. The defect produced

would be a pure edge superdislocation dipole (fig. 5.5q which may

part to form a superdipole loop. As shown in figure 5.5(e), the region

between the a/2<110> dislocation loops would be an APB. This mechanism

of loop formation was observed in this investigation. Figure 5.6 shows

a TEM micrograph of a pure screw superdislocation which is trailing a line



(c) 150 nm

Fig. 5.3. TEM micrographs in bright field (a) and W ) weak beam
dark field (b and c) showing possible superdis16gai~on dipoles.
The weak beam micrographs show the change in spacing on reversing
~. Note there is a large difference in image intensity between the
dislocations bounding the APB. See text for details. (foil
normal: ~[111J).
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Fig. 5.4. Formation of an edge dipole from a jog on a screw
dislocation (b). The jogged segment CD is dragged out to form
a dipole (c) which may be pinched off to form a dislocation
loop (d).

(b)

12
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(e)

Fig. 5.5. Formation of an edge superdipole by the formation of a
double jog in a superdislocation (b). An edge superdipole of
APB is dragged out behind the superdislocation (c), which can
pinch off to form an APB loop (d). A section through the APB
loop along AB is shown in (e).
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weak beam dark field TEM micrograph of an APE
of small dislocation loops. (foil normal:



of small dislocation loops behind it. However, the Johnston and Gilman
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mechanism predicts that the trails behind a moving screw dislocation

will always be pure edge. While these were often observed, many dipoles

(including that shown in figure 5.3) were of mixed character. A model

for the formation of these dipoles has been proposed by Tetelman (1962).

Tetelman assumed that during shear deformation two mixed dis-

locations of equal and opposite Burgers vector may intersect while

gliding on parallel {111} planes, as shown in figure 5.7(a). These two

dislocations may lower their total energy by reorientation in the same

glide plane (fig. 5.7b). If cross-slip occurs at the cross-over point,

the sum of the dislocations will be zero and a dipole will form as shown

in figure 5.7(c). If the opposite end also cross-slips, as shown in

figure 5.7(d) I a dipole is created. This model provides an explanation

for the occurrence of mixed dislocation dipoles. The model can also be

extended to ordered materials as shown in figure 5.8. The initial inter-

action for this reaction is similar to the mechanism proposed for the

creation of hexagonal networks (fig. 4.15). Limited cross-slip must

occur at the cross-over points before the superdipole can form. As in

the previous case the region between the two a/2<110> dislocation loops

would contain APB.

Superdipoles of pure and mixed character can be generated by

these two mechanisms. In each case they will consist of a loop of APB

between a/2<110> dislocations. Superdipoles are low energy configurations

and it is expected that they will be sessile.

The interaction of two superdislocations to form a jog which

could form a superdipole (fig. 5.5) will only occur if one of the super-

dislocations is stationary at the moment of intersection. If, for any

reason, both superdislocations are moving the jogged superdislocation will

form an APB tube when it glides away from the intersection. The result

is shown in figure 5.9. This process was proposed by Vidoz and Brown (1962)
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Fig. 5.7. Formation of a dipole by the interaction of two similar
dislocationsAB and A'B' (a). The dislocations lower their
energy by reorienting to form a region with equal and opposite
parallel Burgers vectors (b). This region may pinch off at •
to form a dipole (c), which may then pinch off to form loop (d)
(After Tetelman, 1962.)
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Fig. 5.8. Formction of a superdipole loop from an interaction between
two superdislocations Ca), showing reorientation to lowEr the
configuration energy (b), cross-slip to form a superdipole (c)
and further cross-slip to produce a superdipole loop (d). The
loop is shown in section along CD (e).
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Fig. 5.9. Illustration showing an APB tube which will form if both
superdislocations are gliding at the time of intera~tion.
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and has been cited as a strengthening mechanism in Ll2 structures (Kear,

1966) .

tubes.

At present, there is little evidence for the existence of APB

Chou, Hirsch, McLean and Hondros (1982) claim to have observed

APB tubes in Ni3AI. The tubes gave strong contrast in super lattice weak

beam imaging conditions but no contrast was observed in fundamental weak

beam imaging conditions. The defects observed in this investigation

showed strong dislocation contrast in fundamental weak beam and super-

lattice weak beam imaging conditions.

rather than APB tubes.

They were assumed to be superdipoles

The superdipoles observed exhibited unusual dislocation contrast

in weak beam micrographs as shown in figure 5.3(b) and (c). These

micrographs show that the dislocations at the edges of the defects

exhibited a large difference in intensity. The difference was judged to

be much greater than that from a superdislocation in the same imaging

conditions. It is proposed that figure 5.3 shows a superdipole observed

along one of its edges, thus, only two dislocation images were seen, and

the change in image intensity was caused by the extra layer of APB and

the occurrence of one dislocation directly above another (fig. 5.5e and

5.8e).

Dislocation loops and dipoles have previously been reported in

L1 structures by Kear (1966), Staton-Bevan and Rawlings (1975a) and
2

Baldan (1983). Baldan has drawn similar conclusions to those drawn from

this investigation.

In summary, it has been shown that the established techniques

for the generation of dipoles in disordered crystals can be adapted to

explain the occurrence of dipoles in L12 ordered crystals. It is proposed

that both the Johnston and Gilman and Tetelman models operate to produce

sessile superdipoles of all characters. Unusually, screw dipoles were

observed. In disordered materials these would anihilate by cross-slip but

in y' they were stabilised, probably by the APB regions. The loops and
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dipoles will hinder the movement of other superdislocations and may

generate more jogs and produce more dipoles when intersected by gliding

dislocations. This process was suggested by Thornton, Davies and

Johnston (1970) to explain the work hardening of superalloys by what they

termed 'debris hardening'.

5.2.3 Large planar defects

Large planar defects of the type shown in figure 5.10 were

observed in foils cut on (111). ~.~ analyses coupled with line vector

determination and fault contrast studies have shown that defects exhibit the

contrast expected from extrinsic superlattice stacking faults lying

parallel to the plane of the foil. The faults were bounded by a loop of

a/3<211> dislocation (fig. 5.10), showing that they were formed by a shear

process and not by the agglomeration of vacancies or interstitial atoms.

The latter processes would produce an a/3<111> bounding dislocation.

Superlattice stacking faults of this type have been frequently

observed in Ll~ for example by Enami and Nenno (1968), Giamei, Oblak, Kear

and Rand (1970), Oblak and Kear (1971), Takeqchi et al. (1973), Howe et al.

(1974), Pak, Saburi and Nenno (1976) and Suzuki et al. (1979). All these

workers report that the majority of the defects observed were intrinsic.

The dislocation line vector was determined for all the SSFs analysed in

this investigation and it was shown that the majority of faults were extrinsic.

A possible reason for this discrepancy is given below.

This type of planar defect can be formed by the following mechanism

proposed by Suzuki et al. (1979). The mechanism is inaugurated by the

immobilisation of one, usually the trailing one, of the a/2<110> dislocations

forming the superdislocation. Takeuchi and Kuramoto (1973) suggested that

this could occur by the cross-slip of a short segment of dislocation onto an

{001} plane. Alternatively the trailing dislocation may become jogged

while the other does not. Whatever the reaction, a part of the trailing
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Fig. 5.10. Bright field TEM ±g pair (a and b) and two W(~/3~) weak
beam dark field TEM micrographs showing a large SESF. (a) and (b)
show that the SESF is bounded by a dislocation loop; in this case
an a/3[112] shear dislocation which is shown in (~. Contrast
from the fault lying parallel to the foil surface is shown in (c).
(foil normal: ~[111]).



dislocation becomes pinned, the leading dislocation glides on extending

the APB (fig. 5.11a). Suzuki et al. suggest that the extension of the

APB was aided by the line tension of the superdislocation attempting to

straighten itself; otherwise the force required to separate the super-

dislocation would be too large for the reaction to occur. After a

certain extension it becomes energetically favourable for the APB to trans-

form to an intrinsic or extrinsic SSF by nucleating an a/6 <211 > disloc-

ation loop or by the splitting of the bounding a/2<110> dislocation into

an a/3<211> partial and an a/6<211>

e.g. eqn. 5.1

The superdislocation must continue to glide forward dragging out

an SSF bounded by by an a~< 211> partial dislocation which is apparently

locked in position by the Kear-Wilsdorf mechanism (fig. 5.11b) (Pak et al.,

1976) . To form the defect shown in figure 5.10 the fault would need to

be pinched off at some point (fig. 5.11c).

Many SESF defects of this type were observed in deformed and

annealed foils of alloy A, while very few were seen in alloys D and G. It

is proposed that formation of a very thin layer of Ni3Ti occurs at this type

of defect thus promoting the formation of defects with extrinsic character-

istics rather than those with intrinsic characteristics observed by other

workers. This is possible because SESFs are equivalent to seven layers

of the hexagonal Ni3Ti structure (4.2.4). Titanium may diffuse to the

faults and stabilise them by forming a very thin layer of Ni3Ti. (Hetero-

geneous precipitation of Ni3Ti on stacking faults has previously been

reported in the Ni-base alloy Nimonic 901 by Oblak, Owczarski and Kear

(1971) .) The formation of Ni3Ti on the fault plane would effectively pin

the a/3<211> dislocation. It could also aid fault growth by assisting the

passage of the leading dislocation. If this mechanism does operate it

could be significant that the lower titanium alloy contains fewer defects.

The likelihood of this pinning mechanism occurring and its effect on the SSF
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Fig. 5.11. Schematic illustration showing the proposed mechanism
for the formation of a large SESF from a moving super lattice
dislocation. See text for details. (After Suzuki et al., 1979).
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energies are discussed in 6.3; its effect on the deformation mechanism is

discussed in chapter 7.

Because these defects were locked in a metastable condition it

was impossible to use them to evaluate the SSF energies. It is expected

that defects of this type will slow the passage of superdislocations through

the y' and thereby assist the strengthening of the material.

5.3 Rectangular Networks formed by Dislocations with Burgers Vectors which
oIntersect at 90

5.3.1 Theoretical arrangement

Rectangular or square networks will occur in L12 when two different

screw superdislocations with perpendicular Burgers vectors intersect on

the same or different {111} planes. The networks formed will appear

rectangular on both {001} and {111} planes as shown in figure 5.12. No

interaction can occur between perpendicular dislocations to form SSFs but it

is possible for the APB fault vectors to cancel out to produce an area of

unfaulted crystal.

5.3.2 Square networks on {111}

Square and rectangular networks have been frequently observed in

the y' of alloys A-G by TEM. Stereo pairs have produced qualitative evidence

for the existence of two different rectangular networks. One which has a

stepped configuration is discussed below; the other, which is coplanar, is

discussed in 5.3.2.

Analysis of the dislocations constituting the square network

shown in figure 5.13 shows that the network was formed by an interaction

between a[ll0J screw superdislocations on {lll} and a[110J screw super-

dislocations on {lll}. No dissociation of the a/2<110> dislocations con-

stituting the superdislocations was observed and was therefore assumed to

be negligible.

The interaction occurred by the passage of one a/2<110> dislocation
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Fig. 5.12. Stereographic projections on [OOlJ (a) and [lllJ (b)
showing that screw dislocations with Burgers vectors at 900
produce networks which appear square or rectangular in both
[OOlJ and [lllJ TEM foils.

150 nm

Fig. 5.13. Bright field TEM micrograph of a rectangular network of
pairs of a/2[110J and a/2[110J dislocations on different {111}
planes. (foil normal: ~[OO 1]).
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which created an APB; the next dislocation to pass will be perpendicular to

the first and will destroy the APB, producing an unfaulted region. The un-

faulted region (marked A on figure 5.14) must be a non-planar saddle point

with the APBs on either side twisted slightly from their glide planes as

shown in figure 5.14(b). Region A is perfectly stacked and as such is more

stable than the APB so the region A will extend as much as possible to reduce

the network energy. This explanation would produce the structures observed

in deformed and annealed specimens (fig. 5.13).

It is probable that the interaction described above could only take

place at high temperature when the dislocations are very mobile. Because

the unfaulted region is formed the configuration will become sessile once

formed, particularly when the temperature is lowered, thus explaining the

large number of experimental observations of this unusual network. The

stepped square networks observed had a large mesh size which allowed the

superdislocations to adopt their equilibrium spacing on the {111} glide

plane, there not being enough of a driving force to make cross-slip onto

the lower energy {001} planes favourable. APB energies for pure screw

dislocations were determined from portions of superdislocations well away

from the points of intersection, thereby avoiding any change in dislocation

spacing caused by the unfaulted region (6.2).

5.3.3 Square networks on {001}

Co-planar square dislocation networks were observed on (001)

planes in foils with [OOlJ normals (fig. 5.15). These networks were meshes

of a[110J and a[110J screw superdislocations on [OOlJ.

As described in 5.3.2 an unfaulted region is created as shown on

an [OOlJ section through L12 in figure 5.16. The unfaulted region on [OOlJ

expanded until equal amounts of APB and unfaulted region constituted the

network (fig. 5.14a). Because of the considerably lower APB energy on {001}

planes the a/2<110> dislocations are not so tightly constrained as those on

{111} planes; consequently the unfaulted regions grow considerably larger
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Fig. 5.14. Schematic diagrams showing plan view of a square network
(a). If the network lies on two {lll} planes the unfaulted
region (A) is an unfaulted non-planar saddle point (b). See
text for details.
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Fig. 5.15. Bright field TEM micrograph showing a square network
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Fig. 5.16. Plan view of (8~!) ~lanes in L12 shwoing that the
passage of a single a/2[110J dislocation will create an APB,
but that the passage of a/2[110J will restore perfect stacking
to form the unfaulted region shown in figure 5.14.
b1= a/2[110J, b2=a/2[110J.
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than those on {lll} planes. This network is very similar to that proposed

by Czernickow, Gudas, Marcinkowski and Weng Feng Tseng (1971). Once the

configuration has achieved its lowest energy configuration with approxim-

ately equal areas of APB and unfaulted crystal it will be effectively

sessile.

Networks on (DOl} may be formed either by glide of screw super-

dislocations on {DOl} or by cross-slip from {lll}. The first mechanism

seems highly unlikely due to the difficulty of slip on the non-close packed

{DOl} planes (as stated in 4.3.2). It seems more likely that the networks

are created by cross-slip of the {lll} networks. {lll} networks obviously

have a high energy due to the non-planar APBs and saddle points. At the

annealing temperature the a/2<110> dislocations will be constricted so they

will provide little barrier for cross-slip to {DOl}. Cross-slip from {lll}

to {DOl} in L12 alloys was first suggested by Kear (1966).

If the activation for cross-slip is overcome, networks on {DOl}

can form as shown schematically in figure 5.17. Limited glide will occur on

{DOl} to equilibrate the structure to that shown in figure 5.15. It is pro-

posed that the cross-slip of {lll} networks onto an {DOl} plane will occur

more readily for fine mesh networks than for coarse mesh networks. The

superdislocations in the fine mesh networks on {lll} planes are distorted and

cannot adopt an equilibrium configuration on the initial glide plane. This

distortion may provide some of the driving force for cross-slip onto {DOl}

planes.

The mesh size of {DOl} networks was too small for the APB regions

to adopt an equilibrium spacing between the unfaulted regions: consequently

accurate dislocation spacings could not be measured, thus precluding the

evaluation of the {DOl} APB energies.

5.4 Discussion and Conclusions

The dislocation interactions discussed in this chapter are less

significant to the calculation of defect energies than the supernodes
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Fig. 5.17. Scnematic illustration showing cross-slip from a square
network on{lll} planes to form a square network on [OOlJ.
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from isolated superdislocations and rectangular superdislocation networks,

and the identification of dipoles meant that no incorrect dislocation

spacings were measured, thus avoiding spurious APB energy results.

Some authors have suggested that the interactions reported here

are of considerable significance to the strengthening of superalloys.

Thornton et al. (1970) proposed that the glide of jogged superdislocations

produced dislocation debris, such as loops, which they applied to explain

the unusual work hardening characteristics of superalloy materials (Copley

and Kear, 1967). There has subsequently been considerable controversy in

the literature as to whether debris hardening is a significant strengthen-

ing mechanism. Staton-Bevan and Rawlings (1975a and b) found that their

flow stress results correlated more closely with the mechanism proposed by

Davies and Stoloff (1965) which is based solely on the traditional model

for dislocation particle interaction where second phase particles pin the

dislocations. More recently, Takeuchi and Kuramoto (1973) have introduced

a third element into the work hardening model by proposing that cross-slip

of short segments of one or both of the a/2<110> dislocations of a super-

dislocation onto {OOl} during deformation has a major strengthening role.

In complex superalloys with large volume fractions of y' it is

unrealistic to adopt the premise that only one dislocation interaction or

strengthening mechanism is effective. In this investigation it was noted

that dislocations generated in the y have great difficulty entering the y'

without dislocation climb occurring, showing that a significant strengthen-

ing effect is being produced by the Davies and Stoloff (1965) model. It

was also noted that once inside the y' dislocation interactions occurred

to form networks which will further act to provide strength by reducing

dislocation motion. Dislocation 'debris' in the form of loops and dipoles

was also produced showing that the model of Thornton et al. (1970) was also
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It is

likely that these occur as a consequence of the slip of small segments of

dislocation onto {OOl} as proposed by Takeuchi and Kuramoto (1973). It is

almost certain that all three of these mechanisms will play some role in the

strengthening of alloys A to G.

In addition to these established strengthening mechanisms it is

proposed that a further mechanism may be having some effect. The large

flat extrinsic stacking faults reported in 5.2.3 have the D024(Ni3Ti)

structure: it is thought that during creep deformation enough time would

be available for the diffusion of Ti to the fault and the formation of a

very thin planar precipitate of Ni3Ti. This precipitate will strengthen

the alloy by pinning or obstructing the passage of superdislocations. It

was noted that the higher Ti containing alloy (A) contained more planar

faults than either of the other alloys, indicating that if Ti is stabilising

the SSFs, the effect is stronger at higher Ti contents. This effect is

discussed more fully with reference to diffusion data, stress rupture data

from alloys A, D and G, and SSF and APB energy measurements from hexagonal

networks in chapters 6 and 7.
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CHAPTER 6

MEASUREMENT OF ANTI -PHASE BOUNDARY ENERGY

AND SUPERLATTICE STACKING FAULT ENERGY

6.1 Introduction

This chapter presents the experimental techniques employed and

the values obtained for the anti-phase boundary (APB) energies and super-

lattice stacking fault (SSF) energies of alloys A, D and G. The APB

energies were determined from dislocation spacing measurements made on pure

screw superdislocations. This is described in 6.2.1. The results are

presented and discussed in 6.2.3.

The SSF energies were considerably more difficult to measure than

the APB energies. Although it is known that the shear of gamma prime can

occur by pairs of a/3<211> dislocations bounding ribbons of SSF (Kear et aI,

1968), no evidence for this was found during this investigation. Conse-

quently the SSF energies could not be determined by the same method as the

APB energies. Instead hexagonal dislocation networks containing extended

nodal points were produced by cold deformation and annealing (chapter 4.5).

These extended supernodes (fig. 6.1b) were superficially similar to extended

nodes in FCC materials (fig. 6.1a), but there were significant differences

in the types of dislocations and faults present. Consequently the well

established techniques of stacking fault energy measurements (for details see

the reviews by Christian and Swann, 1965, Ruff, 1970, and Amelinckx, 1979)

were found to be inapplicable to the evaluation of SSF energy from super-

nodes.

A new technique has been developed by Rae and Hillier (1984) in

which the SSF energy can be evaluated from a supernode by calculating the



(a)

~llJ

i111~J

(b)

SESF ~[ff2]

~10]

Fig. 6.1. Illustration showing an intrinsic and an extrinsic node
in FCC (a) and in L12 (b).
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force exerted on one dislocation by the stress fields of the other dis-

locations when the superdislocation spacing is known; this is described in

6.3.1.

and G.

The method has been used to evaluate SSF energies in alloys A, D

These results are discussed in 6.3.4.

The significance of the results with respect to the creep

behaviour of superalloys is discussed in chapter 7.

6.2 Anti-Phase Boundary Energy Measurement

6 .2. 1 Theory

The energy of an APB can be evaluated from the equilibrium spacing

between the two bounding a/2<110> dislocations, since the repulsive force

between the dislocations is balanced by the APB energy drawing them together.

According to Eshelby, Read and Shockley (1953) the non-vanishing

stress components, a .. , on a straight dislocation in an anisotropic medium
~J

are:

eqn. 6.1 (a)

and

where

2 .arz = c44 b (l-S )coses~ne
---
2nS r (cos2e+S2sine)

eqn. 6.1(b)

eqn. 6.1 (c)

c.. are the elastic constants, b is the magnitude of the dislocation
1.J

Burgers vector, r is the distance from the dislocation and e is the angle

between the dislocation line vector, u, and the Burgers vector.

For a pure screw dislocation e is zero;

only stress component is:

therefore arz 0, so the

eqn. 6.2
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Consider the interaction between two parallel co-planar screw

dislocations bounding an APB. A dislocation lying at the origin of a co-

ordinate system along the z direction, as shown in figure 6.2, exerts a

tangential shear ~~ , which is given by eqn. 6.2, on the APB plane if

end effects are ignored. The force per unit length on a parallel screw

dislocation at P(r,e) is normal to 0ez and O,and is therefore along OP. It

has the magnitude:

F eqn. 6.3

where F is the force per unit length on the dislocation.

lhe~ energy of the APEl, Y , between the disloc~:fi.onscaM ~ k.
(k~Q(l w <xalM'~i~1t.\Qwvk ~ 01\ MO~"9 tw. d.,i~~CL{v~ ~

Equatioh 6.3 was used extensively to evaluate APB energies from

superdislocation spacings measured from TEM micrographs.

Values for the elastic constants, c .., were supplied by Rolls-Royce
1.J

Ltd. They were calculated from measured sound velocities in alloy A. As

there are only small differences between alloy compositions and lattice

parameters, these values have also been taken to be typical of alloys D and

G. Unfortunately, no specific values of c .. in y' are available, but, as
1.J

the alloys contain in excess of 0.6 volume fraction of y', the bulk alloy

values were considered acceptable for use in the calculation of APB energies.

The c. . values used were determined at 300K and could be in error by up to
1.J

10%. They were:

c
ll = 2.5x1011 Pa

c12 1.633x1011 Pa

c44 1.154x1011 Pa

The anisotropy factor, A 2c
44

c -c11 12

= 2.66 eqn. 6.4

The only other available values for the elastic constants of y' were published
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Fig. 6.2. Illustration showing the configuration used to determine
the force between two a/2<110> dislocations (at 0 and p)
bounding an APB as described in the text.

Fig. 6.3. Illustration showing the method used to evaluate the
electron beam direction, B, from a diffraction pattern with three
identifiable reflections.

The beam direction
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by Ono and Stern (1969). For pure Ni3Al containing less than 0.1%
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impurities, they found c11 and c12 to be about 20% lower and c44 to be the

same as the values used in this investigation. This difference probably

arises because they were studying an alloy with a smaller lattice parameter

and lower density from the y' in alloys A, D and G. Ono and Stern showed

that the elastic constants do not vary significantly with temperature

between 83K and 600K. As a result of this observation it was decided that

it was reasonable to use the elastic constants measured at 300K to evaluate

the APB energy at higher temperatures in the absence of any more detailed

data.

6.2.2 APB energy measurement

To evaluate the APB energy it was necessary to measure the true

dislocation spacing, r, and to identify the bounding dislocations. The

Burgers vectors were obtained by using the TEM techniques described pre-

viously (3.3.5): for dislocations separating APB from unfaulted crystal

they are a/2<110>. The magnitude of b calculated using the average lattice

parameter of alloys A, D and G (table 2.4) is 0.253nm.

In most cases the anti-phase boundary plane was at an angle to the

electzon beam direction, ~. Consequently, the measured superdislocation

spacing, m, was only an apparent value. To evaluate the true spacing, r,

the electron beam direction, ~, and the plane normal of the superdislocation,

~, are required in addition to the dislocation line vector, u. B was

evaluated following the technique described by Ryder and Pitsch (1968) which

is shown in figure 6.3. ~ was found by the trace analysis of dislocation

pairs and stereo imaging. In some cases tilting experiments were also

employed.

Simple geometry was then used to find r.

r = m
sine

Figure 6.4 shows that:

eqn. 6.5 (a)



(b)

m

r= m
sine

Fig. 6.4. Illustration showing the method used to evaluate
the true spacing, r, of a superdislocation from the apparent
dislocation spacing, m. ~ is the electron beam direction, ~ is
the APB normal, u is the dislocation line sense and e is the
angle between ~ and ~x~. A schematic representation of the
APB in the foil is shown in (a) and the geometrical configur-
ation is shown in (b).



where

sine Bx(Nxu) eqn. 6.5(b)

and B, ~ and u are unit vectors. This value of r was substituted in

eqn. 6.3 to evaluate the APB energy.

6.2.3 Results and discussion

The APB energy results are shown in figure 6.5. The individual

true dislocation spacings and APB energy values from each of the analysed

networks are presented in appendix E. The results are summarised in

table 6.1 which shows that the average APB energy for alloys A, D and G is
-283±20mJm •

There appears to be no significant variation in the APB energy of

y' with titanium content in single crystal superalloys containing between

1.8 and 2.7 at.% titanium. There is, however, a large range of APB

energies for each alloy. No obvious reason was found for this range which

amounted to a difference of about 6nm in dislocation pair spacing between

the lowest and the highest values. This is considerably greater than the

maximum error in spacing measurement. One explanation is that it may be

related to the behaviour of the dislocations during cooling of the specimens

after annealing. The specimens were air cooled from 1173K and it is

suggested that some glide of the dislocations bounding the APBs may have

occurred in an attempt to maintain the equilibrium spacing at lower temperat-

ures. It is thought that cooling was too rapid for the respacing to have a

major effect on the APB energies; if there was any effect it would act to

produce a slightly higher APB energy than that at 1173K because a smaller

dislocation spacing was expected at room temperature. The possibility of

the contraction of superdislocations means that it is impossible to relate

the measured energies to a particular temperature but it is assumed that the

values are typical of 1173K as any movement of the dislocations will have been

limited by the more stable parts of the networks.



Table 6.1. Summary of the Anti-phase Boundary Energies

Alloy

y' Ti content (at.%)

-2Mean APB energy (mJm )

-2Overall mean APB energy (mJm )

Standard deviation (mJm-2)

-2Range of results (mJm )

G

2.8

87

20

56-108

D

3.3

78

83

17

55-114

A

3.9

83

15

57-114
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6.2.4 Comparison with the results of other workers

In the past seventeen years many references have been made to the

effect the APB energy may have on deformation in L12 structures, for example,

Copley and Kear (1967), Kear, Leverant and Oblak (1969), Kear et al. (1970),

Leverant, Gell and Hopkins (1970 and 1971), Leverant and Kear (1970),

Raynor and Silcock (1970), Thornton et al. (1970), Brown and Ham (1971),

Leverant, Kear and Oblak (1973), Takeuchi and Kuramoto (1973), Kear (1974),

Staton-Bevan and Rawlings (1975a and b), Noguchi, Oya and Suzuki (1981), and

Pope and Ezz (1984). Since so much work has been reported, it is surprising

that there are so few quantitative APB energy data available.

Some values have been measured, the most popular value quoted in

recent papers (e.g. Pope and Ezz, 1984) being that measured in the field ion

microscope (FIM) by Taunt and Ralph (1974). These authors measured a

superdislocation spacing of 3nm (considerably smaller than the present data)
-2which corresponds to a higher APB energy of between 250 and 350mJm .

This value is close to the values of -2 -2300 mJm and 25 4mJm calculatC'd

theoretically for perfectly ordered pure Ni3AI by Taunt (1973) and Copley and

Kear (1967) respectively. Taunt and Ralph performed their experiments on

a highly ordered pure Ni3AI at about 77K, and they consequently gained the

expected good agreement with the theoretical value.

It is unrealistic to suggest that this value is typical of the

APB energy of a highly alloyed commercial superalloy in the region of

1000K. Alloying of the y' means that atoms other than Ni and Al will

occupy adjacent sites in the L12 lattice. Consequently the interatomic

forces will be different from those in Ni3AI as will the change in those

forces when an APB is created. Also, as temperature is increased,

entropy increases, order decreases and so does APB energy. This is shown

in the calculated value of -2164mJm quoted by Copley and Kear (1967) for

Ni3AI with a long range order parameter of 0.803 (they calculated the APB



-2energy of fully ordered Ni Al to be 254mJm ).
3
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As a consequence of these

two factors the APB energy of most superalloys is expected to be lower

than that of perfectly ordered Ni3Al.

Experimental values measured indirectly by various means have

been reported by Brown and Ham (1971). These values are mainly from

small y' volume fraction, low alloy superalloys with gamma prime particle

sizes less than 0.1~. Energies calculated using equations 2.63 and
-22.64 from Brown and Ham (1971) were mostly between 150 and 200mJm .

The most important of these are due to Raynor and Silcock (1970) who

reported that for a mixture of superalloys and stainless steels the APB

energy of gamma prime increased with titanium additions concluding that the

Ti/Al ratio affected the APB energy. This conclusion was drawn although

.other alloying elements in the compositions, particularly Ni and Fe, were

changed by a considerably greater margin than the titanium. Raynor and

Silcock's observations are contrary to the findings of this investigation;

probably because they were comparing radically different alloys rather

than a systematic set where one element (Ni) was replaced by another (Ti),

as in this investigation. Another factor contributing to the differences

might be that Raynor and Silcock's alloys contain more Ti than Al, whereas

alloys A, D and G contain more Al than Ti. It seems that the composit-

ional differences in Raynor and Silcock's alloys have a considerable

effect on their APB energies, although it is not certain that these

differences are due to changes in Ti. It is concluded that the alloys

studied by Raynor and Silcock are too widely different from alloys A, D

and G for their APB energies to be usefully compared. This is supported

by the results of Miller and Ansell (1977) who evaluated the APB energies

for Ni-Cr-Al-Mo alloys and Ni-Cr-Al-Ti-Mo alloys where the titanium con-

tent was larger than the Al content. Using the techniques described by

Brown and Ham (1971) they found that the APB energy of the alloys with

titanium was 200mJm-2 and for alloys without titanium the lower value of
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-2133mJm was obtained.

Data from Ni-AI-Cr alloys (Hornbogen and Mukerjee, 1964 and

Hornbogen, 1965) were reprocessed by Brown and Ham (1971) and gave APB
-2energies of about 90mJm • These results are similar to the present

data but the agreement may be fortuitous as the alloys studied are so

different from one another. It does, however, appear that the presence

of chromium alone considerably lowers the APB energy of Ni3AI.

The first APB energy value quoted for a commercial superalloy
-2was a value of 150mJm (Leverant and Kear, 1970). It was not stated how

this value was obtained but it is close to the theoretical value quoted by

Copley and Kear (1967). In a later paper, Leverant et al. (1973) stated

that after creep deformation at 1023K the superdislocation spacing was

too small to be measured from bright field electron micrographs, but that

after creep deformation at 1133K the spacing could be measured and was found

to be 9nm. They concluded that this single observation showed an effect-

ive drop in the local APB energy on {111} planes between 1023 and 1133K.

In this investigation superdislocations were frequently observed after

annealing at 1173K. Their spacings, measured using weak beam imaging,

were found to be similar to the value quoted by Leverant et al. (1973)

after deformation at 1133K.

From the results presented above it is clear that no systematic

study of the way in which APB energy varies with alloy composition has

been undertaken previously. APB energies have been measured in signific-

antly different alloys using a wide range of techniques and it is impossible

to compare results. Other than the result reported by Leverant and Kear

(1970), no other values for the APB energy of Ni-base superalloys

strengthened by large volume fractions of gamma prime have been reported

before this investigation.

The APB measurement technique employed here involves the measure-

ment of dislocation spacings. This method was first used by Marcinkowski,
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They also calculated the variation

in spacing which could be expected with change in order and showed that a

change of up to 8nm was possible for a given APB energy between the fully

ordered state and the point at which ordering becomes negligible. It

could be that the range of spacings measured in this investigation was

due to a local change in the order. However, this is highly improbable

because long homogenisation and annealing times used here were deliberately

employed to produce uniformly ordered materials.

In summary, it has been shown that the APB energy of three single

crystal superalloys does not seem to vary with titanium content. A range

of values was found which is probably due to limited glide of superdisloc-

ations during cooling from the annealing temperature rather than regions

of different order. -2The average APB energy was 83mJm (fig. 6.5); it

has been assumed that this value is typical of 1173K.

The author is not aware of any data which directly relate APB

energy to temperature. An experiment could be undertaken using a heating

stage in the TEM which could be of great value to the prediction of

superalloy deformation mechanisms. It would also establish whether there

is a major change in APB energy between 1023K and 1133K as proposed by

Leverant et al. (1973).

The evaluation of APB energies from measured dislocation spacings

is the most direct and accurate method available, and it is suggested that

this technique should be used to study the effect of other alloying elements

on the APB energies of superalloys.

6.3 Super lattice Stacking Fault Energy Measurement

6.3.1 Theory

A method (Rae and Hillier, 1984) has been developed which enables

superlattice stacking fault (SSF) energies to be deduced from the supernode

configurations described previously. The SSF energy per unit area is
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related to the net force acting at point 0 on dislocation 6 of the con-

figuration shown in figure 6.6. To do this, the stress field due to

each screw dislocation segment forming the supernode is calculated using

a different set of co-ordinate axes and these stresses are then resolved

along the Z direction of the co-ordinate system attached to dislocation 6

to evaluate the total force on that dislocation.

of this process is given in appendix D.

A detailed description

All the stresses except that resulting from dislocation 3 act to

expand the node by pulling it outwards. When the stresses due to these

dislocations are taken to be positive, the stress due to dislocation 3 is

negative. The total force per unit length which can be equated to the

SSF energy acting on the supernode, y , is:
SSF

eqn. 6.6

The expressions from appendix D are homogeneous in r, the dis-

location spacing, and R, the internal dimension of the node. They can

consequently be written in terms of R and the ratio r/R which will be

termed p. The expression can be separated into a dimensionless geometrical

function of p multiplied by l/R. The geometrical function depends only

upon the shape of the node. If the total stress is multiplied by the

Burgers vector of dislocation 6 (b6=~a) the force per unit length at
3

the centre of the dislocation acting on the extended node is:

F ua ~aG(p)
4TIR 3

eqn. 6.7

This can be equated to the SSF energy so that:

2~a G(p)

2~TIR
eqn. 6.8

~where ~ is the isotropic shear modulus and is equivalent to [C44(Cll-C12)/2]


