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Abstract 
Austenitic twinning induced plasticity (TWIP) steels have low to intermediate 

stacking fault energy and hence undergo extensive mechanical twinning during 

deformation, which in turn leads a good combination of both strength and ductility. 

Considerable experimental research has been conducted to examine its microstructure 

and texture evolution, and a limited amount of work has also been done to model its 

work-hardening behavior. However, no attempt exists to quantitatively estimate the 

strain from twinning and to qualitatively estimate the resulting texture change during 

the deformation of polycrystalline austenitic TWIP steel. The present work is aimed at 

solving this problem. 

A physical model based on the mathematical geometry of crystallography of 

mechanical twinning has been developed in this work and computer programs have 

been written to implement the calculations. The results give the exact values of true 

strain due to twinning, which is a function of the volume fraction of twin plates, 

matrix texture and intensity of texture. Compared with experimental results on 

ductility, which is generally above 85% elongation, the calculated true strain is 

substantially smaller, consistent with the occurrence of mechanisms of plastic 

deformation other than twinning. 

The attempt to calculate the texture change is partially successful because the 

twinning mode only dominates at low strains, for instance during tensile testing with a 

true strain less than 0.4. 

A program of future work has been compiled in the light of these results.  
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Nomenclature and Abbreviations 

Abbreviations 
AFM   Atomic force microscopy 

BCC   Body-centered cubic 

BCT   Body-centered tetragonal 

CR    Cold rolling 

DP    Dual phase 

FCC   Face-centered cubic 

FORTRAN  Formula translation 

IF    Interstitial free 

IPS    Invariant plane strain 

ND    Normal direction 

ODF   Orientation distribution function 

ppm   parts per million 

RD    Rolling direction 

SFE    Stacking fault energy 

TD    Transverse direction 

TeD    Tensile direction 

TEM   Transmission electron microscopy 

TRIP   Transformation induced plasticity 

TWIP   Twinning induced plasticity 

 

Nomenclature 
 ε     True strain 

unε     Uniform elongation 

 fε     Total elongation 

 p0.2 R    0.2% proof strength 

 m R    Tensile strength 



 V

 SFEγ    The value of stacking fault energy 

 FCCγ    The stacking fault energy for austenite 

 γ     Austenite 

 ai    Basis vectors of basis A 

 bi    Basis vectors of basis B 

 p    Unit twinning plane normal 

 d    Unit twinning direction 

 q    Unit normal of section plane pd 

 (A J B)    Coordinate transformation matrix between basis A and B 

 (A P A)    Deformation matrix with respect to basis A 

 ijJ     Components of orthonormal 3 3×  matrix 

 s     Twinning shear 

 ijσ     Normal components of a stress tensor 

 ijτ     Shear components of a stress tensor 

 t    Traction vector 

 E    Strain energy 

 1M     The basis of reference grain in austenite polycrystalline 

 iM  (i> 1)   The basis of ordinary grains in austenite polycrystalline 

 ijT     The basis of jth favorable twinning system in grain i 

 G    The basis of single austenite grain 

 S     The basis of sample reference frame 

i(S J M )    The coordinate transformation matrix between sample reference  

frame and grain i 

 

ij(S J T )  The coordinate transformation matrix between sample reference 

frame and jth favorable twin in grain i 

 b    The Burger’s vector of dislocation 



 VI

 bp    The Burger’s vector of partial dislocation 

 α     The angle between vector u and basis axis a1 

 β     The angle between vector u and basis axis a2 

 δ     The angle between vector u and basis axis a3 

 iα     The angles between basis axis bi of B and basis axis a1 of A 

 iβ     The angles between basis axis bi of B and basis axis a2 of A 

 iδ     The angles between basis axis bi of B and basis axis a3 of A 

 ( ), ,φ θ ψ   Euler angles, mathematic representation 

 ( )1 2, ,ϕ ϕΦ   Euler angles, texture analysis representation 

 iη     Compression / expansion ratio of Bain strain along bi 

 ip     Components of unit twinning plane normal p 

 id     Components of unit twinning direction d 

 iq     Components of unit normal of section plane pd  

 aγ     Austenite lattice parameter 

 111d     Interplannar distance of plane (111) 
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Chapter 1  

Introduction 
 

Austenitic steels are used widely in many applications because of their excellent 

strength and ductility, good wear resistance and corrosion resistance [Lacombe et al., 

1993; Bhadeshia and Honeycombe, 2006]. In the automotive industries, it is always 

useful to make components light and efficient. This can be achieved using novel steels 

with improved strength and formability. 

TWIP (Twinning-Induced Plasticity) steels have exceptionally good combinations 

of strength, ductility and damage tolerance which satisfy the requirements for 

automotive industries [Grassel and Frommeyer, 1998]. There have been some 

investigations of its mechanical properties [Grassel et al., 2000; Frommeyer et al., 

2003; Vercammen et al., 2004a; Yang et al., 2006] and of high work hardening rate 

[Bouaziz and Guelton, 2001; Allain et al., 2004a]. However the contribution of 

mechanical twinning to total elongation is only qualitatively understood and there has 

been no method for predicting the evolution of texture due to twinning. This chapter is 

a review of TWIP steels to set the context for the research presented later. 

1-1 Strength and ductility 

Steels have variety of properties and applications but its success in engineering 

structures comes from the combination of strength, ductility and ease of manufacture. 

For some time now, increases of strength could not be combined with an increase in 

ductility, leading to an empirical ‘law’ that the product of strength and ductility is a 

constant. The challenge is to overcome this law and produce better steels. Some 

successes come from collaborative research [IISI, 2006] which leads to steels such as 

transformation induced plasticity (TRIP) steel and dual-phase (DP) steel, as illustrated 

in Figure 1-1. 
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Fig. 1-1: Strength-elongation relationships for some steels. DP: dual-phase steel; TRIP: 

transformation induced steel. Intestinal free (IF) steel is listed for comparasion [Sun 

and Pugh, 2002; Decooman, 2004; Adamczyk and Grajcar, 2005; Lis et al., 2005; 

Srivastava et al., 2006; Panda et al., 2007; Sarwar et al., 2007; Srivastava et al., 2007; 

Wei et al., 2007; Zhao et al., 2007]. 

 

TRIP steels outperform the others with a microstructure of ferrite, bainite and 

retained austenite. During deformation the austenite transforms into martensite, thus 

enhancing the work hardening rate and ensuring a greater extent of uniform 

elongation. It is worth emphasizing that the plasticity from the shape deformation due 

to martensitic transformation is limited, so it is more meaningful to call such alloys 

TRIP-assisted rather than TRIP steels [Bhadeshia, 2002]. 

1-2 TWIP steel 

About ten years ago, a steel based on plasticity induced by mechanical twinning 

(TWIP), with a remarkable combination of strength and ductility was discovered. 

According to experiments, it can achieve 800 MPa with a total elongation above 85% 
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[Grassel and Frommeyer, 1998]. These values vary with deformation temperature, 

strain rate and chemical composition [Grassel et al., 2000; Frommeyer et al., 2003]. 

Figure 1-2 shows the mechanical properties of Fe-20Mn-3Al-3Si wt. % TWIP steel. 

Its properties are a function of the test temperature. Near room temperature, its 

uniform elongation ( unε ) and total elongation ( fε ) reach maximum, at 78% and 88%, 

respectively. 

 The high elongation is due to the maintenance of work-hardening rate, as shown 

in Figure 1-3. Compared with the stress strain curve of TRIP steel, there is no drastic 

change in curvature for TWIP steel. 

It is possible by using optical and transmission electron microscopy (TEM) to 

characterize the microstructure of TWIP steel, as shown in Figure 1-4. Twins are 

evident as thin plates inside the austenite matrix. The twinning is responsible for 

maintaining the work-hardening rate by hindering the glide of dislocations.  

1-3 Why twinning occurs 

The main difference between TRIP-assisted and TWIP steel is that the austenite in 

the former is stable on cooling but not under mechanical load, i.e. phase 

transformation happens when the material is loaded. In contrast, there is no phase 

transformation in a TWIP steel during cooling or deformation, but the orientation of 

part of austenite will change due to mechanical twinning. The different behavior of 

the austenite is attributed to its stacking fault energy.  

The crystal can be seen as a stack of close-packed layers of atoms arranged in a 

periodic sequence. However the sequence may contain errors, called stacking faults. 

Like all defects, a stacking fault causes a change in energy, called stacking fault 

energy (SFE), denoted γSFE (J m-2). SFE changes with the alloy composition and 

deformation temperature. Its magnitude controls the ease of cross-slip of dislocations 

and thus different mechanisms can be activated at different stages of deformation. As 

SFE decreases the faults become wider and cross-slip more difficult and mechanical 

twinning is hence becoming the favoured deformation mode [Hull and Bacon, 2001].  
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Fig. 1-2: Dependence of 0.2% proof strength ( p0.2R ), tensile strength ( mR ), uniform 

elongation ( unε ) and total elongation ( fε ) on temperature. Fe-20Mn-3Al-3Si wt. % 

TWIP steel [Frommeyer et al., 2003]. 
 

 
Fig. 1-3: True stress vs. true strain curves of the TRIP and TWIP steels. Test 

temperature: 20oC; strain rate: 10-3s-1 [Frommeyer et al., 2003]. 
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(a-d) 

 

 
 (e) 

Fig. 1-4: Microstructure of TWIP steel: (1) Optical micrographs of typical TWIP steel 

(a) unstrained, (b) 18% strain, (c) 26% strain, (d) 34% strain [Allain et al., 2004b]; (e) 

Bright field transmission electron micrograph illustrating deformation twins on two 

intersecting {111} planes [Frommeyer et al., 2003]. 
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However, at very low stacking fault energies, strain-induced epsilon martensite 

becomes predominant [Christian and Mahajan, 1995]. Low SFE (γFCC < 16 mJ m-2) 

favors the γ->εtransformation in FCC [Ishida and Nishizawa, 1974] while higher 

SFE suppresses this transformation. 

Table 1-1 lists the stacking fault energy and deformation modes for some 

materials. It is evident that mechanical twinning becomes favorable at low SFE range. 

Other parameters such as the shear modulus or grain size also influence the 

deformation mechanisms, for instance as shown in Table 1-1, mechanical twinning 

has been found in nanocrystalline aluminum [Chen et al., 2003], whereas in 

coarse-grained pure aluminum, it has never been observed. 

TWIP steels usually contain large concentrations of Mn. Its typical composition is 

3 Si, 3 Al, and more than 20 Mn, in wt. %. Table 1-2 lists the compositions of some 

TRIP / TWIP steels used in experiments. When the manganese concentration is 15 wt. 

%, only TRIP effects was observed whereas when it is 20 wt. %, both TWIP and TRIP 

effects were found. The exact concentrations may vary subject to the other alloying 

elements used. In general, as additional elements, Mn is used to stabilize the austenite 

and at the same time to reduce the stacking fault energy; aluminum to raise the SFE 

and silicon to reduce it.  

By changing the composition and deformation temperature, the stacking fault 

energy can be adjusted to the range where mechanical twinning favours. This energy 

for TWIP steel is found usually less than 25 mJ m-2, but higher than 16 mJ m-2, below 

which the formation of hexagonal close-packed ε is favoured [Frommeyer et al., 

2003]. 

1-4 Objectives 

Thin mechanical twin plates with different orientations are generated in the 

austenite of TWIP steel during deformation. Obviously, differently oriented twins 

contribute to different extents to the total elongation. At the same time, the whole 

piece of steel cannot be completely twinned, and there appears to be a saturation 

volume fraction of twinning which is experimentally proved by Karaman and Choi in 

Hadfield steel [Choi et al., 1999; Karaman et al., 2002]. On the other hand, the 
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orientation of the matrix austenite can be changed due to rotation and mechanical 

twinning in the course of deforming. So one objective of this work is to calculate the 

elongation from twinning itself by using mathematical crystallography; another one is 

to calculate the texture of TWIP steel, for different stress states. An expected outcome 

is the ability to predict the full plastic strain in all directions for an arbitrary stress 

tensor. 

 

Table 1-1: Stacking fault energies (γ SFE) of several materials and their 

deformation modes [Karaman et al., 1998; Pan et al., 1998; El-Danaf et al., 1999; 

Chen et al., 2003]. 

Alloy code     composition / wt. %  γSFE / mJ m-2 deformation mode 

MP35N    35Ni-35Co-20Cr-10Mo   13    Disl. / twin 

70/30 Brass    70Cu-30Zn     7    Disl. / twin  

80/20 Brass    80Cu-20Zn     9    Disl. / twin 

90/10 Brass    90Cu-10Zn     18    Disl. / twin 

Hadfield Steel   12.34Mn-1.03C-Fe balance   25    Disl. / twin 

Magnesium      Mg      125     Disl. 

Zinc       Zn      140     Disl. 

Aluminum      AL      166    Disl. / twin 

 

 

Table 1-2: Typical composition of TRIP / TWIP steel [Grassel et al., 2000; Meng et al., 

2007]. 

Mn / wt. %  Si / wt. %   Al / wt. % C / ppm   Fe / wt. %  steel category 

15.8    3.3    2.9    200    bal.    TRIP 

20.1    2.8    2.9    400    bal.    TWIP / TRIP 

26.5    3.0    2.8    300    bal.    TWIP 

29.2    3.0    2.8    200    bal    TWIP 

33.0    3.0    2.93       bal.     TWIP 
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Chapter 2  

Geometry of Crystallography 
 

Deformation strains and texture changes are related to the changes of the lengths 

and orientations of vectors in the austenite matrix during the process of mechanical 

twinning. To simulate this requires mathematical crystallography based on matrix 

algebra. This chapter contains the background to this geometry of crystals. 

2-1 Crystal structure and definition of a basis 

In the calculation of strains, it is necessary to specify the directions and 

magnitudes of vectors to discover how they change during deformation. To estimate 

texture, it is necessary to specify the orientation of a grain within the sample reference 

frame. There will therefore be two bases, one defined with respect to the crystal 

structure and a second to represent the sample shape. 

Figure 2-1 (a) shows the unit cell of austenite. Three vectors parallel to the unit 

cell edges and of magnitude equal to the austenitic lattice parameter form the 

crystallographic basis, as shown in Figure 2-1 (b). 

The set of vectors ai (i 1, 2,3) = are called the basis vectors and the basis itself can 

be identified by a basis symbol A. Now, any vector u in the structure can then be 

written as: 

       u  = 1u a1 + 2u a2 + 3u a3 

where 1 2 3, , u u u  are its components in the basis A.  

These components of line vector can conveniently be written as a single column 

matrix: 
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(a)                                    (b) 

Fig. 2-1: (a) Austenite structure; (b) Coordinate system representing the lattice. 

 

1

2

3

u
u
u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

However, for the convenience, this can also be written using square brackets as 

1 2 3[   ]u u u . It follows from this that the matrix representation of the vector u with 

respect to the basis A is [A; u] 1 2 3 = [   ]u u u . For instance in Figure 2-1(b), 

[A; u] = [1 0 1] . 

A single row matrix 1 2 3(   )u u u  with round brackets can also be used to 

represent the vector u, which is (u; A) 1 2 3=  (   )u u u . Notice that the column matrix  

[A; u] is the transpose of row matrix (u; A). 

The external shape of the specimen determines a specific coordinate system. In 

the case of rolled sheet steel, it is normal to choose a coordinate system S whose axes 

s1, s2 and s3 lie along the rolling direction (RD), transverse direction (TD) and normal 

direction (ND) of the sheet, respectively, as shown in Figure 2-2 

The preference of crystallographic orientation of each grain within the sample is 

the essence of texture. There are usually two ways to represent texture, the pole figure 

and the orientation distribution function, both of which will be discussed later in this 

chapter. 

 

u

a1 

a3 

a2 
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Fig. 2-2: Sample reference frame. 

 

 

2-2 Representation of rotation matrix 

2-2-1 Direction cosine matrix 

The components of any vector u, i.e. [u1 u2 u3], together with the basis vectors, 

give its orientation and magnitude. For an orthonormal basis, a new unit vector 

parallel to u can be obtained by normalizing the vector as 

31 2
2 2 2 2 2 2 2 2 2
1 2 3 1 2 3 1 2 3

  uu u
u u u u u u u u u

⎡ ⎤
⎢ ⎥
⎢ ⎥+ + + + + +⎣ ⎦

 

or 

[ ]cos cos cosα β δ  

where α , β , δ  are the angles between u and a1, a2 and a3, respectively. cosα , 

cosβ  and cosδ  are called the direction cosines of u. 

It’s evident that the choice of the basis vectors ai is arbitrary, though in this case 

convenient. In the case of orthonormal bases, the orientation of a second basis B can 

be specified by specifying the direction cosines of its three axes b1, b2 and b3 in basis 

A, that is: 

s1 (RD) 

s3 (ND) s2 (TD) 
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b1 1= cosα ×a1 1+cosβ ×a2 + 1cosδ ×a3 

b2 2= cosα × a1 2+cosβ ×a2 + 2cosδ × a3 

b3 3= cosα ×a1 3+cosβ × a2 + 3cosδ ×a3 

where iα , iβ , iδ ( 1,2,3)i =  are the angles between basis axes ai and b1, ai and b2, 

ai and b1, respectively 

 The matrix relating this transform from basis A to basis B is denoted as a rotation 

matrix (A J B): 

1 2 3

1 2 3

1 2 3

cos cos cos
(A J B) cos cos cos

cos cos cos

α α α
β β β
δ δ δ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

A simple example is rotation of a right handed angle  φ about a common axis a3||b3, 

in which case the rotation matrix can be written as: 

cos sin 0
(A J B) sin cos 0

0 0 1

φ φ
φ φ

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

and when the rotation is about a1||b1 by angleψ , 

1 0 0
(A J B) 0 cos sin

0 sin cos
ψ ψ
ψ ψ

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

 

These examples are simple because the rotation and the relationship between A 

and B are obvious. In fact any rotation matrix (A J B) is orthonormal which means 

that its transverse equals its inverse and a general rule that each column of a rotation 

matrix (A J B) represents the components of a corresponding basis vector of B with 

respect to basis A is always held. 

The transformation of components of any vector u then follows the 

straightforward rule, 

[A; u] = (A J B) [B; u]      (2-1) 

or: 

[B; u] = (B J A) [A; u]        

where (B J A) is the inverse of (A J B). 



 12

2-2-2 Rotation axis-angle pairs 

The rotation matrix (A J B) can also be represented by a pair of rotation axis u 

and a right handed rotation angle θ . Supposing u = 1 2 3[   ] u u u in basis B, if u 

happens to lie along the rotation axis relating bases A and B, then not only the 

components of u in both bases remain the same, but its direction remains invariant to 

the rotation operation so that [B; u] = [A; u]. Substituting it into equation 2-1 we get, 

[B; u] = (A J B) [B; u]        

that is, 

{(A J B) - I} [B; u] = 0      (2-2) 

where I is a 3 3×  identity matrix. 

It can be proven that equation 2-2 always has non-zero solution as long as the 

matrix (A J B) is not an identity matrix which represents a null rotation. 

The sense and magnitude of the rotation angle θ  also need to be specified. 

Consider the following example. Supposing a rotation matrix is 

2 2 1
1(A J B)= 1 2 2
3

2 1 2

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

solving equation 2-2 gives 1 2 3u u u= =  which means B[1 1 1]  is the rotation axis. A 

vector [B; v] =  [1 1 0]  which is normal to the rotation axis u, becomes a new vector 

[A; w] =  [1 1 0] due to rotation. The vector w can then be represented in basis B as [B; 

w] = (B J A) [A; w] =  [1 0 1] . The cross product of w and v gives a vector parallel 

to B [1 1 1] , which means the rotation was right-handed. 

Naturally, if the rotation axis and angle are known, then the rotation matrix can be 

derived as [Bunge, 1982]: 

1 1 1 2 3 1 3 2

1 2 3 2 2 2 3 1

1 3 2 2 3 1 3 3

(1 cos ) cos (1 cos ) (1 cos )
(A J B) (1 cos ) (1 cos ) cos (1 cos )

(1 cos ) (1 cos ) (1 cos ) cos

u u u u u n u u u n
u u u n u u u u u n
u u u n u u u n u u

θ θ θ θ
θ θ θ θ
θ θ θ θ

− + − + − −⎛ ⎞
⎜ ⎟= − − − + − +⎜ ⎟
⎜ ⎟− + − − − +⎝ ⎠

 

where 1 2 3 ,  ,  u u u  are the components of a unit rotation axis and  θ  is the 
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corresponding right-handed rotation angle. By this way only three independent values 

are needed to define the rotation matrix: any two components of the unit rotation axis 

and one rotation angle. 

2-2-3 Euler angles 

The rotation relating crystals can also be represented using Euler angles ( ) , ,φ θ ψ , 

which split the complete rotation into three constitutive rotations, as shown in Figure 

2-3 (a), each of which can be described by rotation matrices. 

The first rotation (Figure 2-3 (b)) by a right-handed angle  φ about a3 axis gives a 

rotation matrix: 

cos sin 0
sin cos 0

0 0 1
Rφ

φ φ
φ φ

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

       (2-3) 

the second by   θ about the a1 (Figure 2-3 (c)) gives: 

1 0 0
0 cos sin
0 sin cos

Rθ θ θ
θ θ

⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟
⎝ ⎠

       (2-4) 

and the third rotation is by an angle ψ  about a3 again (Figure 2-3(d)) which gives: 

cos sin 0
sin cos 0

0 0 1
Rφ

φ φ
φ φ

−⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

       (2-5) 

The final effect of these three rotations is 

 (A J B) R R Rψ θ φ= × ×        (2-6) 

cos cos cos sin sin cos sin cos cos sin sin sin
(A J B)= sin cos cos sin cos sin sin cos cos cos cos sin

sin sin sin cos cos

ψ φ θ φ ψ ψ φ θ φ ψ ψ θ
ψ φ θ φ ψ ψ φ θ φ ψ ψ θ

θ φ θ φ θ

− +⎛ ⎞
⎜ ⎟− − − +⎜ ⎟
⎜ ⎟−⎝ ⎠

(2-7) 

Hence given any orthonormal rotation matrix 

11 12 13

21 22 23

31 32 33

(A J B)
J J J
J J J
J J J

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

       (2-8) 
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(a) 

 

  

     (b)                            (c)                          (d) 

 

Fig. 2-3: The split of a complete rotation into three constitutive rotations. Intersection 

of two planes is called line of nodes (ON).  φ is the angle between a1 and ON; ψ  is 

the angle between b1 and ON and  θ is the angle between a3 and b3. (b) First rotation 

about a3 axis by the angle of φ  so that a1 meets ON; (c) second rotation about a11 

(rotated a1) which lies along ON, by the angle of θ  until a3 changes to the position 

of a31 which is parallel b3; (d) third rotation about a31 by the angle of ψ  when a11 

and a22 meet b1 and b2. All the rotations are right-handed. 
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the corresponding Euler angles are: 

31 32

33

13 23

arctan( / )
arccos( )

arctan( / )

J J
J

J J

φ
θ
ψ

=⎧
⎪ =⎨
⎪ = −⎩

       (2-9) 

It is necessary to note that the definition of Euler angles is not unique. In the 

literature many different conventions are used [Biedenharn and Louck, 1981]. These 

conventions depend on the axes about which the rotation sequence was made. The 

particular convention used here has a sequence of rotation about a3 - a1 - a3, which is 

also called 3-1-3 Euler angles sequence. 

2-3 Homogeneous deformation 

A rotation matrix only describes the orientation change. However both the 

orientation and magnitude of a vector may change during deformation. For example 

the Bain strain is a deformation of an FCC austenite structure into one that is 

body-centered cubic (BCC). An FCC structure can be represented by two different 

sets of bases: one defined with the FCC unit cell (denoted A) and the other using a 

body-centered tetragonal unit cell (BCT, denoted B), as shown in Figure 2-4 (a). The 

BCT to BCC transformation can be accomplished by a compression of 

3 ( / )a aα γη = along B [0 0 1]  coupled with an expansion of 1 2 ( 2 / )a aα γη η= =  

along B[1 0 0]  and B[0 1 0] , respectively, as shown in Figure 2-4 (b). 

 The deformation described can be written as a 3 × 3 deformation matrix (A S A), 

which is referred to the austenite basis, with the same basis symbol A on both sides of 

S. Thus the effect of the deformation changes a vector u into a new vector u’ as 

shown in Figure 2-4 (b): 

[A; u’] = (A S A) [A; u]      (2-10) 

where 

1

2

3

0 0
(A S A)= 0 0

0 0

η
η

η

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 

 



 16

 

(a) 

  
(b)          (c) 

Fig. 2-4: (a) Austenite structure represented by a face-centered cubic (bold dark lines) 

or by a body-centered tetragonal cell (dashed lines). (b) A compression along 

B[0 0 1]  coupled with an expansion along B[1 0 0]  and B[0 1 0]   is the Bain strain; (c) 

top view of Bain strain. 

2-3-1 Similarity transformation 

A change of coordinate system does not change the physical effect of the 

deformation. The deformation matrix (A S A) can also be defined with respect to 

another coordinate system B, which satisfies: 

[B; u’] = (B S B) [B; u]  

If the coordinate transformation matrix relating A and B is (A J B), then: 

[A; u] = (A J B) [B; u] and [B; u’] = (B J A) [A; u’] 

Substituting equation 2-10 into these equations we get, 

[B; u’] = (B J A) (A S A) (A J B) [B; u] 

hence 

(B J B) (B J A)(A S A)(A J B)=     (2-11) 
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This is called a similarity transformation, which refers a deformation to a different 

basis. 

2-3-2 Deformation matrix in mechanical twinning 

The deformation which always leaves one plane of the parent crystal completely 

undistorted and unrotated is an invariant-plane strain (IPS). There are different types 

of invariant-plane strains as shown in Figure 2-5. Mechanical twinning, which only 

involves a simple shear and which is the topic of this thesis, is one of them, as shown 

in (b). Its deformation matrix can be represented as: 

1 0
(Z P Z)= 0 1 0

0 0 1

s⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where basis Z is specifically chosen to make each column of (Z P Z) represents the 

components of a new vector generated by deformation of a vector equal to one of the 

basis vectors of Z. 

The orientation relationship between crystallographic basis A and basis Z is  

[A; d] || [Z; z1],  [A; q] || [Z; z2],  [A; p] || [Z; z3] 

where d is a unit vector parallel to the twinning direction, p is a unit vector normal to 

twinning plane and q = p ^ d. 

The rotation matrix between basis Z and basis A is hence derived as: 

1 1 1

2 2 2

3 3 3

(A J Z)
d q p
d q p
d q p

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where , ,  ( 1, 2,3)i i id q p i =  are components of vector d, q and p, respectively. 

Using a similarity transformation this gives: 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

1
(A P A) (Z J A)(A P A)(A J Z) 1

1

sd p sd p sd p
sd p sd p sd p
sd p sd p sd p

+⎛ ⎞
⎜ ⎟= = +⎜ ⎟
⎜ ⎟+⎝ ⎠

 

writing A* as reciprocal of basis A, this equation simplifies as: 

(A P A) = I + s [A; d] (p; A*)      (2-12) 

where s is the magnitude of twinning strain i.e.1/ 2 , and I is a 3 3 × unit matrix. 
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(a)               (b)               (c) 

 

Fig. 2-5: Three different types of invariant plane strain (a) dilatation (b) simple shear 

(c) deformation in general. The basis Z is orthonormal. The squares represent the 

matrix before deformation. δ , s  and m  represent the magnitudes of dilatation, 

shear strain and general displacement, respectively. p is a unit vector normal to the 

invariant plane parallel to the basis axis z3, the shear strain s is parallel to z1 whereas 

the δ  is parallel to z3. 

2-4 Texture representation 

2-4-1 Pole figures 

A pole figure is a two dimensional graphical representation of the distribution of 

crystal orientations relative to the polycrystalline sample reference frame. It is defined 

and constructed as follows: 

 

Definition of a pole 

Consider a crystal with a sphere around it (Figure 2-6 (a)). The crystal is located 

at the center of the sphere, designated as O. The orientation of plane P is given by its 

normal OP’ and its intersection with the sphere and the plane is a great circle; the 

intersection of the normal and the sphere is a pole. Clearly, at least two non-parallel 

poles are required to uniquely define an orientation. 
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Stereographic projection 

Consider the xy plane, whose trace is the equator of the sphere (Figure 2-6 (b)). A 

line is connected joining the South Pole S (on the lower hemisphere) with the pole of 

interest P’. The intersection of SP’ and the equatorial plane is the stereographic 

projection of pole P’, denoted as P’’.  

 

Pole figure for texture 

Consider a single crystal first. To draw a pole figure, choosing a particular form 

of crystal planes, {1 1 1} for instance (Figure 2-6 (c)), plot the stereographic poles 

of all equivalent planes such as (1 1 1), (1 1 1)  and (1 1 1)  relative to a reference 

frame. In the case of rolled metal, this latter frame may consist of the rolling direction 

(RD), transverse direction (TD) and normal direction (ND).  

For polycrystalline samples, all {1 1 1} poles for all grains are plotted. 

 

Mathematics 

Supposing the sphere has unit radius, then any pole P’ can be represented by a 

unit vector with components  [ , , ]u v w  in the sample reference. Using similar triangles, 

as shown in Figure 2-6 (d): 
1| '' |

1
OP

w
=

+
 

so, the coordinate of P’’ on the equatorial plane is: 

1

1

ux
w

vy
w

=
+

=
+

       (2-13-1) 

However, if OP’ does not point to the northern hemisphere (i.e. 0w < ), then the 

projection is from the North Pole with: 

1

1

ux
w

vy
w

=
−

=
−

                       (2-13-2) 
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(a)                               (b) 

 

 

 

(c)         (d) 

 

Fig. 2-6: (a) A pole P’ represents a crystallographic plane; (b) P’ is projected 

equatorial plane of the sphere O; (c) 4 {1 1 1} poles represents the orientation of a 

grain in the rolled sample reference frame; (d) Geometry of the relation of a pole P’ 

and its projection P” on the equatorial plane. 
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2-4-2 Orientation distribution function. 

As discussed in Section 2.2, any crystal can be described using three independent 

Euler angles, ( ), ,φ θ ψ with respect to sample basis A. In materials science, as a 

convention these angles are generally written as ( )1 2, ,ϕ φΦ , a set which constitutes 

“Euler space” in which the orientation of each grain is represented by a point. Figure 

2-7 shows the orientation of 500 textured grains in Euler space. 

However, three-dimensional graphs are not always easy to interpret, so 

intersections of Euler space are frequently plotted. In this method, the Euler space is 

divided into ‘slices’ at 2 5oϕ = intervals. Then these slices are arranged in a grid, 

putting all the dots in the interval to the nearest slice, and this is called an orientation 

distribution function as shown in Figure 2-8 (a). Figure 2-8 (b) gives the most 

common section, with o
2 45ϕ = . 

 

 

Fig. 2-7: Euler space of a textured material: each dot represents the orientation of one 

grain relative to a reference frame. 
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(a)         (b) 

Fig. 2-8: (a) Orientation distribution function with o
2 5ϕ = intervals. (b) o

2 45ϕ =  

section of (a). 

 

 

 

 

 

 

 

 

 

 

 

 

o
2 45ϕ =
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Chapter 3  

Simulation of Twinning 

 

As an important plastic deformation mode deformation twinning happens in 

many materials, especially for those metals with body-centered cubic, hexagonal close 

packed and other lower symmetry structures, such as cobalt alloys [Mahajan and Chin, 

1973]. A wider range of materials including FCC metals and alloys such as aluminum, 

copper [Asgari et al., 1997; El-Danaf et al., 1999; Chen et al., 2003], silver-gold alloy 

[Suzuki and Barrett, 1958] and alumina-manganese alloy [Gray-III, 1988], 

intermetallic compounds [Christian and Laughlin, 1988], semiconductors [Pirouz, 

1987]. A more comprehensive list of materials with mechanical twinning has been 

compiled by a number of authors [Gray-III, 1988; Christian and Mahajan, 1995]. In 

this work, only the FCC case is of interest. 

3-1 Twinning in FCC 

The close-packed plane in FCC is {111} type plane with a stacking sequence 

of…ABCABC… [Callister, 2004]. Figure 3-1 (a) is a schematic representation of a 

{111}  plane in FCC where the Burger’s vector b of a lattice dislocation equal 

to  / 2 110  aγ < > is illustrated. The positions labeled A, B and C indicate three 

possible locations for the stacking of {111}  planes. The Burger’s vector b can 

dissociate into two partial Burger’s vectors bp1 and bp2 along 112< >  directions, 

with dislocation reaction: 

[110] [121] [211]
2 6 6
a a aγ γ γ→ +  

This occurs because there is a reduction in energy since |bp1|2 + |bp2|2 < |b|2. The  
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(a) 

 

 
(b) 

 

Fig. 3-1: (a) Projection of a FCC (1 1 1)  plane. A Burger’s vector b lies along [110] 

and dissociates into two partial dislocations bp1 along [121] and bp2 along  [211] . (b) 

Schematic representation of the formation of twinning. FCC [110] projection: {111} 

layer B moving bp=a /6[112]γ  to the new position C; C moving 2 a /6[112]γ×  to B: a 

a /6[112] γ to A and then another a /6[112]γ  to B; similarly A moving 3 a /6[112]γ×  

and still takes A position.  
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compounds of the two partial dislocations which are parallel to b tend to repel each 

other, thus creating a stacking fault between them [Hull and Bacon, 2001]. However, 

the stacking fault energy per unit area exerts an attractive force between the partials 

which leads to an equilibrium separation between the partials at the point where the 

two forces balance. 

Figure 3-1 (b) is a schematic representation of the formation of mechanical 

twinning: the sequential movement of close packed layers along / 6[112] aγ on (111)  

plane forms a twin plate. 

It is obvious that movement along the opposite direction of bp1 is unfavorable 

because the translation required would be -2bp1 which doubles the shear and hence is 

not favored from an energy point of view. The direct consequence of this fact is the 

polarization of twinning direction: on each {111}  twinning plane, only three 

112< >  directions out of six can be the twinning direction. Consequently there are 12 

twinning systems in FCC, as listed in Table 4-1.  

 

Table 4-1: The twinning systems in FCC materials. Due to the polarization of the 

twinning shear there are 12 possible twinning systems.  

Twinning Plane   (1 1 1)   (1 1 1)   (1 1 1)   (1 1 1)  

Twinning Directions  [1 1 2]   [1 1 2]   [1 1 2]   [1 1 2] 

       [1 2 1]   [1 2 1]   [1 2 1]  [1 2 1]  

       [2 1 1]   [2 1 1]  [2 1 1]   [2 1 1]  

 

3-2 Twinning shear, deformation matrix and orientation 

relationship of twin 

Mechanical twinning is a simple shear on the twinning plane which remains 

undistorted and unrotated. Consider a block of material illustrated in Figure 3-2, 
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which twins on plane K1. The plane denoted K2 is undistorted but is rotated. In FCC, 

if K1 plane is (1 1 1) then K2 is (1 1 1) plane. 

The shear strain is defined as: 

111

| / 6 112 | 6 / 6 1
/ 3 2

d a as
h d a

< >
= = = =  

where 111d  is the interplanar spacing of the (1 1 1) planes. 

 
Fig. 3-2: Schematic representation of mechanical twinning of a block material. The 

interplanar distance for type a plane is lengthened, for c shortened and for b keeps the 

same 

 

It is possible now to find the deformation matrix for every twinning system using 

equation 2-12, and the corresponding coordinate transformation matrix which 

describes the orientation relationship with matrix using the methods introduced in 

Chapter 2. 

 

Table 3-2 Deformation matrices and coordinate transformation matrices for all 12 

twinning systems in FCC. 

Twinning system  deformation matrix  coordinate transformation matrix 

      (M P M)       (M J T) 

(1 1 1)[112]   
0.8333   -0.1667    0.1667

-0.1667    0.8333    0.1667
0.3333    0.3333    0.6667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667    -0.6667

-0.6667    0.3333    -0.6667
-0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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(1 1 1)[121]   
0.8333   -0.1667    0.1667
0.3333    1.3333   -0.3333

-0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667    -0.6667

-0.6667    0.3333    -0.6667
-0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[211]   
1.3333    0.3333   -0.3333

-0.1667    0.8333    0.1667
-0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667    -0.6667

-0.6667    0.3333    -0.6667
-0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 1 2]   
0.8333   -0.1667    0.1667
0.1667    1.1667   -0.1667

-0.3333   -0.3333    1.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667     0.6667
0.6667    0.3333    -0.6667
0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 2 1]   
0.8333   -0.1667    0.1667

-0.3333    0.6667    0.3333
0.1667    0.1667    0.8333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667     0.6667
0.6667    0.3333    -0.6667
0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[2 1 1]   
1.3333    0.3333   -0.3333
0.1667    1.1667   -0.1667
0.1667    0.1667    0.8333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667     0.6667
0.6667    0.3333    -0.6667
0.6667   -0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 1 2]  
1.1667   -0.1667    0.1667

-0.1667    1.1667   -0.1667
-0.3333    0.3333    0.6667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667    -0.6667
0.6667    0.3333     0.6667

-0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 2 1]   
1.1667   -0.1667    0.1667
0.3333    0.6667    0.3333
0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667    -0.6667
0.6667    0.3333     0.6667

-0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[2 1 1]  
 0.6667    0.3333   -0.3333

-0.1667    1.1667   -0.1667
0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333    0.6667    -0.6667
0.6667    0.3333     0.6667

-0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 1 2]  
1.1667    0.1667   -0.1667
0.1667    1.1667   -0.1667
0.3333    0.3333    0.6667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667     0.6667

-0.6667    0.3333     0.6667
0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1)[1 2 1]   
1.1667    0.1667   -0.1667

-0.3333    0.6667    0.3333
-0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667     0.6667

-0.6667    0.3333     0.6667
0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

(1 1 1) [2 1 1]  
0.6667   -0.3333    0.3333
0.1667    1.1667   -0.1667

-0.1667   -0.1667    1.1667

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
0.3333   -0.6667     0.6667

-0.6667    0.3333     0.6667
0.6667    0.6667     0.3333

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠
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3-3 Criterion for the initiation of mechanical twinning  

It is important to understand the factors for the initiation of mechanical twinning. 

An obvious hypothesis is that twin initiation occurs when the externally applied shear 

stress, across the twinning plane, resolved in the twinning direction, reaches a critical 

value, by analogy to Schmid’s law for slip. But the results reported in the literature 

show that the scatter of measured twinning stress in a given material is generally too 

large and that the range of crystal orientations examined is too small to provide an 

adequate test of the above hypothesis [Christian and Mahajan, 1995]. However, many 

investigators believe that twinning is always accompanied (or preceded) by some 

microscropic slip on a very small scale that is difficult to investigate. Recently 

Karaman [2000] did the experiments and showed that multiple slip is required for 

twinning in the theoretically twinning orientations, and Szczerba [2004] claimed that 

a critical resolved shear stress (CRSS) for twinning in Cu-8 at.% Al single crystal 

exists, but for other materials the existence of CRSS is not proved yet. However, it is 

clearly necessary that, when twinning is caused by an external stress, the applied 

stress does work during the formation of twinning. Hence the criterion used for the 

initiation of the twinning and for the preference of twinning system in this project is 

the interaction energy, which is defined as the product of the resolved stress and the 

twinning shear.  

The stress status of each point of the material (Figure 3-3 (a)) can be described by 

a 3 3×  symmetric stress tensor in the basis A as: 

11 12 13

21 22 23

31 32 33

(A S A)
σ τ τ
τ σ τ
τ τ σ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

where 11σ , 22σ , 33σ  are normal stresses and 12 21τ τ= , 13 31τ τ= , 23 32τ τ=  are 

shear stresses. 

When the stress tensor is multiplied by a unit normal p representing a plane 

(Figure 3-3 (b)), a traction vector t representing the direction and magnitude of force 

per unit area on that plane is obtained by: 

[A; t] = (A S A) [A; p]      (3-1) 
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The traction t is then resolved onto the twinning plane to obtain the maximum 

resolved shear stress, which in turn is resolved along the twinning direction d. The 

interaction energy is therefore given by: 

E = s • t • (p/|p| × (t/|t| × p/|p|)) • d/|d|     (3-2) 

where s  is a scalar 1/ 2 . 

Table 3-3 lists the preferential sequence of twinning systems according to this 

criterion, when a single crystal is tensile tested along [1 2 7]. 

 

Fig. 3-3: (a) Stress status of a point: ( 1, 2,3)ii iσ =  are principal stresses and 

( , 1, 2,3; )ij i j i jτ = ≠  are shear stresses, in equilibrium ij jiτ τ= . (b) The stress tensor 

applied to a surface gives a traction vector. 

3-4 The calculation 

FORTRAN (formula translation) programs have been written in this work to 

implement the calculation of strain and crystallographic texture due to mechanical 

twinning in a polycrystalline FCC samples. 

A sample reference frame is set identified by the basis symbol S. For convenience, 

one grain of austenite has its crystallographic axes aligned to the sample reference S. 

This particular grain is called the reference grain with basis symbol M1. Writing M2 as 

the basis of another grain in the sample, its coordinate transformation matrix becomes 

1 2(M  J M )  which is generated by the computer program. As discussed in Chapter 2, 

The method of rotation axis and angle pair is used to get a textured austenite while  
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Table 3-3: The preferential sequence of twinning system according to the interaction 

energy (E) criterion. Applied stress: uniaxial tension along [1 2 7], 500 MPa. 

Twinning system index  operating twinning system     E / J mole-1 

1      (1 1 1)[2 1 1]       192.05 

2      (1 1 1)[1 2 1]       157.13 

3      (1 1 1)[2 1 1]      152.77 

4      (1 1 1)[1 2 1]      87.30 

5      (1 1 1)[1 2 1]       87.30 

6      (1 1 1)[2 1 1]      61.10 

7      (1 1 1)[2 1 1]      39.28 

8      (1 1 1)[1 2 1]       34.91 

9      (1 1 1)[1 1 2]      -148.40 

10      (1 1 1)[1 1 2]      -196.42 

11      (1 1 1)[1 1 2]       -226.97 

12      (1 1 1)[1 1 2]      -240.07 

 

the method of Euler angles is capable of generating a randomly distributed matrix. 

When generating texture, for example 1000 grains with Goss texture, the 

reference grain is set in the ideal Goss orientation, that is: 

RD ([1 0 0]S ) || [0 0 1],  ND ( [0 1 0]S ) || [1 1 0]  

and TD ([0 0 1]S) || [0 0 1] ^ [1 1 0]. 

The remaining 999 grains are generated by choosing rotation axes randomly, but 

limiting the maximum value of the right-handed rotation angle θ. 

However when generating a matrix with a fibre texture which has a specific 

direction pointing along one of the sample reference frame axes, then instead of 

setting a reference grain, an ideal direction is needed as a reference. Taking α-fibre as 

an example: 
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ND ( [0 1 0]S ) || [1 1 0] 

By generating any two random numbers a1 and a2 ranging from -1 to 1, the RD 

and TD are given as: RD || [a1 -a1 a2] and TD || [1 1 0] ^ [a1 -a1 a2]. 

3-4-1 The calculation of strain 

Single crystal 

Figures 3-4 (a) and (b) show the deformation of a single grain. According to the 

published work, at least two twinning systems operate in a given austenite grain when 

the material is severely deformed [Karaman et al., 2000; Allain et al., 2004a]. 

Supposing that two twinning systems with the largest two values of interaction 

energies operate, one denoted as I with volume percent V1% and the other denoted as 

II with volume percent V2%. A vector OP changes to a new one OP1 as a result of the 

twinning shear. The true strain is consequently given by 

 

lnε = (| OP1|/| OP |)          (3-3) 

 

Dividing vector OP into five sections, OA, BC, DP remain in the untwinned 

region and keep constant before and after deformation whereas AB and CD in the 

twinned regions change into AB1 and C1D1 after twinning shear, as shown in Figure 

3-4 (b). The new vector is therefore the net vector of OA, AB1, B1 C1, C1D1, and DP1, 

 

[M; OP1] = [M; OA] + [M; AB1] + [M; B1C1] + [M; C1D1] + [M; DP1] (3-4) 

 

the magnitudes of AB1 and C1D1 should be proportional to their volume percents, 

V1% and V2%, respectively. Denoting the deformation matrix T1(M P  M)  for twin I 

and T2(M P  M)  for twin II, then  

 

[M; AB1] = (M PT1 M) × [M; AB] = (M PT1 M) × [M; OP] × V1%   (3-5) 

[M; C1D1] = (M PT2 M) × [M; CD] = (M PT2 M) × [M; OP] ×V2% (3-6) 

[M; OA] + [M; C1D1] + [M; DP1] = (1-V1%- V2%) × [M; OP]  (3-7) 
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Substituting equation 3-5, 3-6, 3-7 into equation 3-4 gives the new distorted and 

rotated vector OP1. 

 

Bicrystal 

Figure 3-4 (c) shows a bicrystal before deformation. Denoting the basis of grain 1 

as M1, and grain 2 as M2, the coordinate transformation matrix is then 1 2[M  J M ]. The 

distorted and rotated vector P1P2 in grain 2 can be found by following the same 

procedure as used in the calculation for the single crystal. The components of the net 

vector OP2 with respect to the basis M1 are given by the equation 
 

[M1; OP2] = [M1; OP1] + (M1 J M2) × [M2; P1P2]   (3-8) 
 
hence the true strain is 

lnε = (|OP2| / | OP’|)     (3-9) 

 
If OP1 and O’P’ are normalized, 3-9 can be written as 

lnε = (|OP2| / 2)        (3-10) 

 
 
Polycrystalline 

 The calculation for polycrystalline is simply a repetition of the calculation of 

bicrystal. For a sample with n  grains, 
 

lnnε = (| OPn| / n)      (3-11) 
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3-4-2 The calculation of texture 

Still referring to Figure 3-4 (b), writing T11 as the basis of twin I in the reference 

grain 1 then the coordinate transformation matrix between it and its parent is 

1 11(M  J T ) . Any direction u in parent and in twin I can be represented in the sample 

reference using equation 2-1 in Chapter 2. 

[S; u] = (S J M1) [M1; u]      (3-12) 

and 

[S; u] = (S J M1) (M1 J T11) [T11; u] = (S J T11) [T11; u]  (3-13) 

Similarly for grain 2 

[S; u] = (S J M1) (M1 J M2) [M2; u] =(S J M2) [M2; u]   (3-14) 

and 

[S; u] = (S J M1) (M1 J M2) (M2 J T21) [T21; u] = (S J T21) [T21; u] (3-15) 

When [S; u] is projected on the equatorial plane of a stereographic sphere using 

equation 2-13, then one gets the pole figure; whereas when 

i ij(S J M ), (S J T ) (i=1, number of grains; j=1,2)  are compared with the Euler angles 

representation of coordinate transformation matrix in equation 2-7, one gets the Euler 

angles of all the grains and their twins by equation 2-9. 
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Fig. 4-2 Schematic representation of the deformation of single crystal (a-b) and 

bicrystal (c-d) 
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Chapter 4  

Results and Discussions 

 

A model has been developed to calculate the strain due to twinning and to 

simulate the resulting changes in crystallographic texture of TWIP steel. FORTRAN 

programs were written to implement the calculations. Some results obtained are 

compared against data in the published literature. 

4-1 Texture 

4-1-1 Modeling of important orientations in FCC orientations 

Crystal orientations in sheets are specified by the Miller indices of the crystal 

plane which is parallel to the plane of the sheet, and the indices of the crystal direction 

which in that plane is parallel to the rolling direction, in a form of  { }hkl uvw< > . 

FCC metals have several important crystal orientations which should be 

considered when analyzing the evolution of textures. They are all listed in Table 4-1-1. 

Most of these orientations are located on 2 45oϕ =  section of the orientation 

distribution function (ODF), as shown in Figure 4-1-1. Each particular orientation is 

represented by a two dimensional projection of the FCC unit cell, each plane of which 

represents a {100} plane. The projections are in the normal direction (ND); the 

tensile direction or rolling direction (TeD or RD) is vertical pointing upwards while 

the transversal direction (TD) is horizontal pointing to the right. 

All the crystal orientations with a 110< >  direction parallel to the normal direction, 

such as Goss orientation  {110} 001< >  and Brass orientation{110} 112< > , form a 

fibre which is called α − fibre. The brass orientation is of great importance on this  
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Table 4-1-1: Important crystallographic orientations of textured pure FCC metals 

and alloys, their orientation, presence on fibres and Euler angles at 2 45oϕ =  except 

for the S-orientation where 2 63oϕ =  [Vercammen et al., 2004a]. 

 
 

 

Figure 4-1-1: Schematic representation of the 2 45oϕ =  section of the ODF of 

FCC metals. Each particular orientation is represented by a two dimensional 

projection of FCC structure along the normal direction. The tensile direction is 

vertical pointing upwards and the transversal direction is horizontal pointing to the 

right. 

TD 

TeD or RD 
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fibre especially during cold rolling of low stacking fault energy FCC materials such as 

brass. A second important fibre on this section is the τ − fibre which contains all 

crystal orientations with a 110< >  direction parallel to the transverse direction, such 

as the Copper {112} 111< >  and Goss orientations. The Copper orientation is 

important for high stacking fault energy FCC materials such as aluminum and pure 

copper [Hirsch et al., 1988]. Also important fibre is the γ − fibre for grains with 

{111} planes parallel to the normal direction; this fibre indicates that the slip or 

twinning planes orient parallel to the rolling plane during the deformation of flat 

samples.  

These important orientations are generated by the program. 

Figure 4-1-2 (a) shows the calculated 100 pole figures for 2000 grains with a 

random orientation distribution. Due to the intrinsic angular distortion of 

stereographic projections, the intensity slightly increases towards the centre of the 

stereogram. 

Figure 4-1-2 (b) is the corresponding Euler space representation and Figure 4-1-2 

(c) the 2ϕ  projection. 

It is evident from (c) that a random orientation distribution in three-dimensional 

space is not uniform in Euler space [Bunge, 1982]. 

 Figures 4-1-3 to 4-1-6 give the computer generated Cube, Goss, Brass, Copper 

textured austenite matrix respectively, where the term “matrix” refers to the austenite 

prior to deformation. As indicated previously, the intensity distribution is determined 

by the rotation angle range. In all these cases, the rotation angle is limited to the range 

from 0 to 45o. Figure 4-1-7 gives the computer generated α − fibre and γ -fibre in 

Euler space, the maximum rotation angle  θ in these cases being 25o. 
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(a) 

 

 

  
(b)          (c) 

Fig. 4-1-2: (a) Model generated 100-pole figure for 2000 randomly oriented austenite 

grains. (b) Euler space representation and (c) 2ϕ  projection of (b). It is clear form (c) 

that a random distribution in three-dimensional space does not appear random in Euler 

space. 

 

[1 0 0]S 

[0 1 0]S 
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(a) 

 

  
(b)          (c) 

 

Fig. 4-1-3: (a) Model generated 100-pole figure for 2000 Cube-textured austenite 

grains. (b) Euler space representation for 6000 Cube-textured austenite grains and (c) 

2 45oϕ =  section of (b). Maximum rotation angle θ = 45o. 

 

 

[1 0 0]S 

[0 1 0]S

2 45oϕ =  
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(a) 

 

  
(b)         (c) 

 

Fig. 4-1-4: (a) Model generated 100-pole figure for 2000 Goss-textured austenite 

grains. (b) Euler space representation for 6000 Goss-textured austenite grains and (c) 

2 45oϕ =  section of (b). Maximum rotation angle θ = 45o. 

 

 

[1 0 0]S 

[0 1 0]S

2 45oϕ =  

 



 41

 

 

 

(a) 

 

 
(b)         (c) 

 

Fig. 4-1-5: (a) Model generated 100-pole figure for 2000 Brass-textured austenite 

grains. (b) Euler space representation for 6000 Brass-textured austenite grains and (c) 

2 45oϕ =  section of (b). Maximum rotation angle θ = 45o. 

 

 

[1 0 0]S 

[0 1 0]S 

2 45oϕ =  
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(a) 

 

 

(b)          (c) 

 

Fig. 4-1-6: (a) Model generated 100-pole figure for 2000 Copper-textured austenite 

grains. (b) Euler space representation for 6000 Copper-textured austenite grains and (c) 

2 45oϕ =  section of (b). Maximum rotation angle θ = 45o. 

 

[1 0 0]S 

[0 1 0]S

2 45oϕ =  
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(a) 

 

 

(b) 

 

Fig. 4-1-7: Euler space representation of model generated 6000 austenite grains with 

α − fibre (a) and (b) γ − fibre. Maximum rotation angle θ = 25o. 
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4-1-2 Twinning effect on textures 

In this section, a calculation was done to check how the stress state affects the 

development of texture. 

A tensile test was computed on a piece of Cube textured austenite containing 

2000 grain with rotation angle ranging from o0 ~ 45 and with a stress tensor in the 

sample basis S given as 

1 0 0
(S  S) 0 0 0

0 0 0
σ σ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

The variant activation criterion had been introduced in Chapter 3. The 100-pole figure 

and the 2 45oϕ =  ODF of this parent austenite matrix are in Figure 4-1-3. Figures 

4-1-8 and 4-1-9 represent how mechanical twinning under this stress state changes the 

original Cube texture. 

 The most favored twinning system in each grain is denoted twin 1, and the second 

most favored twin 2, and so on. Figure 4-1-8 (1) is the 100-pole figure of the whole 

piece assuming that every grain was 100% twinned by twin 1; part (2) was assumed to 

be twinned by twin 2 alone, and so on. 

Figure 4-1-9 (1-a) shows the outcome assumed that twin 1 and twin 2 operated in 

every grain, in equal proportion; in (1-b) assumed that only 66% parent of austenite 

undergoes twinning so the pole figure remains the 100-poles of parent matrix, whose 

position circled red. Similarly, (2-a), (2-b) assumed twins 1, 2 and 3 operate and (3-a) 

(3-b) assumed that the 4 most favored twinning systems operate. 

It is interesting to note that the least favored twinning system in tension (twin 12) 

should be the most favorable system in compression. It is evident that twin 1 and twin 

12 are different. However, the difference decreases as the number of operating 

twinning systems increases. 

Figures 4-1-9 (4-a) ~ (6-b) show the superposition for twinning systems 9 ~ 12 

and matrix. Compared with Figures 4-1-9 (1-a) ~ (3-b), as number of operating 

twinning systems increases, the difference in pole figures between tension and 

compression decreases. This fact may indicate that when the strain is very high so that 
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two or three twinning systems operate in each grain, twinning effects on texture 

change may be the same for both tension and compression. 

 The 2 45oϕ =  of twin 1 to twin 6, together with their superimpositions, were also 

calculated and are listed in Figure 4-1-10. 

 It is evident that twinning due to tensile stress changes the original texture 

dramatically. However, when the same calculation was performed on Brass and 

Copper textured austenite, there are some twinning systems which do not change the 

original orientation much (Appendix A). This is because the orientation of some of the 

twinned parent is the same as that of another part of parent, but at the moment it has 

not been explained why this only happens on Brass and Copper textures. This will in 

future work be investigated by taking the exact Brass / Copper orientation, applying 

twinning operating and seeing whether there is a superposition of twin and matrix 

poles. 

To check the different effects of the different stress states to the twinning texture, 

a calculation of the orientation changes of a Cube textured austenite under biaxial 

tension,
1 0 0

 (S  S) 0 1 0
0 0 0

σ σ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

, was also conducted. The pole figures of individual 

twinning systems are listed in Figure 4-1-11. The difference with the uniaxial tensile 

test is evident. 
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(1)       (2)       (3) 

 

(4)       (5)       (6) 

 

(7)       (8)       (9) 

 

(10)       (11)       (12) 

Fig. 4-1-8: 100-pole figures of 12 twinning systems, 2000 grains, tension along [100]S. 

(1) Calculation assuming only the most favored twinning system forming in each 

grain; (2) ~ (12) assuming only the second to twelfth forming, respectively. 

[1 0 0]S 

[0 1 0]S T-01 T-02 T-03 

T-04 T-05 T-06

T-09T-08T-07 

T-10 T-11 T-12
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(1-a)       (1-b) 

 

 
(2-a)       (2-b) 

 

 
(3-a)       (3-b) 

Fig. 4-1-9: Superposition for the individual pole figures in Fig. 4-1-8. (1-a) 

Superposition of 1, 2; (1-b) 1, 2 and matrix; (2-a) 1, 2, 3; (2-b) 1, 2, 3 and matrix; (3-a) 

1, 2, 3, 4; (3-b) 1, 2, 3, 4 and matrix. The ideal positions of Cube are circled red. 

 

[1 0 0]S 

[0 1 0]S T-1-2 M-T-1-2

T-1-2-3 M-T-1-2-3

T-1-2-3-4 M-T-1-2-3-4
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(4-a)       (4-b) 

 

 
(5-a)      (5-b) 

 

 
(6-a)       (6-b) 

 

Fig. 4-1-9 continued: Superposition for the individual pole figures in Fig. 4-1-8. (4-a) 

11, 12; (4-b) 11, 12 and matrix; (5-a) 10, 11, 12; (5-b) 10, 11, 12 and matrix; (6-a) 9, 

10, 11, 12; (6-b) 9, 10, 11, 12 and matrix. The ideal positions of Cube are circled red. 

[1 0 0]S 

[0 1 0]S T-11-12 M-T-11-12

T-10-11-12 M-T-10-11-12

T-9-10-11-12 M-T-9-10-11-12
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(1)       (2)       (3) 

 

(4)       (5)       (6) 

 

(7)       (8)       (9) 

 

(10)       (11)       (12) 

Fig. 4-1-10: Tension along [100]S. 2 45oϕ = section ODF. Individual twinning system 

from the most favored one to the 6th favored one (1-6), and their superimpose (7-12). 

Position of the red dashed circle is the position of parent austenite on this section. 

2 45oϕ =  2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  2 45oϕ =  
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(1)       (2)       (3) 

  

(4)       (5)       (6) 

  

(7)       (8)       (9) 

  

(10)       (11)       (12) 

Fig. 4-1-11: Biaxial extension. 100-pole figures of 12 twinning systems, 2000 grains. 

(1) Calculation assuming only the most favored twinning system forming in each 

grain; (2) ~ (12) assuming only the second to twelfth favored forming, respectively. 

[1 0 0]S 

[0 1 0]S T-01 T-02 T-03 

T-04 T-05 T-06

T-09T-08T-07 

T-10 T-11 T-12
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4-1-3 Comparison with experimental results 

Cold rolling 

Vercammen [2004b] investigated the tensile testing and cold rolling behaviors of 

TWIP sheet steel. The sheets were initially hot rolled, then annealed and water 

quenched. This resulted in a texture of α − fibre and copper components. The 

maximum intensity was somewhat low and no Cube component was present. This 

especially-hot treated slab was subsequently cold rolled; the o
2 45ϕ =  ODFs were 

recorded at different strain levels as shown in Figure 4-1-12 

 

 

 

Fig. 4-1-12: Evolution of texture during cold rolling: o
2 45ϕ =  sections of the ODFs 

of a TWIP-alloy (29.4Mn-3.0Si-3.3Al-0.0033S-0.0049C wt. %) for various rolling 

strains. The maximum intensity is given in the upper left corner of each section. 

‘CRxxx’ stands for cold rolling with xxx% true strain [Vercammen, 2004b]. 

 

 

To reproduce the initial observed texture within the computer model, a 

combination of austenite texture components was used. Figure 4-1-14 (a) shows a 

mixture of 50% α − fibre, 25% Copper and the remainder (112)[021]  for 10000 



 52

grains with θ = 20o. This is a reasonable match with the observed texture (Figure 

4-1-12, CR010). 

 It is difficult to estimate the stress state during cold rolling. Kundu [Kundu, 2007] 

and Mr. Raju Dasu [TATA Steel] assisted with a finite element analysis of an 

elastic-plastic deformable sheet using commercial software package 

ABAQUS/Standard (version 6.6) in cold rolling reduction of 60% and suggested a 

stress tensor 

136 0 35
(S  S) 0 386 0

35 0 623
σ

− −⎛ ⎞
⎜ ⎟= −⎜ ⎟
⎜ ⎟− −⎝ ⎠

 

in his research. In this calculation, this tensor is used to simulate the stress state of 

cold rolling for TWIP steel. At first only one system was assumed to twin the whole 

of the austenite and the resulting 2 45oϕ =  ODF section was compared against 

experimental data to see how the choice of twinning system influences texture. 

Figures 4-1-14 (b) ~ (f) are these sections for the 6 most favored twinning systems. 

The combined effects of all 6 systems are illustrated in Figures 4-1-15 and 4-1-16, in 

an attempt to discover the best match with the observations in Figure 4-1-12. 

 However, it proved difficult to obtain a reasonable match, perhaps for the 

following reasons: 

 The stress state is complicated in rolling, and the one chosen previously may not 

be realistic. Dislocations are generated during deformation, whose effect is not taken 

into account. Mechanical twinning is unlikely to be the only deformation mode at 

large rolling strains. Dislocation plasticity and deformation bands increase and harden 

the austenite, hindering mechanical twinning. The model based on twinning along 

should therefore only apply at rolling strains. 

 However, when the strain is less than 0.4 (CR040), there is only an increase near 

Brass and Goss orientation; and twinning systems 1 and 2 do contribute an increase in 

intensity around Brass and Goss orientation, as denoted by red circles in Figures 

4-1-14 (b) and (c), or even twinning system 3 in (d). This may suggest that when the 

strain is not very high, given the right stress tensor, it should be possible to predict the 

texture of TWIP steel during the early stages of cold rolling. 
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Tensile testing 

The evolution of the texture during tensile testing is shown in Figure 4-1-13 

[Vercammen, 2004b]. 

 

Fig. 4-1-13: Texture formation after tensile testing 2 45oϕ =  of the ODFs of the 

TWIP-alloy at different strain levels. The maximum intensity is given in the upper left 

corner of each section. Levels: 1, 2, 4, and 7. ‘TTxxx’ stands for the tensile testing 

with a true strain of xxx% [Vercammen, 2004b]. 

 

The initial texture was considered as a combination of 50% α − fibre, 25% 

Copper and 25% Cube, Figure 4-1-17 (a) which matches well with the observed in 

Figure 4-1-12, TT002. The stress tensor in this case is
1 0 0

(S  S) 0 0 0
0 0 0

σ σ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

. 

 The results (Figures 4-1-17 ~ 4-1-19) show that: 

(i)  Twinning systems 1 and 2 lead an increase in the vicinity of the cube and 

Goss orientations, Figure 4-1-17 (b) and (c). 

(ii)  During the tensile testing, the orientations are not only redistributed by  

mechanical twinning, but also by grain rotation. In the absence of grain 

rotation, there must be a high intensity near 1 42 ,  70o oϕ = Φ =  (blue circles), 

due to twinning on the Cube orientated grains. However, this is not appeared 

in Figure 4-1-13. This can only be explained by the rotation of grains during 
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the tensile testing. (Figure 4-1-13 includes true strains ranging from 0.02 to 

0.40) 

(iii) There is no significant increase of Rotated Goss orientation on α − fibre and  

no increase near o20Φ =  in the experimental Figure 4-1-13. But twinning 

systems 3 and 4 should appear as denoted in Figures 4-1-17 (c) and (d). It is 

therefore concluded that these systems are for some reason not activated. 

(iv) The material was not fully twinned because the existence of Copper and  

Cube orientation would not be expected if the material was fully twinned.  

  

To summarize, in the tensile test, austenite grains twinned partially by twinning 

systems 1 and 2 and rotated. The superposition of twinning system 1, 2 and matrix, as 

shown in Figure 4-1-18 (2-b), give a general reasonable match in position with Figure 

4-1-13.  
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(a) 

  

(b)       (c)       (d) 

  

(e)       (f)       (g) 

 

Fig. 4-1-14: Cold rolling. (a) Computer generated texture, in comparison with CR010 

in 4-1-11, 2 45oϕ =  section. (b) ~ (g) 2 45oϕ =  of individual twin from 1 to 6. 

2 45oϕ =

2 45oϕ =  2 45oϕ =  2 45oϕ =  

2 45oϕ =  
2 45oϕ =  2 45oϕ =  
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(1-a)         (1-b) 

  
(2-a)         (2-b) 

  
(3-a)         (3-b) 

 

Fig. 4-1-15: Cold rolling. (1-a) Twinning system 1; (2-a), (3-a), superposition of 

twinning system 1, 2 and 1, 2, 3, respectively; (1-b), (2-b) and (3-b) superposition of 

(1-a), (2-a), (3-a) with matrix. 

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  
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(4-a)        (4-b) 

  
(5-a)        (5-b) 

()5-b 

 
(6-a)        (6-b) 

 

Fig. 4-1-16: Cold rolling. (4-a), (5-a), (6-a), superposition of the favored first 4, 5, 6 

twinning systems, respectively; (4-b), (5-b) and (6-b) superposition of (4-a), (5-a) and 

(6-a) with matrix. 

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  
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(a) 

   

(b)       (c)       (d) 

   

(e)       (f)       (g) 

Fig. 4-1-17: Tensile test. (a) Computer generated texture, in comparison with TT002 

in 4-1-11, 2 45oϕ =  section. (b) ~ (g) 2 45oϕ =  of individual twin from 1 to 6. 

2 45oϕ =

2 45oϕ =  2 45oϕ =  
2 45oϕ =  

2 45oϕ =  2 45oϕ =  2 45oϕ =  
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(1-a)         (1-b) 

 

  
(2-a)         (2-b) 

  
(3-a)         (3-b) 

Fig. 4-1-18: Tensile test. (1-a) Twinning system 1; (2-a), (3-a), superposition of 

twinning system 1, 2 and 1, 2, 3, respectively; (1-b), (2-b) and (3-b) superposition of 

(1-a), (2-a), (3-a) with matrix. 

 

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  
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(4-a)         (4-b) 

  
(5-a)         (5-b) 

  
(6-a)         (6-b) 

 

Fig. 4-1-19: Tensile test. (4-a), (5-a), (6-a), superposition of the favored first 4, 5, 6 

twinning systems, respectively; (4-b), (5-b) and (6-b) superposition of (4-a), (5-a) and 

(6-a) with matrix. 

 

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  

2 45oϕ =  2 45oϕ =  
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4-2 True Strain 

In the previous chapter, the true strain was given by equation 3-13-2; but it is 

necessary to note that that method does not take the rotation of grains into account 

during the course of twinning deformation. It applies only when the vector OP’ and 

OP2 are parallel to each other, which might not be true case in all possible situations. 

However in the model used in this work, two reasons can ensure that this procedure is 

a good approximation which does not lead to large deviations from reality. The first is 

that in the course of tensile testing the specimen is always constrained by the 

equipment, which forces the resultant vector OP2 to rotate to the position parallel to 

the initial vector OP’; secondly, as proved below, for a polycrystalline sample, when 

the number of grains increases, the angle between OP2 and OP’ (denoted as Φ) 

becomes small even without considering the constraint of the specimen by the testing 

equipment. 

Consider tensile testing of a sample which is subjected to uniaxial stresses, the 

simplified stress status of which was given previously. Taking OP’ parallel to S [1 0 0] , 

Table 4-2-1 lists the components of vector OP’ and OP2 for a polycrystalline 

specimen with different numbers of randomly oriented grains. Suppose that whole 

specimen is 100% twinned with different numbers of operating systems, each of 

which deform the same volume percent of austenite. The result clearly shows that Φ 

decreases as the number of austenite grains increases. When more than one twinning 

system is operating, the angle Φ becomes even smaller. In the case of 2000 grains 

with two twinning system operating in each grain, Φ has a value of that 0.03o, which 

means OP’ and OP2 are almost parallel. In the subsequent calculation of poly 

crystalline specimen, the number of grains calculated is always chosen above 2000 

which makes the difference even smaller. 

4-2-1 Orientation dependence of strain, single crystal 

Supposing a thin, cylindrical single-crystal of TWIP steel is tensile tested, the 

tensile axis being along the cylinder axis u. Assuming that the entire specimen 
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Table 4-2-1 Angle between OP’ and OP2 (Φ) for various number of grains and 

operating twinning systems. 

Number of Number of Operating    

grains   systems      OP’    OP2      Φ / degrees 

 1       1   S[1 0 0]  S[1.6667  0.3333  -0.1667]   12.6 

     1, 2   S[1 0 0]  S[1.6667  0.0833  0.0833]    35.25 

 20    1   S[20 0 0]  S[25.8340  1.4925  0.4803]   3.47 

     1, 2   S[20 0 0]  S[25.2657  0.4378  0.1348]   1.04 

 200    1   S[200 0 0]  S[260.6316  3.9726  4.7491]   1.36 

     1, 2   S[200 0 0]  S[254.7677  -1.2780  0.1942]   0.29 

 2000   1  S[2000 0 0]  S[2603.7630  2.3577  12.4698]  0.28 

     1, 2  S[2000 0 0]  S[2547.7570  -0.4567  -1.2671]  0.03 

 

deforms by the most favorable twinning system with 100% volume percent, and that 

the ends of the specimen are always maintained in perfect alignment, a calculation of 

the plastic strain recorded along the tensile axis can be performed during mechanical 

twinning. 

The method used here was introduced in Chapter 3 and a similar calculation has 

been reported for α iron with tensile direction u along [4 4 1]  [Bhadeshia, 2001]. To 

analysis the strain in polycrystalline, it is interesting and also necessary to find out 

how the true strain changes as a function of the orientation of the tensile axis u. 

 To do that, assuming the basis axes of a single crystal are parallel to the basis 

axes of reference frame and then the tensile axis u = 1 2 3 S[   ]u u u  is obtained by 

randomly generating its three components. For S1 0 0><  as type I, S1 1 0><  as 

type II, and S 1 1 1><  as type III. The results are shown in Figures 4-2-1 (a) - (h) 

In Figure 4-2-1(b), the tensile direction is confined in the S(1 0 0)  plane with 
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positive 1u  and 3 u . Each point with coordinate ( ,  )b c  in the figure denotes one 

tensile direction whose components satisfy 1 2 30,  ,   ( 0)u u kb u kc k= = = ≠ ; the 

distance between the point and the origin O gives the true strain 2 2b cε = +  along 

that particular tensile direction u. It is found that the true strain has a maximum value 

of 0.3466 when the deformation is along type II direction, i.e. S[0 1 1]  in this case, 

and a minimum value of 0.2027 along type I direction, i.e. S[0 1 0]  and S[0 0 1]  in 

the figure. 

Figure 4-2-1 (c) shows the strains along the tensile direction when it is confined 

on the S(1 1 0)  plane. It also shows that the maximum strain is 0.3466 when u is 

along type II direction, S[1 1 0]  in this case; and among all directions, a minimum 

strain is also found along type III directions, i.e. S[1 1 1]  in this case, with the same 

value as that for type I direction. 

Figure 4-2-1 (d) gives a ‘strain surface’ along all tensile directions in 

three-dimensional space. By examining its S[1 0 0]  projection and S [0 1 0]  

projection, as shown in (e) and (f), it seems it is consisted by 8 ellipsoid balls. This is 

confirmed by further examining of its S(1 0 0)  section (g) and S(1 1 0)  section (h). 

In Figure 4-2-1 (g), S (1 0 0)  section of ‘Strain surface’, the curve can be fitted 

by four circles marked in red dashed lines. Whereas in Figure 4-2-1 (h), 

S (1 0 0)  section of ‘Strain surface’, a part of the curve can be fitted, but some area as 

denoted in blue dashed line, can not be fitted using a circle. 

These suggest that two axes of each ball are equal and larger than the third axis. A 

function describing these ellipsoid balls maybe derived mathematically starting from 

the mathematical crystallographic geography, but this work has not done yet. 

It is interesting to notice that the strain changes continuously with direction. This 

is reasonable because in certain tensile directions, several twinning systems may be 

operating simultaneously. When the orientation rotates slightly from those directions, 

one of these twinning systems continues but the others stop, however, each of these 
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twinning systems contributes equally to the strain of single crystal. 

 The strains, strain energies and operating twinning system(s) for some tensile 

directions were calculated and listed in Table 4-2-2. 

 

Table 4-2-2: Operating twinning systems for some directions in single crystal. The 

strain energy E (J mole-1) is calculated assuming =500 MPaσ . Because the bases of 

grain and sample reference frame were set to be parallel, so [1 0 0] [1 0 0]s G=  C, G, 

Cu, B, E stand for different type of texture as represented in Figure 4-1-1. 

Tensile direction     Operating twinning systems  True strain  E / J mole-1 

[1 0 0]G (I: C, G) (1 1 1)[1 2 1] ; (1 1 1)[1 1 2] ; (1 1 1)[1 1 2];  

(1 1 1)[1 2 1] ; (1 1 1)[1 1 2] ; (1 1 1)[1 2 1] ;   0.2027  118.75 

(1 1 1)[1 2 1]; (1 1 1)[1 1 2]  

[1 1 1]G (III: Cu) (1 1 1)[1 2 1] ; (1 1 1)[2 1 1] ; (1 1 1)[1 1 2]   0.2027  157.15 

[1 1 2]G (B)      (1 1 1)[1 2 1] ; (1 1 1)[2 1 1]     0.2451  196.40 

[1 1 0]G (II: E)     (1 1 1)[1 1 2] ; (1 1 1)[1 1 2]     0.3466  235.70 

Directions near  [1 0 0]G  

[1 0.01 0.02]G     (1 1 1)[1 2 1]      0.2093  123.73 

[1 0.01 0.02]G     (1 1 1)[1 2 1]       0.2093  123.73 

[1 0.01 0.03]G     (1 1 1)[1 2 1]       0.2162  126.09 

[0.98 0.01 0.02]G    (1 1 1)[1 2 1]       0.2095  123.85 

Directions near [111]G  

[1  1.01  0.92]G     (1 1 1)[1 1 2]       0.2214  172.55 

[1  0.92  1.01]G     (1 1 1)[1 2 1]       0.2214  172.55 

[1  0.92  1.03]G     (1 1 1)[1 2 1]       0.2234  174.15 

[0.92  1  1.03]G     (1 1 1)[2 1 1]       0.2234  174.15 
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(a) 

 
(b)         (c) 

 
(d) 

Fig. 4-2-1 (a) Schematic representation of three types of orientations; (b), (c) and (d): 

The dependence of strain on deformation directions. In (b) true strain is given as 

2 2b cε = +  and in and (c) 2 22b cε = +  whereas in (d) 2 2 2a b cε = + + . 
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(e)          (f) 

  

     (g)            (h) 

 

Fig. 4-2-1 continued: ‘Strain surface’ projected along S[1 0 0]  (e) and along 

S[0 1 0]  (f); S(1 0 0)  section (g) and S(1 1 0)  section. Curve in (g) and some part in 

(h) can be fitted by circles, as marked as red dashed line, but some part can not as 

rounded by blue dashed line. This suggests an ellipsoid shape. Three types of 

directions are also denoted in the (g) and (h). 
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 A similar calculation for uniaxial compression for single crystal was also 

conducted. The ‘strain surface’ is much more complicated than that of tension as 

shown in Figures 4-2-1 (i) ~ (k). Three features are evident: i) strain does not change 

continuously in three-dimensional space in compression, as shown in (i) and (k); ii) 

Generally when true strain along one direction is small in tension then it is large in 

compression and vice versa; iii) strain along 110 S< >  is zero. The zero strain is 

caused by the changing of 110< >  to 0.2357  0.9428  -0.2357< > , resulting the 

same magnitude. This indicates that the systems which do not comply with the 

compression strain are being forced to form. In literatures, <110> is found stable in 

compression [Yang et al., 2006]. 

 

(i) 

 
(j)       (k) 

Fig. 4-2-1 continued: ‘Strain surface’ for single crystal in compression (i) and its [100] 

section (j) and [110] section (k), denoted in red. Dark lines are sections in the case of 

tension. 
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4-2-2 Dependence of strain on twinning system 

In the calculations presented here, a polycrystalline sample consisting of 10000 

randomly orientated grains was subjected to a tensile stress along  [1 0 0]S . It was 

assumed that each grain was fully twinned with only one twinning system operating, 

but it did not necessarily the most favoured one. The strain was then calculated for all 

12 twinning systems individually, beginning with the most favoured one. Table 4-2-3 

lists the strains along three sample reference frame axes, plotted in Figure 4-2-2. 

The results reveal at least three features: 

(і) The strains are not isotropic, with each set having both negative and positive 

values. This is reasonable because the mechanical twinning is a simple shear, without 

any volume change. Since there is an elongation (or compression) along one direction, 

there must be at least one compression (or elongation) along the other two 

perpendicular directions. In the case of randomly oriented austenite matrix, strains 

along S[0 1 0]  and S[0 0 1]  are always equal. 

(ii) The strain from the most favored twinning system has a maximum value; it 

then decreases as the twinning system changes from the most favored ones to those 

which are less favored. This is consistent with the strain energy variant selection 

criterion used previously because the most favoured system has the maximum strain 

and consequently the highest energy reduction. 

(iii) Starting from twinning system 7, the strain along S[1 0 0]  becomes negative 

despite the application of a tensile strain along S[1 0 0] . This is because the systems 

which do not comply with the tensile strain are being forced to form in this simulation. 

Systems 7-12 generally are not favorable from an energy reduction point of view. 

 It follows that only the six favoured twinning systems should be considered in the 

calculation. Supposing that in each 100% twinned grain only favoured systems  ( 6)≤  

are allowed to form in equal proportion. Table 4-2-4 lists the results, plotted in Figure 

4-2-3. It shows that as the number of operating twinning systems increases, the true 

strain recorded along S[1 0 0] decreases linearly. This is firstly because the 
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Table 4-2-3: The true strains along three sample reference frame axes as a function of 

the operating twinning systems. 10000 randomly oriented grains, 100% twinning. 

Strain energy E (J mole-1) was calculated assuming a tensile stress of 500 MPa. 

Operating twinning Strain along  Strain along  Strain along 

system index  S[1 0 0]    S[0 1 0]    S[0 0 1]      E / J mole-1 

  1   0.2635   -0.1633   -0.1635   131.75 

  2   0.2196   -0.1301   -0.1319   109.80 

3   0.1445   -0.0823   -0.0795   72.25 

4   0.0843   -0.0451   -0.0449   42.15 

5   0.0378   -0.0196   -0.0192   18.90 

6   0.0211   -0.0129   -0.0085   10.55 

7   -0.0024   0.0041   -0.0017   -1.20 

8   -0.0221   0.0118    0.0099   -11.05 

9   -0.1458   0.0662    0.065   -72.90 

10   -0.2136   0.0912    0.0924   -106.80 

11   -0.276   0.1136    0.1142   -138.00 

12   -0.297   0.1203    0.1215   -148.50 

 

Fig. 4-2-2: The true strain as a function of different operating twinning systems. 
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contribution of less favoured twinning systems to the strain is less and secondly the 

strains due to the different systems can mutually compensate. 

It is emphasized here that because the relationship between the interaction energy 

and the fraction transformed is not clear at present. It has therefore assumed that all 

favoured systems form in equal proportion in spite of their difference in strain energy. 

 

Table 4-2-4: Strains for the groups of most favored systems forming in equal fractions 

up to 100% 

Number of   volume of  Strain along  Strain along  Strain along 

twinning systems  each twin(%)  S[1 0 0]    S[0 1 0]    S[0 0 1]  

1    100.00    0.2635    -0.1633   -0.1635 

2    50.00    0.2418    -0.1466   -0.1476 

3    33.33    0.2104    -0.1247   -0.1244 

4    25.00    0.1804    -0.1042   -0.1039 

5    20.00    0.1534    -0.0867   -0.0864 

6    16.67    0.1325    -0.074    -0.073 

 

 
 

Fig. 4-2-3: Strain varies with the number of operating systems. 
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4-2-3 Dependence of strains on texture 

It is often the case that the parent austenite grains in polycrystalline samples 

exhibit crystallographic texture. The calculation of strains for textured austenite has 

also been carried out. 

As described previously, the intensity of texture can be changed by altering the 

maximum rotation angle θ of the axis-angle pair: the smaller the θ, the stronger is the 

texture. In order to discover the relationship between the true strain from twinning and 

the intensity of texture, calculations were conducted for 10000 textured grains 

allowing only the most favoured twinning system to operate with 100% twinning. 

Figure 4-2-4 shows the true strain along S[1 0 0]  when textured austenite 

polycrystalline undergoes mechanical twinning under the influence of a uniaxial 

tensile stress applied along S [1 0 0] . Six types of textures with different intensities 

were considered and some conclusions can be made from these results: 

(i) Strain varies with texture, but generally the strain of E-orientation textured 

austenite is largest; strains for both Brass and α-fibre are nearly the same but 

smaller than E orientation; for Copper strain is even smaller and the smallest 

strain comes to both Cube and Goss (they are overlapped in the figure). 

(ii)  For some orientations such as Brass, Copper and α-fibre, the strain for single 

crystal (when  0oθ =  the orientations for all grain are the same which means 

the whole piece can be regarded as a single crystal) is nearly the same as the 

strain for polycrystalline specimen when the rotation angle is limited to a 

very small value; whereas for some other orientations such as Cube, Goss 

and E-orientation, a sudden drop in strain from single crystal to 

polycrystalline is observed. 

(iii) The strain changes with the intensity of texture. For all the orientations 

except Copper and E orientations, as θ increases, so does the strain. For 

Copper and E orientations, it increases at the beginning but later on it 

decreases. However they all asymptotically tend to the randomly oriented 

austenite. 
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Fig. 4-2-4: The strain along S[1 0 0]  when austenite polycrystalline samples 

undergo mechanical twinning under the influence of a uniaxial tensile stress applied 

along the same S[1 0 0]  direction, assuming that only the most favored twinning 

system is operating and the whole sample is 100% twinned. Six different austenite 

textures are presented: Cube, Goss, Brass, Copper, E and α-Fibre. Cube and Goss 

overlapped. Red dot denotes the strain of randomly oriented austenite polycrystalline. 

 

Why do some orientations show a sudden drop in strain when the specimen 

changes from single crystal to polycrystalline? 

The directions that are parallel to the tensile axis are 100< > type directions for 

both Goss and Cube, 111< > for copper, 112< >  for Brass, 110< >  for E 

orientation and random for α-fibre textured austenite and randomly oriented austenite. 

When the rotation angle is small, the tensile direction in each grain rotates little 

around these directions. This is schematically represented in Figure 4-2-5, 110< >  

Random: 
0.2635 
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section of ‘strain surface’ of single crystal. 

On the one hand, Figure 4-2-5 shows that the tensile directions near 110< >  

contribute the most to strain, followed in descending order by 112< > , 111< >  

and 100< > . 

When the operating twinning system for a single crystal is calculated for these 

ideal directions, different numbers of twining systems operate (Table 4-2-2). 

 
Fig. 4-2-5: 110< >  section of ‘strain surface’ of single crystal. The ideal 

orientations along S[1 0 0]  for Goss, Cube, Brass, Copper and E-orientation. 

 

Taking Cube and Copper as an example, notice that for 100< >  there are 8 

equivalent twinning systems so that when the orientation of a second grain is slightly 

different from the ideal Cube orientation, there are 8 choices of twinning modes. In 

other words, given sufficient number of grains, these 8 twinning systems will be 

operating in the sample. For Copper, three equivalent twinning systems for ideal 

Copper 110< >  direction, hence the operating twinning system for the second grain 

<100> 
Goss 
Cube 

<111> 
Copper 

<112> 
Brass 

<110> 
E 
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which is oriented slightly different from ideal orientation will be one of these three. 

But for these three twinning systems, the components of their twinning 

directions  [1 2 1],[2 1 1] and [1 2 1] , are all negative, which means the twinning 

displacement for all the grains will point to one dimension in three-dimensional space, 

resulting in a small dispersion of twinning displacement. However for eight twinning 

systems of ideal Cube orientation, their twinning directions are pointing randomly in 

three-dimensional space, which gives a very large dispersion of twinning 

displacement. This explains why both Cube and Copper have the same strain from 

single crystal, but very different in the strain of polycrystalline: twinning directions 

for Cube texture pointing randomly and hence it has a sudden drop of strain from 

single crystal to polycrystalline but Copper does not. 

 A calculation of different number of grains validated this explanation. Details are 

listed in Table 4-2-5. 

 

Table 4-2-5: Strain along S[1 0 0]  as a function of different number of grains, Cube 

and Copper case. Maximum rotation angle 0.001oθ = , most favored twinning system 

operating, 100% twinned.  

          Strain along S[1 0 0]  

Number of grain     Cube        Copper 

1         0.2027        0.2027 

2         0.1592        0.2012 

 3         0.1553        0.2014 

 5         0.1546        0.2013 

 10         0.1550        0.2009 

 

For the ideal Brass orientation, the operating twinning directions all pointing to 

the same dimension in three-dimensional space, and for Copper this is also the case. A 

slight change in tensile direction does not change this. The computer program uses the 

same random number generator for all calculations, so the rotation matrices relating 

the reference grain and generated grain are the same each time the calculation is 
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repeated. The magnitude of strain from each grain in the polycrystalline sample makes 

the main contribution to the final value of strain. For ideal single crystal in Brass 

orientation, the strain is higher than that of ideal Copper orientation, hence Brass 

textured polycrystalline has a higher strain. 

For Brass, the strain of its single crystal is slightly smaller than that from a 

randomly oriented matrix, but as θ increases, its strain will gradually increase. For 

α-Fibre, because its normal direction is
1

[110] //[010]M S , hence its tensile direction 

must be on one of 110< >  sections of ‘strain surface’, so for polycrystalline 

α-Fibre, its strain should also be an average of the strains for all the directions on this 

section and increases as θ increases, until it reaches a maximum value. 

Considering the sudden drop for the strain of E orientation, which is followed by 

then an increase and another decrease, the explanation lies in the fact that 

[1 1 2] and  [1 1 2]  do not point to the same dimension. However because the 

absolute value of its single crystal strain is largest, its starting point for the 

polycrystalline state is still very high. Then a general increasing rule is followed. But, 

when rotation angle is higher than a certain angle, around 20o in the figure, the strains 

for single crystal becomes small so it finally drops to an average value. 

A similar explanation applies to Copper strain-angle curve.  

The overlap of Cube and Goss strain-angle curve is also naturally expected since 

they have the same direction, 110 G< >  parallel to the tensile direction. 

 

Because the selections of operating twinning system in tension and compression 

are different, the true strains from twinning for tension and compression must be 

different. Figure 4-2-6 shows the true strain along S[1 0 0]  when textured austenite 

undergoes mechanical twinning under uniaxial compression applied along S [1 0 0] . 

The tendency of strain curve for each texture is evidently different from that in the 

tensile test (Figure 4-2-4). 
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Fig. 4-2-6: The strain along S[1 0 0]  when austenite polycrystalline samples 

undergo mechanical twinning under the influence of a uniaxial compression applied 

along the same S[1 0 0]  direction, assuming that only the most favored twinning 

system is operating and the whole sample is 100% twinned. Six different austenite 

textures are presented: Cube, Goss, Brass, Copper, E and α-Fibre. Cube and Goss 

overlapped. Red dot denotes the strain of randomly oriented austenite polycrystalline. 

 

 

 

Random: 
-0.2970 
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The strains along S [0 1 0]  and S[0 0 1]  for different types of textures as a 

function of maximum rotation angle were also calculated, and Figures 4-2-7 (a) ~ (f) 

show the results in the case of uniaxial tension. 

Beside the tendency that all strains asymptotically approach to the strains of 

randomly oriented austenite, another conclusion is obvious: for Cube, Goss and 

Copper textured sample, their strains along S[0 1 0]  and S[0 0 1]  overlap; however 

for those others, this character is not observed. 

The origin of this difference can also be found by examining their tensile 

direction:
1M <1 0 0>  and

1M <1 1 1> directions have four-fold and three-fold rotational 

symmetry, respectively; however for the others, there is no rotational symmetry. 

It is this symmetry that causes the same mechanical behaviors along the other two 

perpendicular directions. However, it is necessary to note that though the strains 

along S [0 1 0]  and S[0 0 1]  are equal, it does not necessarily mean the strain along 

all directions on S (1 0 0)  are equal. For instance, the strain along S[0 1 0]  is different 

from that along S [1 0 2] . 
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(a)          (b) 

 

(c)          (d) 

 

(e)          (f) 

Fig. 4-2-7: Strains along S [1 0 0] , S[0 1 0]  and S[0 0 1]  for different types of 

textures (10000 grains) as a function of maximum rotation angle: (a) Cube (b) Goss (c) 

Brass (d) Copper (e) E-orientation (f) α-Fibre. Red, green and black dots in every 

diagram denote the strain along S[1 0 0] , S[0 1 0]  and S[0 0 1]  for 10000 randomly 

distributed grains, with the values of 0.2636, -0.1633 and -0.1635, respectively. 
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4-2-4 Comparison with literature data 

Comparisons are made in this part between the calculated results and some 

published literature data. As emphasized previously, it is nearly impossible to get a 

grain fully twinned. Due to work hardening of the austenite, the movement of twin 

boundaries is always stopped by an increase of dislocation density at the later stages 

of deformation [Choi et al., 1999; Allain et al., 2004a; Vercammen et al., 2004a]. 

Consequently, it is estimated that the maximum twin fraction should be less than 0.6 

[Choi et al., 1999]. It is also a fact that usually two or three twinning systems operate 

in one grain [Grassel et al., 2000; Allain et al., 2004b; Vercammen, 2004b]. And at the 

same time it is usually impossible in practice to get a matrix without texture. Thus the 

calculations of a textured matrix (θ = 45o) with the most favored three twinning 

systems operating, each of which has a volume percent of 20%, were made and the 

results are listed in Table 4-2-7. 

Table 4-2-8 lists the published data about the strain of TWIP steel in tensile 

testing. 

Comparing the calculated results with the experimental results, the difference is 

large. The experimental strains are higher than 0.45 for all cases while the true strain 

calculated is generally less than 0.13 under previous condition. Even for the 

maximum strain in all the previous calculation, i.e. when the matrix is randomly 

oriented and fully twinned by the most favorable twinning system, the deformation 

strain from twinning system itself is 0.2635, which is still far away from thetotal 

observed elongation. 

 This happens because beside the twinning shear, there are other factors which 

also contribute to the large strain of TWIP steel, such as dislocation slip; interaction 

between differently oriented twin plates and interaction between dislocations and twin 

plates together increase the strain hardening rate, leading an increase in the strain 

hardening coefficient. In a full model of TWIP steel, all these factors would need to be 

taken into the account. 
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Table 4-2-7: 10000 grains, the most favorable three twinning systems are operating, 

each with 20% volume percent, maximum rotation angle θ: 45o. 

        Strain along  Strain along  Strain along 

Matrix texture    S[1 0 0]     S[0 1 0]     S[0 0 1]  

Cube     0.1249   -0.0684   -0.0693 

Goss     0.1249   -0.0692   -0.0685 

Brass     0.1304   -0.0685   -0.0758 

Copper     0.1288   -0.0710   -0.0714 

α-fibre     0.1299   -0.0772   -0.0667 

 

 

Table 4-2-8 Experimental data about the elongation of TWIP steel [Grassel et al., 

2000]. Values in the round brackets are the converted true strain ε. 

Composition / wt. %   uniform elongation (ε)    total elongation (ε) 

Fe-25.5Mn-3.9Si-1.8Al   58% (0.4574)     69% (0.5247) 

Fe-26.5Mn-3.0Si-2.8Al   80% (0.5878)     94% (0.6627) 

Fe-25.6Mn-2.0Si-3.8Al   72% (0.5423)     88% (0.6313) 

Fe-28.7Mn-4.0Si-2.0Al   63% (0.4886)     75% (0.5596) 

Fe-29.2Mn-3.0Si-2.8Al   75% (0.5596)     88% (0.6313) 

Fe-30.6Mn-2.0Si-3.9Al   65% (0.5008)     84% (0.6098) 

 

4-2-5 Multi-axial stresses 

 In all the cases considered above, the stress status is uniaxial tension. There are 

circumstances where combinations of stresses are imposed in the course of 

deformation such as cold rolling and cup drawing. In the case of an idealized cup 

drawing [Zhou et al., 1996] as shown in Figure 4-2-8 (a), during the drawing of the 

flange into the die, the material in front of the punch is subjected to tension along the 

circumferential direction and its stress tensor can consequently be simplified as  
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1 0 0
(S  S)= 0 1 0

0 0 0
σ σ

⎛ ⎞
⎜ ⎟
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⎜ ⎟
⎝ ⎠

 

 

 A similar calculation was done by following the same procedure as that in the 

case of uniaxial tensile testing. Three different types of matrices, Random, Cube and 

Brass, were calculated, supposing that the most favored three twinning systems 

operating. The results are listed in Table 4-2-9 

 

Table 4-2-9: Strains for the idealized cup drawing. 10000 Grains, the most favorable 

three twinning systems are operating, each with 20% volume percent. 

        Strain along  Strain along  Strain along 

Matrix texture    S[1 0 0]     S[0 1 0]     S[0 0 1]  

Random      0.0663   0.0673   -0.1487 

Cube      0.0848   0.0853   -0.1955 

Brass      0.0696   0.0514   -0.1333 

 

The results show that for both random and cube type matrix, the strains along 

S[1 0 0]  and S[0 1 0]  are nearly the same, which is good for cup drawing. However 

for the Brass type matrix, the strain along S[1 0 0]  is larger than the strains 

along S[0 1 0] . This is definitely a disadvantage for cup drawing and consequently the 

TWIP steel with Brass texture is not a good candidate material for cup drawing. 
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(b) 

 

Fig. 4-2-8 (a) Cross-section of a plane strain drawing operation. (b) During drawing of 

the flange into the die, the material in front of the punch is subjected to tension along 

the circumferential direction. 
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4-3 Conclusions 

4-3-1 The strain 

 As calculated, the contribution from twinning to the large elongation of TWIP 

steel is small, even when the whole piece is 100% twinned by the most favored 

system. However, twinning does have a major effect on the observed elongation. This 

is because not only are the grains are refined by twin boundaries, but there would be 

interactions between differently oriented twin plates and between dislocations and 

twins resulting in strain hardening which may be beneficial in avoiding plastic 

instabilities. 

In a full model of the strain of TWIP steel, all those factors should be taken into 

account. However in the published literature, the modeling of TWIP effect on work 

hardening [Bouaziz and Guelton, 2001; Allain et al., 2004a] does not take the 

contribution from twinning strain into account. 

Twinning strain for polycrystalline austenite is influenced by texture. The 

austenite TWIP steel with textures having type II direction, i.e. 
1M1 1 0><  parallel to 

S[1 0 0]  is found to have the maximum strain; those textures with type III direction, 

i.e. 
1M1 1 1><  parallel to S[1 0 0]  has medium strain and strain from those with 

type I direction, i.e. 
1M1 1 1><  parallel to S[1 0 0]  is smallest. 

4-3-2 The texture 

The model can, to some extent, estimate the evolution of texture in TWIP steel 

during deformation, if it is not severely deformed and if the stress state under which 

the steel is deformed is precisely known. In general, the deformation texture of any 

kind of material may be modeled as long as its deformation mechanism is mechanical 

twinning. However this model needs to be improved in two respects: 

 First the exact intensity of texture cannot be modeled at the moment because the 

contribution of volume fraction to the intensity of texture has not been taken into 

account. 
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 Second in the prediction of the positions of textures, this model does not take the 

effects of dislocation and grain rotation into account. 
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Chapter 5  

Summary and Future Work 

 

5-1 Summary 

Austenitic TWIP steels have a low stacking fault energy ( -2~ 30 mJ mSFEγ ) and 

consequently present extensive mechanical twinning when subjected to plastic 

deformation. Direct consequences of this phenomenon are a combination of both high 

strength and ductility and a change in crystallographic texture. The main aim of this 

research was to develop a general physical model to quantitatively estimate the strain 

of twin in a polycrystalline specimen and to qualitatively estimate the texture change 

due to twinning. 

 A general model has been constructed based on the mathematical crystallography 

of twinning and FORTRAN programs have been written to implement the calculation 

of transformation strain and transformation texture. In the model, an interaction 

energy criterion is used for the selection of operating twinning system and the 

calculation was flexible: on the one hand, the number of operating twinning systems 

could be chosen to be as large as 12, but since in most literature no more than three 

twinning systems are observed simultaneously in any grain, this number was therefore 

generally suggested to be chosen as one, two or three; on the other hand, the volume 

fraction for each twin was arbitrary but because the relationship between it and the 

interaction energy is not quite understood, hence the twin volume fraction is chosen to 

be equal for every operating system. 

For the calculation of strain, it was found that the strain of a polycrystalline 

specimen is influenced by twinning volume fraction and texture. Details of these 

factors’ effects on strain have also been discussed. Generally, in the case of tensile 
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testing, as the number of twinning systems increases, the strain due to twinning along 

the tensile direction decreases, if the total twin volume percent keeps constant; for 

most textures such as Cube, Goss, Brass and Copper, as its intensity decreases strain 

along TD or TeD increases; but for some other textures such as E-oriented texture, as 

its intensity increases, the strain increases at beginning and then followed by a 

decrease until it approaches a constant value. In addition, deformation strain due to 

twinning as a function of deformation direction was also calculated for a single crystal 

and the result was found very useful in interpreting the deformation properties of 

textured polycrystalline specimen. It was found that it is the difference in tensile 

direction that makes the difference in strain behavior between different types of 

textures. 

The calculation also showed that the true strain from twinning has a reasonable 

value less than 0.15, which is lower than the true strain of TWIP steel which generally 

has a value above 0.45. 

For the calculation of texture, the model was found to be valid in orientation 

change in the case of tensile testing. However in the case of cold rolling, it was found 

difficult to predict texture evolution using this twinning based model. This failure is 

for two reasons: the difficulty in finding the precise stress tensor which is vital in 

twinning variants selection and, the ignorance of grain rotation and dislocation gliding, 

both of which are normal in the case of severe cold rolling. 

5-2 Future work 

All the results presented in this thesis should be considered as work in progress, 

and as such, there are many potential directions for continued research. 

For the transformation strain, tensile testing experiment on single crystal can be 

conducted to firstly verify the strain energy criteria and secondly, to examine the 

relationship between volume fraction of twin and strain energy. Once these factors 

have been determined, a more precise calculation would be possible. 

For the calculation of texture, in the case of tensile testing, only the position 

change can be calculated at the moment, so next step would be the incorporation the 

calculation of intensity as a function of twin volume fraction. In the case of cold 
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rolling, not only the external stress status needs to be precisely determined, but also 

the effective stress status at any point in the specimen during the cold rolling should 

be included in the model. Further more, for the severely cold rolled specimen, the 

influences of dislocation glide and grain rotation should also be incorporated in the 

model. This may be accomplished by coupling the present twinning based model with 

traditional theories about texture evolution during cold rolling. 

On the other hand, the model assumes that twinning is independent of interactions 

between grains. In a polycrystalline material, there must be strain compatibility 

between different grains, which may tend to reduce variant selection. Hence the 

model also needs to take this into account. 

 

A series of experiments on sheet TWIP steel are also planned. 

 The variant selection criterion needs to be experimentally proven and the 

relationship between the interaction energy and twin volume fraction can also be 

found by experiment. 

The idea of predicting simultaneously the crystallographic texture and anisotropy 

of strain is novel in the content of TWIP steel and the model estimates both. This will 

be experimentally verified by measuring both the anisotropic strain and texture. 

 The balance between dislocation plasticity and twinning of TWIP steel will be 

investigated by tensile testing studies at different testing temperature and atomic force 

microscopy (AFM) can be used to determine whether the twinning strain is drastically 

accommodated. 

 Finally, the twinning effect must be affected by austenite grain size, hence 

influences the strain and texture evolution. Tensile testing experiments on samples 

with different grain size are also planned. 
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Appendix A 

100 Pole figures for Random Orientation and its Twinning systems  

(Tension along [100]s) 

 

 
 

 
 

 
 
 
 

Matrix

Twin-01 Twin-02 Twin-03 

Twin-04 Twin-05 Twin-06 



 90

 
 
 

 
 

 

Superposition: 

 
 

 

 

 

 

 

 

 

Twin-10 

Twin-07 Twin-08 Twin-09 

Twin-12 Twin-11 

Twin-1-2 Twin-1-2-3 Twin-1-2-3-4 
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100 Pole figures for Goss Orientation and its Twinning systems  

(Tension along [100]s) 

 

 
 

 
 

 
 
 
 

Matrix

Twin-01 Twin-02 Twin-03 

Twin-04 Twin-05 Twin-06 
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Superposition: 

 
 

 

 

 

Twin-10 

Twin-07 Twin-08 Twin-09 

Twin-12 Twin-11 

Twin-1-2 Twin-1-2-3 Twin-1-2-3-4 

M-T-1-2 M-T-1-2-3 M-T-1-2-3-4 
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100 Pole figures for Brass Orientation and its Twinning systems  

(Tension along [100]s) 

 

 

 
 

 

 
 
 
 

Matrix

Twin-01 Twin-02 Twin-03 

Twin-04 Twin-05 Twin-06 
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Superposition: 
 

 
 

 

 

Twin-10 

Twin-07 Twin-08 Twin-09 

Twin-12 Twin-11 

Twin-1-2 Twin-1-2-3 Twin-1-2-3-4 

M-T-1-2 M-T-1-2-3 M-T-1-2-3-4 
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100 Pole figures for Brass Orientation and its Twinning systems  

(Tension along [100]s) 
 
 

 
 
 

 
 

 
 
 
 
 

Matrix

Twin-01 Twin-02 Twin-03 

Twin-04 Twin-05 Twin-06 
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Superposition: 
 

 
 

 

Twin-10 

Twin-07 Twin-08 Twin-09 

Twin-12 Twin-11 

Twin-1-2 Twin-1-2-3 Twin-1-2-3-4 

M-T-1-2 M-T-1-2-3 M-T-1-2-3-4 
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Appendix B 

Program MAP_STEEL_TWIP 
This appendix presents the model described in Chapter 3 and associated 

documentation following the MAP format,  

http://www.msm.cam.ac.uk/map/mapmain.html. 

 

1. Provenance of Source Code 
Bo Qin and H. K. B. H. Bhadeshia, 

Computation Metallurgy Lab (CML), 

Graduate Institute of Ferrous Technology (GIFT), 

Pohang University of Science and Technology (POSTECH). 

San 31, Hyoja-Dong, Nam-gu,  

Pohang, Kyungbuk Republic of Korea 

E-mail: zebraf@postech.ac.kr 

Added to MAP: July 2007. 

 

2. Purpose 
A program for the calculation of texture change due to twinning and true strain from 

twinning, as a function of twinning volume fraction, texture type and its intensity. 

 

3. Specification 
Language: FORTRAN 

Product form: Source Code (Windows and Unix) 

Operating System :  Tested on Linux and PC. 

 

4. Description 
MAP_STEEL_TWIP contains the programs which enable the user to calculate the 
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true strain from twinning and resulting texture change. The results are a function of 

stress state, number of operating twinning systems, texture type and the intensity of 

texture. Once uncompressed , MAP_STEEL_TWIP contains: 

MAP_STEEL_TWIP_TEXTURE_AND_STRAIN.f 

The source code for the calculation of true strain and texture of polycrystalline 

austenite. 

MAP_STEEL_TWIP_STRAIN_INTENSITY.f 

The source code for the calculation of true strain as a function of intensity of texture. 

MAP_STEEL_TWIP_STRAIN_SINGLE_CRYSTAL.f 

The source code for the calculation of orientation dependence of strain for austenite 

single crystal. 

MAP_STEEL_TWIP_TEXTURE_AND_STRAIN.exe 

MAP_STEEL_TWIP_STRAIN_INTENSITY.exe 

MAP_STEEL_TWIP_STRAIN_SINGLE_CRYSTAL.exe 

The executable programs, PC only. 

READ_ME.txt 

Files containing the instructions for running the program. 

 

5. References 
1. B. Qin, Master of Engineering (M. Eng) thesis, Chapters 2 and 3, Pohang 

University of Science and Technology, 2007. 

2. H. K. D. H. Bhadeshia, Geometry of Crystals, Chapters 1, 2 and 3, University of 

Cambridge. 

 

6. Input Parameters 
The user is required to input the stress tensor, number of operating twinning systems 

and the corresponding volume fractions, pole figures of interesting (i.e. 100, 110 and 

111 pole figures), full Euler space or   section. Details are given in 

‘READ_ME.TXT’ 
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7. Output Parameters 
The default output parameters are: true strains along ,   and ; two-dimensional 

coordinates of the interested poles, for both matrix and 12 twinning systems; 

three-dimensional coordinates of Euler angles. 

 

Keywords 
TWIP, Deformation Strain, Deformation Texture 
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