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ABSTRACT

Highly organised and aligned microstructures can often be observed in steel. Cleavage

cracks, or deformation processes find propagation through such microstructures rela-

tively easy. More chaotic microstructures can be expected to offer a greater resistance

to crack propagation. This is why many recent steels, designed for toughness at low

temperatures, contain high volume fractions of acicular ferrite. Acicular ferrite is bai-

nite, but nucleates intragranularly from the surfaces of non-metallic inclusions within

austenite grains. From these point sources, plates of acicular ferrite grow in many di-

rections. This is in contrast to the common, but less desirable, microstructure in which

plates of ferrite nucleating at austenite grain surfaces tend to align into packets which

are susceptible to crack propagation.

A large number of experiments have been performed to elucidate the chemical

nature of non-metallic inclusions which are particularly effective in producing acicular

ferrite. Associated with these experiments, several mechanisms by which inclusions

induce nucleation have been proposed. However, the non-metallic inclusions found in

commercial alloys, on which most work has been performed, usually consist of many

crystalline and amorphous phases, so that identification of the particular phase respon-

sible for producing acicular ferrite nucleation is inherently difficult. These difficulties

previously prompted Strangwood and Bhadeshia (1987) to conduct a series of controlled

experiments in which pure ceramic phases were pressure bonded to steel in order to

create interfaces which could be studied with confidence. Effective ceramic nucleants

were observed to cause enhanced transformation in the vicinity of the interface when

compared with reaction within the bulk of the steel. Because of the lack of adequate

equipment, high hardenability steels were used, so that only allotriomorphic ferrite

formation could be examined.

A large section of the work herein represents an extension of the above, in which

experiments were performed using a low-alloy steel to study the bainite nucleation

induced by various mineral compounds. Bainite and acicular ferrite appear to have

the same transformation mechanism, so that results of nucleation efficacy should apply

equally to acicular ferrite. It was found that the minerals tested could be categorised

into three groups, according to their observed efficacy in inducing the nucleation of

bainite. The dominant reason for the stimulation of bainite nucleation seemed to be a

chemical interaction between mineral and steel. A noteable exception was TiO, which,

within the limits of resolution, appeared to remain inert, and yet enhanced bainite
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formation.

Despite the clarity of the pressure bonding experiments, there are potential dif-

ficulties in relating the results produced to systems where mineral inclusions form in

the molten steel. For example the application of pressure in the solid-state does not

necessarily lead to an intimate bond, on an atomic scale, between the chosen ceramic

and steel. Further, the ceramic is bonded in the form of a powder, which may not

fully densify during pressure bonding. Any differences in thermal expansivity between

the steel and ceramic may not lead to the development of contraction stresses of the

magnitudes expected when the liquid steel containing inclusions solidifies and cools.

Therefore a further experimental technique was developed in which powdered mineral

phases were added directly to the molten steel. These alloys were then studied from

the point of view of the acicular ferrite microstructure. Results largely reiterated the

implications of the bonding experiments, and showed chemical interaction, particularly

involving oxygen, and carbon, as being paramount in producing high levels of acicular

ferrite.
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CHAPTER 1

General Introduction and Literature Review

1.1 Phase Transformations in Steels

1.1.1 Allotropes of Iron

At atmospheric pressure, pure iron may exist in two forms, depending on the temperature.

At low temperatures « 912 QC), the atoms form a body-centred cubic (b.c.c.) structure

known as ferrite (a), which is also stable at temperatures above 1394QC.Otherwise a face-
centred cubic (f.c.c.) structure, called austenite er) exists at intermediate temperatures.

Pure iron may also exist in a hexagonal close-packed (h.c.p.) form (E), but this is only
stable at high pressures ("-'130kbar). Melting occurs at 1538QC.

1.1.2 The Effects of Alloying

Alloying elements are divided into two types. There are those which replace iron atoms

in the lattice (substitutional alloying elements - e.g. Mn, Si, Cr), and those which reside

in cavities between the iron atoms (interstitial alloying elements - e.g. C, N). All alloying

additions affect the relative free energies of the f.c.c. and b.c.c. structures of iron. A

conceptually convenient notion is to divide the alloying elements into those which tend to

stabilise austenite (e.g. C, Mn, Ni), and those which tend to stabilise the ferrite (e.g. Mo,

Cr, Si).
The transformations that occur during the cooling of steel depend critically on the

chemical composition. The solubility of solutes is usually different in austenite (,) and

ferrite (a), so that their redistribution requires diffusion. Diffusional processes, in turn,

require thermal activation which may be inadequate at low temperatures, thus prohibit-

ing the achievement of equilibrium within the time scale of the experiment. The steel

therefore often transforms into a metastable alternative which is kinetically favoured. The

exact nature of the metastable transformation depends on the thermal energy available,

and the relative stability of the transformation product. Transformation may proceed by

either a reconstructive or a displacive mechanism. Reconstructive transformations involve

the dissolution of the parent structure, before creation of the transformation product.

This dissolution requires substitutional chemical bonds to be broken, and is thus associ-

ated with high activation energies. In displacive transformations, no breaking of bonds

is required. Instead, the transformation product results from small relative atomic shifts.

Atomic correspondence between parent and product phases is indicative of a displacive
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transformation. Because atomic shifts are small, and there is no requirement for chemical

bonds to be broken, the activation energies associated with displacive transformations are

generally small.

1.1.3 Reconstructive 'Transformations in Steel

Allotriomorphic ferrite is the first phase to grow from austenite as it cools. It nucleates

at, and grows preferentially along, /, grain boundaries. It grows by a reconstructive

mechanism i. e. the pattern in which the atoms are arranged changes with the long-range

uncorrelated migration of atoms, the diffusion occurring in such a way that strain is min-

imised. There is no atomic correspondence between the parent and product phases in the

sense that nearest-neighbour relationships are not preserved.

The growth of allotriomorphic ferrite in binary Fe-C steels leads to the partitioning

of carbon into austenite (where its solubility is higher) with the rate often being limited by

the diffusion of carbon ahead of the transformation interface. During diffusion-controlled

growth, the compositions at the interface of the a and, are given, approximately, by a

tie-line of the phase diagram. The tie-line concerned passes through the bulk composition

of the Fe-C alloy. Such diffusion-controlled growth in Fe-C-X steels (where X represents

a substitutional solute) is complicated in that redistribution of both substitutional and

interstitial elements is required for growth to proceed. The diffusivities of substitutional

elements are much lower than of interstitials, since atomic movement requires structural

vacancy formation. If interactions between solutes are ignored, then the growth velocity

(movement of the ferrite/austenite interface - ~nt) must be such that it satisfies two flux

equations simultaneously in a Fe-C-X alloy (Christian, 1965):

(cr - cr')~nt = Dll VCl

(cia - c~') ~nt = D22 VC2

(1.1)

(1.2)

where Cl and C2 are the concentrations of carbon and substitutional element X respectively.

Dll is the diffusivity of carbon, and D22, the diffusivity of the substitutional solute. The

superscript a, denotes the concentration in awhich is in equilibrium with " and a similar

interpretation applies for the term ,a (Fig.1.1). Because Dll > > D22, the equations can-
not in general be satisfied simultaneously by a single value of ~nt' whilst local equilibrium

is maintained. In other words, the interface compositions cannot in general be fixed by a

tie-line which passes through the bulk composition. Instead, another tie-line which enables

the flux balance equations to be satisfied simultaneously has to be chosen. There are two

solutions within the a +, phase field. If the bulk carbon concentration is set to be close
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to et", then the flux of carbon is reduced to a value compatible with substitutional atom

diffusion. This is called 'Partitioning Local Equilibrium' (PLE), because a tie-line in which

et" ~ cl necessitates considerable partitioning of X.

Alternatively, if a tie-line is chosen such that c2 is allowed to approach e~', then
the concentration gradient for X becomes very high allowing substitutional diffusion to

keep pace with that of carbon. This is called 'Negligible Partitioning Local Equilib-

rium' (NPLE), because the ferrite has a concentration of X which is almost identical

to c2.
At a large enough undercooling, the substitutional species cannot partition at all, so

that local equilibrium breaks down. The carbon atoms can still diffuse such that a uni-

form chemical potential is achieved, subject to the constraint that the X/Fe ratio remains

constant everywhere. This is called paraequilibrium.

3



PLE
ya

C --:::: C ya
C -----

a Y a
C

cay - caL_

NPLE cya. -----
cya.---

a Y a Y
------ C

PARAEQUILIBRIUM

ay y
-----c

cya.-----
PARTIAL C-SUPERSATURATION

-~---c
a

MARTENsmc

y

a

Carbon

y
c

y
-----c

Substitutional Solute
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1.1.4 Displacive Transformations in Steel

Displacive phase transformations involve a deformation of the parent crystal structure, in

order to generate the product phase. Fig.1.2 shows the mechanism by which the transfor-

mation can be achieved without the need for near neighbour relationships to be disrupted.

The f.c.c. structure can be redefined using a body-centred tetragonal cell as shown

in the figure. Representing the lattice vectors of the austenite cell as ai' bl and cl' and

those of the tetragonal cell as abet' bbet and cbet:

abet = ~(al - bl)

bbet = ~(al + bl)
Cbet= cl

Transformation from this b.c. t. cell to a b.c.c. cell would involve contraction along

Cbetand equal expansions along abet and bbet. This is known as the Bain Strain. The Bain

Strain causes an excessive strain on transformation; the strain energy can be reduced with

additional deformations which make the total strain (macroscopically) an invariant-plane

strain (IPS), with a large shear component. An invariant-plane strain is that in which a

plane remains undistorted, and unrotated after the operation of strain.

All of the plate-shaped forms of ferrite in steels grow with a shape deformation which

is an IPS, with a large shear component.

1.1.4.1 Widmanstiitten Ferrite

At rather small undercoolings, the first displacive transformation product to form is Wid-

manstiitten ferrite (Fig.1.3). It has the appearance of thin wedges. This shape arises

due to the tendency for the simultaneous growth of strain-compensating plates, which lie

back-to-back, but are at a slight angle to one another. Such compensation reduces the

strain energy associated with the transformation to about 50 Jmol-1 (Bhadeshia, 1981).

The transformation mechanism involves growth under paraequilibrium conditions

z.e. although the undercooling is sufficient to allow the ferrite to grow without the parti-

tioning of substitutional solutes, the redistribution of interstitials is required if the trans-

formation is to take place at all.

1.1.4-2 Bainite

At larger undercoolings, the growth of met astable ferrite of identical composition to the

austenite becomes thermodynamically viable. Thus displacive transformation may occur

without any diffusion. Bainite grows in this manner with the repeated nucleation and

growth of platelets (sub-units) which form aggregates, known collectively as sheaves. Suc-

cessive sub-units form, both at the tips of previously formed plates and at their sides.
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Austenite (f.c.c)

•

Ferrite (b.c.c)

Figure 1.2 Bain Strain transformation from fcc to bcc lattices.

Widmanstatten Ferrite

--- Grain Boundary

(a) (b)

Figure 1.3 (a) Schematic of the morphology of Widmanstatten ferrite.
(b) Micrograph of the Widmanstatten ferrite microstructure.
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The former site is more effective than the latter, thereby giving an overall plate-like appear-

ance to the bainite sheaf. The reason why growth occurs in a series of discrete sub-units is

because the large strain associated with the transformation, causes deformation and a high

dislocation density, which ultimately stifles the movement of the transformation interface.

Individual sub-units form fully supersaturated with carbon. The ferrite may then lower its

free energy, either by rejecting the carbon into the surrounding untransformed austenite,

or, if the temperature is low enough, by precipitating carbides within the bainite unit.

These two possibilities lead to upper and lower bainite respectively (Fig.1.4).

The bainite transformation obeys what is called the 'incomplete reaction phenom-

enon'. During transformation, in most cases, bainite can partition carbon into untrans-

formed austenite extremely rapidly. The remaining austenite therefore enriches in carbon,

such that diffusionless growth eventually becomes impossible. The reaction stops when

austenite and ferrite of the same composition have the same free energy. This thermo-

dynamic point is known as To' and is a lower temperature than the equilibrium Ae3
temperature which defines the (a + ,)/, phase boundary. Since reaction stops when

the austenite achieves a carbon concentration equal to that given by the To curve, rather

than when its composition achieves the equilibrium Ae3 value, the reaction is said to be

incomplete. Experimentally, bainite is found to cease transformation before To (at T~

- which takes the strain energy associated with the transformation into account). The

observed incomplete reaction confirms that bainite grows with a full supersaturation of

carbon (Fig.1.5).

1.1.4.3 Acicular Ferrite

Acicular ferrite is a 'basket weave' microstructure, frequently observed in weld deposits

(Fig.1.6). The needle-like crystals appear to nucleate pre-dominantly on non-metallic in-

clusions which are more common in welds than in cast steels. It was originally thought that

acicular ferrite was a form of intragranularly nucleated Widmanstiitten ferrite (Ricks et al.,

1982), but most researchers now agree that it is, in fact, intragranularly-nucleated bainite.

The transformation shows surface relief consistent with an IPS shape change (Strangwood

and Bhadeshia, 1987), and demonstrates the incomplete reaction phenomenon, charac-

teristic of bainite (Yang and Bhadeshia, 1987). Further, Sugden and Bhadeshia (1989)

showed that upper and lower acicular ferrite could be produced, analogous to the upper

and lower bainite described above.
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of carbon.
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There is much interest in developing steel microstructures which contain very high

volume fractions of acicular ferrite, as the disorganised, interlocking plates, present an

extremely tortuous propagation path for any advancing cracks. Much crack energy may

therefore be absorbed by this microstructure, so that toughness is maximised (Ishikawa

and Haze, 1994).

Figure 1.6 Micrograph showing the interlocking nature of the acicular
ferrite microstructure.

1.1.5 Martensite

At the highest levels of austenite undercooling, transformation from f.c.c. to b.c.c. steel

may occur without any diffusion. Hence, martensite growth rates are limited only by

the speed of sound in the metal. The shape change associated with transformation is an

invariant-plane strain. The growth of a plate is arrested at prior austenite grain bound-

aries. When transformation is constrained, the martensite adopts a curved habit plane

with austenite, forming lenticular plates or laths. The orientation relationship between

the austenite and martensite usually consists of close-packed planes and directions being

parallel, or approximately so e.g. Kurdjumov-Sachs:

{l11},11 {Ol1L:yand < 101 >,11 < 111 >Q
Martensite can be extremely hard and brittle, and is to be avoided in weld deposits.
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1.2 Importance of Inclusions

Large volume fractions of acicular ferrite are beneficial for the toughness properties of steel

welds. This is because the chaotic, interlocking nature of the microstructure impedes the

propagation of cracks. Acicular ferrite transforms in the same manner as bainite, save

that nucleation occurs on non-metallic inclusions as opposed to austenite grain bound-

aries. Therefore, if no non-metallic inclusions are present, bainite rather than acicular

ferrite may result. Parallel plates of bainite offer little resistance to crack propagation.

Therefore, inclusion presence and potency as heterogeneous nucleation sites are critical

to the development of tough, acicular ferrite-rich, welds. The research presented herein

focusses on inclusions and their abilities to cause nucleation.

1.3 Inclusion description

1.3.1 Inclusion Composition

The chemical species present in weld inclusions have, in most cases, been identified with

the aid of EDX (energy dispersive X-ray) analysis. Such analysis has shown the presence of

the cations Mn, AI, Si, Ti, and Cu (Nb, V, Ca, and Fe to a lesser extent), and the presence

of the anion S. Other anion species of interest are too light to be recorded using standard

EDX, but, since the inclusions exist mainly as a result of oxidation of the weldpool, it can

be safely assumed that oxygen is abundantly present in the inclusions. Nitrogen too, is

present in many cases. Observation of nitrogen in compound form has often been made by

measuring ammonia release when the weld metal is exposed to hot hydrogen gas (Mori et
al., 1981). The higher the temperature at which ammonia is released, the greater is the

binding energy associated with the nitrogen. Dissolved nitrogen has a lower binding energy

than that present in compound form.

It is easy to identify the elements present in weld inclusions, but much more difficult

to pin down the formula for the mineral, or combination of minerals present. Properties of

inclusions depend on these mineral formula rather than on the chemical species themselves.

Mineral phases therefore need to be identified when attempting to interpret and rationalise

the effects of inclusions on weld phase behaviour.

1.3.2 Inclusion Mineralogy

Pickering (1979) gave a comprehensive listing of the minerals found in inclusions in wrought

steels. Ofthe sulphides, FeSx, MnS and CaS are common. Oxides include (Fe,Mn)O, Si02,

A1203, complex Cr oxides, TiO, Ti203, Ti30s and Ti02 and even spinels, pyroxenes,

olivines, garnets, feldspars and cordierites. Weld inclusion studies indicate that the range
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of minerals found is some\vhat narrower in weld metals than suggested, for wrought steels,

by Pickering.

1.3.2.1 Titanium based minerals

Titanium-rich phases have been reponed frequently to possess an f.c.c. (face-centred

cubic) structure with a lattice parameter of between 4.2 and 4.4 A. The structure and

lattice parameter give a good indication of the phase involved, but the information is

not sufficient to uniquely identify the phase without the chemical composition as well,

since TiN, TiO and TiC all possess structures and lattice parameters consistent with that

above. Consequently, there has been some debate as to the exact mineralogy of titanium-

rich phases. Opinions are equally divided between TiN and TiO, although more recent

investigations seem to favour TiO.

Barbaro et al. (1988) noted that, like the known shape of TiN, the titanium-rich

phase found in weld inclusions was cuboidal. TiO usually forms as spheres. Thus, a

cuboidal shape can be taken to indicate that the particle is likely to be TiN rather than

TiO (Fig.1.7).

Figure 1.7 Weld inclusion showing angular, cubic morphology more typ-
ical of TiN than TiG - after Kayali et al. (1983)

Thewlis (1989) claimed, on the basis of X-ray analysis, to have found peaks charac-

teristic of Ti~ and not of TiO, while Ito and ~akanishi (1976) and vVatanabe and Kojima

(1980) showed that the amount of insoluble titanium measured in a weld sample was pro-

portional to the amount of insoluble nitrogen. This would obviously suggest the presence

of TiN. However, Watanabe and Kojima (1980) also stated that relatively little titanium
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is required to remove all the dissolved nitrogen present in the weld, leaving remanent

titanium. They suggested that such remanent titanium would form TiO.

Mori et al. (1981) claimed that their XRD (X-ray diffraction) identified TiO and Ti203
(but not TiN). The concentration of free nitrogen in the weld metal did not correlate with

titanium. The presence of boron, however, had a very potent effect indeed. Slight boron

additions caused large drops in the free nitrogen, leading them to conclude that the most

likely form of compound nitrogen would be boron nitride.

Chemical analysis (St.Laurent and L'Esperance, 1992) using EDX with a windowless

detector has demonstrated large oxygen peaks associated with titanium-rich regions; little

nitrogen was found, confirming the presence of titanium oxides. The analysis was on a

weld containing high nitrogen and low oxygen concentrations, so that they were able to

conclude that titanium in welds has a stronger affinity for oxygen than for nitrogen.

The presence of titanium oxide has therefore been directly established. However,

this does not preclude TiN. It may be that both phases are present in the non-metallic

inclusions found in welds, with the oxide dominating.

1.3.2.2 Aluminium based minerals

Aluminium may form a nitride in welds (Grong et al., 1988), especially in flux-cored arc
welding where the dominant gas in the weldpool is nitrogen and not oxygen. Various nitro-

gen fixing cations have been used to remove nitrogen, the most successful being aluminium

(Husseen et al., 1983; Grong et al., 1988). Craig et al. (1978) failed to identify AIN in

submerged arc welds, by correlating aluminium in the submerged arc weld metal with the

amount of soluble nitrogen. X-ray analysis and TEM also did not reveal any AIN. Thus

AIN is present in inclusions only when nitrogen is dominant in the weld atmosphere.

A glassy Al and Mn rich phase, suspected to be a silicate, has been frequently reported

(Barbaro et al., 1988; Maunder et al., 1968; Kluken and Grong, 1989). Also a crystalline

manganese/aluminium rich phase is sometimes observed (Mills et al., 1987; Thewlis, 1989;

Thewlis, 1993; Dowling et al., 1986), with a f.c.c. structure and lattice parameter of

between 8.15 and 8.3 A. This is consistent with the mineral galaxite (MnO.AI20J, a

member of the spinel series. Galaxite has been identified as being particularly potent as a

heterogeneous nucleation site for ferrite.

Aluminium oxidises before combining with any other cation. Alumina is therefore

commonly found in weld non-metallic inclusions. The mineral may adopt many polymor-

phic forms, but the most frequently reported is the I-form (f.c.c. a ~ 7.911) (Grong et

al., 1992; Thewlis, 1993; Saggese et al., 1982).
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1.3.2.3 Sulphides

Sulphur is usually III the form of manganese sulphide, copper sulphide, or a general

(Mn,Cu)S. CuxS with 1.8:Sx:S2 has a cubic lattice \vith a = 5.4-5.9A, and a-MnS has

a f.c.c. structure with a = 5.2A (Court and Pollard, 1989; Kayali et al., 1983; Es-Souni et

al., 1990; Court and Pollard, 1985; Dowling et al., 1986). Some doubt about the existence

of copper sulphides in welds has been expressed by Kluken and Grong (1989), whose rni-

croanalysis experiments mapped manganese to be associated with sulphur, but a similar

association was not found for copper. They suggested that the copper reported by others

is due to contamination during the procedure of making extraction replicas. This is un-

likely to be the case for all reported observations. Any contamination is unlikely to be in

the form of crystalline copper sulphides as found by Dowling et al. (1986). In any case,

Court and Pollard (1989) have observed copper/sulphur rich inclusions in both thin foil

and extraction replica samples.

1.3.2.4 Other minerals

VN and VC exist in vanadium containing welds; even BaZr03 has been reported. BN and

glassy MnSi03 have also been observed.

1.3.3 Inclusion Structure

The inclusions found in welds are usually multiphased and cored. Phases with high melting

points precipitate first to form inclusion cores. Further subsequent layers are deposited with

phases having successi\-e1y lower melting points. The core should therefore be composed

of the highly refractory oxides, surrounded by silicates, followed by sulphides (Fig 1.8).

Glassy
Silicates

Sulphides

Figure 1.8 Idealised structure of a weld inclusion
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Experiments show that structure is not as well defined as in Fig.lo8, but trends are

evident: Es-Souni and Beaven (1990) found cores to be composed of either (Ti,Mn,Fe)

silicates or galaxite. Kluken and Grong (1989), Kayali et al. (1983) and Thewlis (1990)

all reported inclusion cores to be composed of manganese-aluminium silicates. Maunder

and Charles (1968) found crystalline alumina cores, surrounded by glassy silicates, in an

aluminium-rich alloy.

Many microanalysis experiments have demonstrated sulphide coatings on inclusions

(Barrite et al., 1981; Lathabai and Stout, 1985; Barbaro et al., 1989; Kayali et al., 1983).

Titanium-rich phases have been reported both in inclusion cores, and at the inclusion

surface. The former occurs in the absence of more refractory oxides or silicates.
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1.4 General Effects of Inclusions - The Role of Oxygen

Oxygen contamination of the molten weldpool is obviously unavoidable, and varies with

the arc length and extent of shielding, together with factors such as the wind strength

(Boniszewski, 1990). Oxygen content can therefore be difficult to control accurately, and

even more difficult to predict. Consequently the bulk of the quantitative research has

concentrated on the submerged arc process, where the welding arc is immersed in a flux

which isolates the weld from the atmosphere. The constituents of the flux then become

important in determining the weld chemistry.

The basicity index (RI.) of a flux is defined as follows, where units are in wt %:

(1.3)
A lower basicity leads to a greater oxygen concentration in the weld (Cochrane and

Keville, 1983; Indacochea and Olson, 1983; Cochrane et al., 1986; Bailey and Pargeter,

1979). The basicity index thus offers a rather crude method for oxygen content prediction.

1.4.1 Modelling of Oxygen Incorporation in the Weld

Wegrzyn (1985) proposed that oxygen enters the weldpool in the form of molten FeO, which

is not a significant constituent of normal welding flux. He suggested that molten iron can

reduce some of the flux oxides, producing iron oxide, which could then be incorporated

into the weld. However, iron oxide is less stable than any of the common flux oxides. The

only way FeO can form in these circumstances is by the equilibrium partitioning of oxygen

between the flux and the iron. Only SiOz and MnO have a low enough stability to be

partially reduced by molten iron. Wegrzyn therefore suggested that the oxygen content of

a weld can be rationalised by analysis of the SiOz and MnO content of the flux.

Christensen and Grong (1986) instead proposed that oxygen entered the molten weld-

pool purely by the dissolution of gaseous SiO into the metal droplets passing through the

arc. There would be subsequent loss of dissolved Si and 0 from the weld on cooling, but

the initial concentration should correlate with the final oxygen content. The calculated

quantity of SiO that would be expected to dissolve in the weld at high temperatures was

found to correlate with the basicity index. The solubility product of [SiJ[O]' at high tem-

peratures, behaved in exactly the same way with respect to the basicity index of the flux,

as the final oxygen content of the weld (Fig 1.9).

Flux composition is, of course, not the only factor contributing to variation in weld

oxygen content in submerged arc systems. The amount of time available to absorb oxygen
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Figure 1.9 Schematic Plots indicating the similarity in the relationships
between the final oxygen content with basicity index, and the [Si]HT[O]HT
concentration product with the basicity index, after Christensen and
Grong (1986)

is also important, and depends on the cooling rate (in turn itself dependent on the heat

input - Pargeter, 1981) and welding speed (Kawabata et al., 1986).

The oxygen solubility decreases considerably to < O.002\Vi;% as the steel solidifies. In

the absence of stronger reducing agents, the rejected oxygen will combine with carbon and

form carbon monoxide bubbles, which are detrimental to the mechanical properties. Ele-

ments which prevent porosity are those which combine with rejected O:h.)'gento form oxides

which either float as slag (and are removed), or are retained as non-metallic inclusions in

the solidified weld. The bulk of the inclusions present in the welds are therefore oxides,

and the concentration of oxygen initially present in the molten weldpool will control their

number and volume fraction.

1.4.2 Oxygen and Weld Microstructure

It is established that weld microstructure can be sensitive to oxygen. A low oxygen content

(and hence low inclusion content) can be associated with a microstructure which is often

predominantly bainitic. Medium concentrations favour the development of acicular ferrite,

though excessive oxygen enhances the allotriomorphic ferrite or "VVidmanstiittenferrite

fractions. This is because of the interaction of oxide inclusions with the development

of microstructure. Inclusions have two main roles in the weld metal. Firstly, they are

nucleation sites for ferrite, and secondly they may be of importance in pinning austenite

grain boundaries.

If the inclusion population is small, then transformation nucleates predominantly on
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the austenite grain boundaries. As the inclusion number density is increased, more sites

become available for intragranular nucleation, leading to the formation of acicular ferrite,

in appropriate circumstances. With excessive oxygen, grain boundary pinning causes a

reduction in the austenite grain size, and a corresponding increase in the number density

of grain boundary sites. The net result is that nucleation occurs more at grain boundary

sites allowing allotriomorphic or Widmanstatten ferrite to dominate the microstructure.

These general observations are attributed to: Ito and Nakanishi (1976), Abson et
al. (1978), Barrite and Edmonds (1981), Barrite et al. (1983), Kawabata et al. (1986),

\Vatanabe and Kojima (1980), Bailey and Pargeter (1979), Ito et al. (1981), Terlinde et

al. (1984).

The oxygen concentrations required to produce the different microstructures are de-

pendent on many factors, but are roughly as follows:

::; 150ppm produces grain boundary dominated microstructure

rv 200-300ppm can produce a predominantly acicular ferrite

microstructure

~ 350ppm produces grain boundary dominated microstructure.

Most of the papers mentioned above, also observed some austenite grain refinement,

caused by large inclusion populations. However, it is important to distinguish between

those experiments in which the weld specimens are reheated (Harrison and Farrar, 1981;

Ferrante and Ferrar, 1982), from those made on the as-welded deposit. Grain growth

during reheating is controlled by surface energy, whereas the austenite structure that

evolves during welding is driven by transformation from o-ferrite. Bhadeshia et al. (1986)

found that in as-welded deposits the oxygen content had little effect on the size of the

columnar austenite grains. However, Barrite et al. (1981), Liu and Olson (1986), Terlinde

et al. (1984), Fleck et al. (1986) and North et al. (1990), presented contradictory evidence

and the subject needs more investigation.

1.4.3 Inclusion Size and Shape

Opinions vary as to how oxygen affects the average size of weld inclusions. Kluken et
al. (1988), Pargeter (1981), Lathabai and Stout (1985), Cochrane et al. (1986) and Mills et

al. (1987) claim that an increase in the oxygen content is associated with coarser inclusions,

while Tsuboi and Terashima (1983), and Lui and Olson (1986) claim the opposite.

Terlinde et al. (1984) felt that there was no significant variation in the average inclusion
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size with oxygen.

However, inclusion size observations are limited by the resolution of techniques used.

and it would seem that Liu and Olson offered the most rational interpretation of the Q}•.'"ygen

effect on inclusion size. They suggested that the concentration of oxygen in the weldpool

controls the nucleation frequency of oxide inclusions. High supersaturations lead to greater

nucleation rates and a consequential drop in the mean inclusion size. Nevertheless, they

were anxious about the many contrary results published. They suggested that their result

was the product of a greater resolution of analysis than had previously been used. To

test this hypothesis they then re-analysed their specimens. only noting the behaviour of

the inclusions of diameter ~0.2 j.Lm (a size approximating to the resolution available in

previous work). Their original observations included particles down to 0.08 j.Lm in size.

They found that the mean diameter of those particles 2::0.2 j.Lm did indeed increase as the

oxygen content increased. However, when those of smaller diameter were included in the

statistical analysis, th,e overall mean diameter reduced on increasing oxygen (Fig 1.10).
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Figure 1.10 Plot showing the inclusion mean diameter results obtained
by Liu and Olson (1986). When only those inclusions 2::0.2 j.Lm in size were
considered, inclusion diameter was observed to increase with increased
oxygen content in the weld. However, when all the inclusions observed
were taken into consideration, the overall mean diameter of the inclusions
was observed to decrease with increasing oxygen content.

Oxygen also affects the shape of the inclusions present. Lowconcentrations are usually

associated with facetted inclusions, whereas high oxygen concentrations more often lead

to a spherical or globular shape.

The general effects of oxygen are summarised III the flow chart presented below
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Low oxygen
< 150 ppm

Few inclusions

Large austenite
grain size - few
in tragranular
nucleation
sites

Bainitic microstructure

Low toughness

Medium oxygen
approx. 200-300 ppm

Many inclusions

Large austenite
grain size - many
intragranular

sites

Acicular ferrite
microstructure

High toughness

High oxygen
> 500 ppm

Very many
inclusions

Pinning causes
reduction in austenite
grain size, allowing
grain-boundary
dominance

Grain-boundary
and Widmanstatten

ferrite
microstructure

Low toughness

Figure 1.11 Flow chart summarising the effect of various oxygen levels
on the microstructure and toughness of steel welds.
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1.5 Role of Specific Minerals

The activity of inclusions in changing microstructure is dependent on their specific miner-

alogy.

1.5.1 The Titanium Phases

Titanium based inclusions seem to be particularly effective in nucleating ferrite. Bramfitt

(1970) highlighted the importance of TiN and TiC in causing nucleation from the melt.

This is not necessarily relevant to transformations in the solid state since solidification is

unconstrained, whereas ferrite has to grow with a particular orientation relationship with

austenite. Nevertheless in his experiments an alumina rod coated in particles of a pure

phase, such as TiN, was lowered into a crucible of molten iron. The iron was allowed to

cool at a constant rate, and the extent of undercooling required to cause its solidification

was noted. TiN and TiC caused a marked decrease in the undercooling.

Willingham and Bailey (1975) tried to cause ferrite nucleation from the molten state

in welds doped with inclusions. TiB2 was found to cause a change from the columnar

microstructure expected, to an equiaxed microstructure indicating that it had been re-

sponsible for ferrite nucleation.

The effect on the solid-state nucleation of ferrite seems almost as dramatic, although

the exact chemistry of the phase still remains uncertain, as discussed previously. Numerous

researchers have found that a microstructure initially poor in acicular ferrite, on addition

of titania in the flux, or titanium in the welding wire, becomes acicular ferrite dominated.

(Terashima and Hart, 1983; Pargeter, 1981; Saggese et al., 1982; Bailey, 1983; Suzuki et

al., 1985; Cochrane et al., 1986; Bailey, 1986; Es-Souni and Beaven, 1990; Thewlis, 1990;

Es-Souni et al., 1991; Fleck et al., 1986; St.Laurent and L'Esperance, 1992). This has been

attributed to the titanium phase becoming dominant in the weld inclusions.

However, Kayali et al. (1983) and Dowling et al. (1986) found that, although initial

increases in titanium additions caused increased acicular ferrite, for high levels of titanium,

the microstructure became bainite dominated. This effect was also noted by Horii et
al. (1988). Liao and Liu (1992) made the same observation, but noted that the increases

in titanium levels were associated with decreases in the austenite grain size. Decreased

austenite grain size would be expected to favour grain boundary nucleated phases over

intragranular phases, and would therefore explain the observed dominance of bainite over

acicular ferrite.

That titanium additions are the sole factor in their apparent effectiveness in stimulat-

ing acicular ferrite has been questioned by Dowling et al. (1986). They found no correlation
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between the overall Ti content in the inclusions and the volume fraction of acicular ferrite.

They therefore suggested that although the titanium phase certainly seemed to contribute

to acicular ferrite, its presence alone is not sufficient. Other workers have noted that,

although titanium additions by themselves do cause some microstructural refinement, the

effects are enhanced by the addition of boron (Watanabe and Kojima, 1980; Fleck et al.,

1986) or by the presence of galaxite in inclusions as a substrate for the titanium phase

(Thewlis, 1990, 1993).

The question arises as to whether it is the titanium nitride or oxide which is the key

to stimulating nucleation. In a classic experiment by Homma et al. (1987), a cast steel

was doped with Ti203 particles, and another with TiN particles. The steel containing

the oxide particles was found to be rich in acicular ferrite, whereas that with nitrides was

devoid of any acicular ferrite. The obvious conclusion, then, was that titanium oxides are

active in the nucleation of acicular ferrite, but the nitrides are not.

1.5.2 The Role of Alumina and Aluminium-Rich Phases

Some researchers claim that the presence of aluminium improves weld toughness, whereas

others claim the exact opposite. The effect of aluminium addition is critically dependent

on the levels of oxygen present.

Aluminium is the most powerful reducing agent commonly found in welds and there-

fore is likely to oxidise before any other element. If the oxygen concentration is low, and the

aluminium concentration is high, then alumina dominates the inclusion population. Alu-

mina seems not to be a potent nucleant for acicular ferrite, and hence causes low toughness

and a mainly bainitic microstructure. Researchers who have examined the effect of alu-

minium at low oxygen levels have therefore found it detrimental to mechanical properties

(Oldland and MCPherson, 1984; Suzuki et al., 1985; Harrison, 1987; Horii, 1988;

Thewlis, 1993).

At greater levels of oxygen, the aluminium concentration required to bind with all the

available oxygen becomes prohibitively large. Any increase in aluminium should, therefore,

have little effect on inclusion efficacy. However, alumina does not mix well with the weld-

pool, the alumina-steel interface being of high energy (Kluken et al., 1990). Alumina-rich

particles then tend to coagulate more than alumina poor particles, attempting to reduce

the overall inclusion-steel interfacial area. In an aluminium-rich weld, the inclusions are

therefore fewer and larger than in a corresponding aluminium-poor weld (Terashima and

Hart, 1983; Thewlis, 1989; Liao and Liu, 1992). The effectiveness of inclusions, as pinning

sites, is directly proportional to their volume fraction, and inversely proportional to their
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diameter. The larger inclusions, associated with high aluminium levels, are not effective

in pinning grain boundaries. This is beneficial since the number density of grain boundary

nucleation sites is reduced. Thus at high oxygen levels, aluminium has been observed to

be beneficial to the development of an intragranular microstructure (Saggese et al., 1982;

Cochrane et al., 1986).
Devillers et al. (1983) summarised the aluminium effect. They found that the tough-

ness maximum, commonly observed with increasing oxygen content, shifted to higher oxy-

gen levels with increasing aluminium in the welds. (i. e. for a given constant oxygen concen-
tration below that of the maximum toughness (low oxygen), increasing aluminium caused

a reduction in toughness. For a given constant oxygen concentration greater than that of

maximum toughness, increasing aluminium caused an increase in toughness.) Aluminium

is obviously critical in determining the extent to which acicular ferrite may form, and its

effect must be considered in relation to the oxygen content in the weld. Because of the

complexity of the aluminium effect, a flow diagram is presented below which summarises

the interpretation given (Fig 1.12).

Despite the apparent low efficacy of alumina in nucleating ferrite in the solid state, it

does seem that it may nucleate ferrite from the melt. Kluken et al. (1990), believed that

alumina is an active nucleating agent for the solidification of ferrite from the melt. They

found a progressive refinement of grain structure in welds as the fraction of alumina in the

weld inclusions was increased. This refinement continued until the inclusions were virtually

100% alumina, and then ceased. They also claimed that alumina nucleated austenite in

the solid state.
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ALUMINIUM

Effect on microstructure &
toughness due to AI increase
is critically dependent on the
concentration of oxygen

Low oxygen

Increasing AI
causes dominance
of alumina in
inclusions

Either: (i) AIumina is
poor as a nucleant of

ferrite
or

(ii) Formation of
alumina forces other
elements into solution

Microstructure deterioration

High oxygen

Increasing AI causes
inclusion mean diameter to
increase, without change in
inclusion volume fraction

Inclusion pinning efficacy
reduced

Larger austenite grain
sizes

Microstructure improvement

Figure 1.12 Flow chart summarising the possible effects of aluminium
on the microstructure of steel welds.
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There have been several suggestions that galaxite has a particularly important role in

the nucleation of acicular ferrite. Thewlis (1990) examined the effects of various concen-

trations of Ti and B on weld microstructure. In low Ti/B welds the presence of galaxite

caused a significant increase in the start temperature for the austenite to ferrite transition

and was thus concluded to be effective in promoting ferrite nucleation. In high Ti/B welds

the presence of TiO /TiN as surfaces on galaxite substrates caused a marked increase in the

transformation temperature and rapidity. This may have been attributed to the TiO /TiN

effect alone, but when the TiO /TiN surfaces were present on MnSi03 substrates the ki-

netic effect in assisting the austenite to ferrite transition was not so great. Best results

in assisting the transformation were thus obtained when both TiO /TiN and galaxite were

present.

Dowling et al. (19S6) examined the overall content of TiX (where X=O,N or C) in the

sample welds, and found that, although the phase seemed to aid the formation of acicular

ferrite, the correlation between overall content and acicular ferrite volume fraction was

poor. Correlation between the galaxite present and the volume fraction of acicular ferrite

was, however, very good, and led to the suggestion that galaxite was extremely important

as a nucleating phase.

1.5.3 The Effect of Boron

Fleck et al. (19S6) systemmatically varied the composition of welds, and observed the

volume fraction of acicular ferrite produced. Without additions of Mo, Ti or B, the volume
fraction of acicular ferrite was found to be 0.26. Mo additions alone did not alter this value,

but when Ti was also added, 0.5 acicular ferrite was produced. Further addition of boron,

however, increased the acicular ferrite yield to 0.S5.

Dowling et al. (19S6) suggested two possible reasons for the observed effect of boron:

(i) That boron oxides or nitrides may be particularly active in causing ferrite nucleation

(Ito et al., 19S2).

(ii) That boron may segregate to austenite grain boundaries in the steel, so reducing thE

energy yield on destruction of the boundaries, when ferrite nuclei are produced.

Certainly BN precipitation may occur (Mori et al., 19S1; Thewlis, 19S9; Horii et al.

19S5; Kawataba et al., 19S6). However, most research indicates that the precipitation 0

boron-rich particles is detrimental to acicular ferrite production, because of the remova

of boron from solution (Oh et al., 1991; Watanabe and Kojima, 19S0; Thewlis, 1993)

Yamamoto et al. (1993) have observed the segregation of boron to austenite grain bound

aries, and such segregation has been found to considerably reduce levels of grain boundar:
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ferrite (Bailey, 1986; Thewlis, 1993), so allowing maximum development of acicular ferrite.

1.5.4 The Sulphides

Sulphur in solution, and in the form of sulphides is not beneficial to weld toughness. Few

researchers have reported an increase in the acicular ferrite content with the presence of

sulphide phases in inclusions (Ochi et al., 1988). In fact the opposite is true. Abson et

al. (1978) laser reheated welds in order to examine the microstructural effects caused by a

reduction in the weld oxygen levels. They found a large reduction in the volume fraction of

acicular ferrite. However, they also noted that although oxygen levels had been reduced the

volume fraction of inclusions had changed little, due to an influx of sulphur. Consequently

the sulphides did not stimulate acicular ferrite. Cochrane (1986) claimed that an increase

in MnS reduces acicular ferrite content, and Dowling et al. (1986) claimed a similar effect

for CuxS. It is therefore safe to conclude that there is no evidence that either MnS or CuxS
are useful in causing the formation of acicular ferrite.

1.5.5 Phosphorus

Phosphorus is not desirable in welds because it causes embrittlement. However, Kluken

et al. (1990) have claimed that phosphorus, segregated to grain boundaries, inhibits the

nucleation of grain boundary ferrite, and thus promotes the formation of acicular ferrite

in a similar way to boron.

In contradiction, Narayen and Goldstein (1983) observed in Fe-Ni-P alloys that grain

boundary ferrite could only be produced if phosphorus remained at grain boundaries.
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1.6 Importance of Inclusion Size

Several workers have claimed that the size distribution of the inclusions in welds is crucial

in determining the nucleating potential of the inclusion population (Barbaro et al., 1989;

Jang and Indacochea, 1987). Jang and Indacochea (1987) claimed that inclusions <0.3J..lm

in diameter would cause grain boundary pinning, and not ferrite nucleation. Inclusions

>0.3J..lm but <0.6J..lm in diameter would be effective in causing intragranular nucleation,

while larger ones would nucleate blocky ferrite only, and not the desired acicular ferrite.

These claims are largely unsubstantiated.

Experiments by Terishima and Hart (1980) showed that the SIze of the inclusion

population varied in the same manner on addition of aluminium and on addition of tita-

nium. Aluminium additions, however, were associated with reductions in acicular ferrite,

while titanium additions were associated with acicular ferrite increases. St. Laurent and

L'Esperance (1992) examined two series of welds. One series had systemmatic variations

in titanium content, while the other varied in sulphur content. They found that when vari-

ations in the levels of titanium occurred, the size, and number density, of the inclusions

was secondary in importance to inclusion chemistry, in determining the extent of intra-

granular nucleation. They did demonstrate a slight size effect, but this was only observed

when titanium additions were kept constant. Inclusion mineralogy seems therefore to be

the most critical factor influencing acicular ferrite production - size and number density

of inclusions being less important.
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1.7 Mechanisms of Inclusion Effects

The important effects of inclusions are their ability to nucleate ferrite and to pin grain

boundaries. Pinning is well understood, however the mechanisms by which inclusions

stimulate nucleation are not. This section is therefore devoted to nucleation problems.

There are five main theories, each of which is discussed below:

1.7.1 Lattice Matching

According to the lattice matching theory, a nucleating agent may be effective in promot-

ing nucleation when the atomic surface structures in low-index crystallographic planes of

both the substrate (s) and the nucleated solid (n) are similar. Structural similarity across
the interface plane reduces the energy barrier to nucleation. The extent of the differences

between two structures across a potential interface is usually calculated according to a

method given by Bramfitt (1970):

(hkl). _ ~ ~ (d[uVW1~ cos() - d[uvw]~)
6(hkl)n - 3 ~ d x 100

1=1 [uvw]~

(hkl) I' . h b IU(hkl): = attIce mlsmatc etween two panes

(hk 1)s = low index plane of the substrate
(hkl)n = low index plane of nucleated solid

[uvw]s = low index direction in (hkl)s
[uvw]n = low index direction in (hkl)n
d[uvw]. = interatomic spacing along [uvw]s
d[uvw]n = interatomic spacing along [uvw]n
()= the angle between [uvw]s and [uvw]n

This method compares the interatomic spacings across the interface resolved along

three different directions in the interface plane. The differences between interatomic spac-

ings are normalised and averaged over the three directions. The 'disregistry' is then ex-

pressed as a percentage. Results of disregistry analysis are shown in Table.I.1 (after Mills et
al., 1987).

As can be seen from the table, minerals such as TiN, TiO, i-AI203' or galaxite can

offer surfaces of low disregistry with ferrite. Indeed, direct observation of lattice matching

involving some of these phases has been made by Grong et al. (1992) (Table.I.2).

There are, however, several criticisms of the lattice matching theory. Firstly, the

crystallography of acicular ferrite is constrained by the crystallography of the austenite
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Parallelism (ferritellsubstrate) Extent of disregistry (% )

Planar Directional TiO ,-Alz03 Galaxite TiN BN CuS MnS

{lOO} 11{lOO} < 100 >11< 110 > 3.0 3.2 1.8 4.6 10.7 37.4 29.0

{110} 11 {lOO} < 100 >11< 110 > 22.0 16.7 20.5 23.9 12.9 62.7 52.7

{lOO} 11 {110} < 100 >11< 110 > 24.4 19.0 22.8 26.3 14.9 65.9 55.7

{110} 11 {110} < 100 >11< 110 > 37.4 33.3 35.6 39.5 33.3 83.2 72.0

{111} 11 {110} < 110 >11< 100 > 14.6 9.8 13.2 16.4 6.5 52.8 43.5

{lOO} 11 {111} < 100 >11< 110 > 34.5 28.5 32.8 36.5 23.7 79.3 68.3

{110} 11{111} < 100 >11< 110 > 15.9 11.0 14.4 17.6 7.5 54.5 45.0

{111} 11{111} < 110 >11< 110 > 27.2 31.5 28.0 26.0 36.9 2.8 8.8

{111} 11 {lOO} < 110 >11< 110 > 20.8 23.6 20.9 20.6 29.6 16.5 17.6

Table 1.1 Summary of the extent of lattice disregistry between various
minerals and ferrite, calculated according to Bramfitt (1970). After Mills
et al. (1987).

from which displacive transformation occurs. Nucleating substrates must therefore be of

specific orientations if they are to produce nucleation. It has never been established that

a randomly oriented population of non-metallic inclusions could provide enough suitable

nucleation surfaces to create acicular ferrite. Secondly, some inclusion phases such as

,-Alz03 offer reasonably good lattice matching, and yet experimentally are found to be

associated with poor yields of acicular ferrite (Oldland and MCPherson, 1984; Suzuki et
al., 1985; Harrison, 1987; Horii, 1988; Thewlis, 1993).

1.7.2 Inert Surface

This theory suggests that any surface may assist nucleation (e.g. Barbaro et al., 1988).

However, since some inclusion surfaces have been shown to be more efficient in causing

ferrite nucleation than others (e.g. TiO jTiN), the model seems inconsistent with experi-

mental data.

1.7.3 Inclusion-caused Mn depletion

As discussed earlier, many inclusions have been observed to possess surface coatings of

MnS. This MnS is likely to precipitate from the steel at a fairly late stage in the cooling of
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Inclusion phase Parallel planes & directions

Mineral Ferrite

,-Alz03 (100) (011)

[01I] [533]

MnAlz04 (200) (110)

MnAlz04 (011) (010)

[all] [001]

TiN (110) (100)

(112) (011)

[11I] [all]

TiN (101) (103)

(320) (112)

[232] [351]

Ti (110) (133)

(221) (200)

Table 1.2 Summary of orientation relationships experimentally estab-
lished by Grong et al. (1992).

the weld. The resulting depletion in the adjacent matrix may stimulate nucleation, since

manganese is an austenite stabiliser.

Evidence for such manganese depletion, based on EDX examination, has been sought

by several workers (notably Barrite et al., 1981; Barbaro et al., 1988). Depletion zones have

not been found (Fig.1.13), but the techniques used may not have had sufficient resolution,

and some (notably Yamamoto et al., 1993) still advocate this nucleation mechanism.

1.7.4 Inclusion-caused carbon depletion

It has been suggested by Es-Souni and Beaven (1990), and Es-Souni et al. (1991) that

the nucleation properties associated with the titanium-rich phase TiX are actually due to

carbon absorption by TiN forming a member of the Ti(C,N) solid solution. Diffusion of

carbon into inclusions would result in a carbon-depleted zone in adjacent matrix which

may stimulate nucleation, since carbon stabilises austenite.

Ochi et al. (1988) examined microalloying effects on Mn, S, V and N containing steels.
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Figure 1.13 Mn concentration profile away from an inclusion which pos-
sessed a manganese sulphide coating (after Barrite et al., 1981). No locally
depleted zone surrounds the inclusion, within the limits of resolution.

They found intragranular ferrite to be associated with the precipitation of VSC7 particles.

Such carbide precipitation could well have caused local carbon depletion, but such analysis

may only be speculative. This, indeed, is the problem in investigating the likelihood of

carbon depletion inducing nucleation, since, so far, no actual carbon profiles have been

measured. Additionally, intragrantilar bainite formation will cause carbon rejection from

the ferrite, so that the profile present at the time of transformation cannot be preserved.

1.7.5 Tessellated Stresses

Tessellated stresses arise when two materials, with different physical properties are present

together in a mechanical mixture. In steel welds, the inclusions have lower thermal expan-

sivity than austenite, so that stresses are induced during cooling in both the inclusions and

the surrounding steel. It has been suggested that such tessellated stresses may be respon-

sible for causing a greater drive to form ferrite adjacent to inclusions than elsewhere in the

weld, since transformation from austenite may allow stress relief (Barrite and Edmonds,

1981; and Barrite, 1983).

For reference Table 1.3 shows the expansion coefficients of various mineral types.
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Mineral Coeff. of thermal Temp. range Reference

expansion jK-1 of measurement jK

SnOz 4 x 10-6 273-1073 [1]

3.76 x 10-6 295-923 [1]

NbC 7 x 10-6 - [2]

Alz03 8.0 x 10-6 293-1853 [1]

8.4 x 10-6 293-1273 [1]

7.5 x 10-6 1273-1573 [1]

a-axis: 7.1 x 10-6 373 [1]

a-axis: 9.7 x 10-6 773 [1]

a-axis: 14.2 x 10-6 1273 [1]

c-axis: 6.0 x 10-6 373 [1]

c-axis: 8.9 x 10-6 773 [1]

c-axis: 13.8 x 10-6 1273 [1]

MnAlz04 8 x 10-6 273-1073 [3]

SrTi03 8.9 x 10-6 273-1080 [4]

TiN 9.4 x 10-6 273-1073 [3]

TiOz 9.5 x 10-6 273-1080 [4]

7.8 x 10-6 293-873 [1]

8.19 x 10-6 273-773 [1]

CaTi03 1.2 x 10-5 273-1700 [4]

TiO 1.4 x 10-5 273-1400 [4]

MnS 1.8 x 10-5 273-1073 [3]

Austenite 2.3 x 10-5 [3]

Table 1.3 The coefficient of thermal expansion of a selection of minerals.
References [1,2,3,4] are as follows: [1] - Samsonov (1973), [2] - Barant-
seva (1974), [3] - Brooksbank and Andrews (1972), [4] - Goldsmith et
al. (1961).
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1.8 Summary

Cooling steel may undergo a variety of solid-state phase transformations, both reconstruc-

tive and displacive. The products of each transformation vary in size and shape. Such

microstructural variations affect the physical and mechanical properties of the final steel.

Acicular ferrite is a transformation product which is of great benefit to steel toughness.

It is composed of fine interlocking plates, which nucleate heterogeneously on non-metallic

inclusions. Therefore, for acicular ferrite production, inclusions are desirable. However,

cracks frequently initiate at inclusions so that, although necessary for acicular ferrite to

occur, the presence of too many inclusions could be detrimental for mechanical properties.

It is therefore desirable to produce acicular ferrite with the minimum number of inclusions.

Some inclusion types are more potent at causing nucleation than others. For example,

alumina-rich inclusions are relatively ineffective nucleants, in contrast to titanium-rich

inclusions. Obviously the inclusion population should be designed so that its nucleation

potency is high. However, the research to date has failed to fully identify the phases of

exceptional potency. Also the dominant mechanism of nucleation is not well understood.

The reason for uncertainty is because of the complex nature of real inclusions and real

weld systems. Ideally, inclusion-induced nucleation should be investigated in much less

complicated systems, with pure single phase mineral powders. Such has been the aim of

this project.
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CHAPTER 2

Experimental Methods

2.1 Materials

2.1.1 Alloys

The compositions of the alloys used are shown in Table 2.1. Alloy A5763 was used for most

of the experiments. Its relatively high silicon content sup ressed the formation of cementite

during the bainite transformation. The carbides could, themselves interfere with the ex-

periments by stimulating heterogeneous nucleation. This would interfere with the aim of

studying nucleation from pure mineral phases. The manganese and carbon concentrations

in A5763 gave sufficiently high hardenability to allow bainite to form without interference

from higher temperature reactions, such as the allotriomorphic ferrite transformation. The

alloys A5763 and A5762 were received in the form of 10mm diameter rods. IC373 (a duplex

stainless steel) was received in sheet form, rv 4mm in thickness.

Alloy C Si Mn Cr Ni Mo B o (ppm) N (ppm)

A5763 0.204 1.95 1.54 0.00 0.01 0.00 0.0016 8 7

A5762 0.3 0.15 <0.02 - - 4.20 - - -

IC373 0.026 0.5 0.67 25.9 5.1 3.65 - - 1420

Table 2.1 Chemical compositions (wt %) of the alloys used. Oxygen and
nitrogen concentrations are shown in ppm by weight.

2.1.2 Mineral Powders

Mineral powders were obtained from commercial chemical synthesis companies. The min-

eral types used, their minimum purities, and the chemical suppliers used are summarised in

Table 2.2. Mineral particle sizes were not often stipulated, and were not measured during

the course of this work.
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Mineral type Minimum purity Commercial supplier

TiOz unknown unknown

PbOz ~99% Johnson Matthey

MnOz ~99% Ventron

SnOz ~99.9% Johnson Matthey

Mo03 ~99.5% Johnson Matthey

W03 ~99% Johnson Matthey

VZ05 ~99% Johnson Matthey

KN03 ~99% BDH

TiO ~99% Ventron

Tiz03 ~99% Johnson Matthey

CrZ03 ~99% Johnson Matthey

VZ03 ~99% Aldrich

TiN ~99% Johnson Matthey

CaTi03 ~99% Johnson Matthey

SrTi03 ~99% Johnson Matthey

a-Alz03 ~99% Fisons

,-Alz03 ~99.99% Johnson Matthey

NbC ~97% Aldrich

MnS ~99.9% Johnson Matthey

Table 2.2 Summary of information for the various chemical powders used.

2.2 Thermal and Mechanical Processing

2.2.1 Furnace Treatment

An electrical resistance heated furnace was employed for any long term heat treatments,

or for specimens not suitable for the thermomechanical simulator (described below). For

furnace heat treatments, samples were first sealed in silica tubes under partial pressure of

argon (I"V 150 mm Hg) to minimise decarburisation or oxidation. The quartz tubes were

then placed on ceramic boats inside the furnaces, to prevent any contamination by contact
with the base of the furnace.
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2.2.2 Thermomechanical Simulator

Most heat treatments required considerably more control than was possible using furnaces;

mechanical stress was often required to allow intimate ceramic-steel bonding. Accurate

thermal and mechanical control was made possible by the use of a thermomechanical

simulator (Thermecmastor, manufactured by Fuji Electronic Industrial Co. Ltd.). This

equipment is computer-controlled, with computer data collection of strains (measured in

two orthogonal directions), stress and temperature. The sample is heated by an RF-

induction heating coil, in an environmental chamber. Standard thermal and mechanical

treatment involved spot-welding a Pt / Pt-13 wt.%Rh thermocouple to the steel specimen

and placing it between the two ram-heads within the specimen chamber. The ram-heads

were then lowered so that the specimen was held in place, surrounded by the RF-induction

heating coil. The environment chamber was then evacuated to a pressure of cv2x 10-2 Pa

before commencing the experiment.

Controlled quench rates of up to 50°C s-l (between 1200°C and cvlOO°C)were possi-

ble using He cooling gas. N2 could also be used as a gas coolant, but could not give cooling

rates as high as He. The Thermecmastor also allowed a rapid water-quench, water being

directed at the specimen from small jet-holes in the RF-coil. Water quenching produced

cooling rates of upto cv 400°C s-l.
,

The standard steel specimen size required by the machine for compressive or unloaded

testing, was a cylinder, 8mm in diameter and 12mm long. In some cases, specimens of

these dimensions were impossible to obtain, but this did not seriously impair treatment in

the Thermecmastor.

2.3 Analysis Techniques

2.3.1 Microstructural Observations

Specimens were prepared for general microstructural observation, using both optical and

scanning electron microscopy (SEM), by sectioning using a Struers Accutom-2 high speed

preCISIOnsaw. Sectioned specimens were then hot-mounted in conductive bakelite, ground

on SiC paper (1200 grit-size), and polished using 6Mm diamond paste. The low-alloy

steels A5763 and A5762 were etched in 2% Nital (nitric acid in methanol), while the

duplex stainless steel IC373 was etched in a solution containing 50ml methanol, 30ml HCl

and 12.5g CuC12.

Grain-boundary etching was carried out on A5763, and was successful with a picric

acid based solution: 40 g picric acid, 990ml distilled water and 2mlliquid detergent (Fairy
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liquid). The etchant was heated to rv50°C and clear grain boundary definition was obtained

after c:::::'45s etching.
Optical micrographs were taken on an Olympus microscope, with camera attached,

using UfoI'd PanF film. SEM microstructural investigation was carried out on a CamScan

S2 microscope, and micrographs were taken using UfoI'dFP4 films.

2.3.2 Transmission Electron Microscopy

2.3.2.1 Thin-foil Preparation

The majority of thin foils were prepared as follows: a slice of the specimen c:::::'200J1mthick

was cut using a Struers Accutom-2 high speed precision saw. It was then mounted on a

brass block and ground on fine SiC paper (1200 or 800 grit) to '::::::.75J1mthickness. Undis-

torted 3mm discs were punched from the ground slice using a specialised foil-punch. The

discs were then jet-polished to electron transparency at '::::::.50V with the polishing solution

being cooled to -5°C using liquid nitrogen. The polishing solution contained 5% perchloric

acid, 20% glycerol and 75% industrial methylated spirits.

However, certain specific Transmission Electron Microscope (TEM) investigations

were also undertaken on the steel-mineral interface area produced on pressure bonding, for

which cross-sectional thin-foils were prepared. Slices were cut in the same way as described

above, and ground down to c:::::'100J1mbefore punching discs such that the mineral-steel in-

terface lay as a diameter of the foil. The discs were then ground to 50 J1m thickness. A

concave dimple was made in the centre of the foil, so that the interface area would thin

preferentially during ion-beam milling.

Two methods of dimpling were tried:

(i) Chemical dimpling - performed using a solution of 40% perchloric acid, 35% glycerol

and 25% ethanol, gravity fed with a voltage applied to the region being dimpled.

(ii) Mechanical dimpling - performed on a mechine with diamond paste abrasive.

Both methods were successful in producing a smooth hollow c:::::'25J1mdeep in the interface

area. Ion-beam milling was then performed to achieve electron transparency in the region

of interest.
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2.3.2.2 Extraction Replica Preparation

Replicas allow chemical analysis, diffraction analysis and the general investigation of non-

metallic particles without interference from the steel matrix. Magnetic foil-electron beam

interactions on the TEM are also avoided. The replica was amorphous, and so did not

seriously impede the taking of crystalline particle diffraction patterns.

Carbon extraction replicas were prepared from surfaces etched slightly deeper than

is usual for optical microscopy, to allow easy particle removal from the steel. A carbon

coating of 200-300A (a blue-brown colour) was evaporated onto the sample in a vacuum

of 10-5 torr. The deposited film was scored using a razor blade, and then removed by

electrolytic etching in a solution containing 5%HCI in methanol at +2.5 V. The detachment

of the film from the metal could be observed as blistering occurred. The film was then

washed in industrial methylated spirits and floated-off on the surface of distilled water.

Sections of floating film were collected on 400 square mesh copper grids for examination

using TEM.

2.3.2.3 Diffraction Patterns

For ease of interpretation, diffraction patterns from crystalline inclusions in steels were

taken along simple crystallographic zone axes. Rotation of the specimen relative to the

electron beam, in order to sample such zones, involved tilting about two perpendicular

axes in the plane of the specimen. Frequently, diffraction from non-zero-Iayer spots could

be seen in the form of rings (Fig 2.1). Tilting so that these rings centred on the straight-

through beam ensured that the beam direction lay along a prominant zone in the crystal.

To identify the mineral the spacings of two prominant lattice vectors on the diffrac-

tion photograph were measured. These reciprocal vectors were converted to interplanar

spacings, using the Bragg equation:

2d sin 8 = A.

where

8 = Bragg angle

d = interplanar spacing

A. = wavelength of the incident radiation.
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From Fig 2.2, it can be seen that
X

tan2e = L (2.2)

where
X = measured reciprocal lattice vector from the diffraction pattern

L = camera length

Therefore

e = ~arctan (~)

and from (2.1)
d= A

2sin (!arctan (~))

(2.3)

(2.4 )

A is given by the following expression which is corrected for relativistic effects (Hirsch et
al., 1965):

For 120kV A= 0.0335 A
For 100kV A= 0.037 A

A- h
- 2meV (l+eV)

2mc2
(2.5)

In this way d may be evaluated for two reflecting planes in the crystal. These spacings
were compared to Powder Diffraction File (PDF) cards of the most likely suspected mineral

phases. When a match was obtained, the expected angle between the reciprocal vectors

was calculated and compared with that measured. This information, along with chemical

analysis generally allowed phase identification.
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Figure 2.1 Non-zero layer diffraction planes were sometimes observed
as rings of spots surrounding the central zero layer plane. Alignment of
the specimen relative to the beam such that the beam lay pa.rallel to a
prominent crystal zone was achieved by tilting until the rings were centred
on the straight-through beam.

t
L

1
x

Figure 2.2 Schematic diagram showing the diffraction geometry on
TEM.
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2.3.3 Energy Dispersive X-ray Analysis

Chemical analysis of particles examined using TEM involved the use of a LINK series 860

energy dispersive X-ray spectrometer, attached to a Phillips 400T 120kV TEM. X-ray

spectra were recorded at a specimen tilt of 35°, and live times of 100s were used as long

as individual count rates were good. The dead time was not allowed to exceed 25% . The

data were analysed using the LINK RTS2-FLS software. This arrangement involved use of

a beryllium-windowed detector which prevented detection of the soft characteristic X-rays

of elements lighter than sodium. For chemical analysis involving examination of lighter

elements, an Energy Dispersive X-ray (EDX) system with a windowless detector, attached

to a Jeol 2000FX TEM was employed.

EDX analysis was also used to examine matrix steel chemistry using a system attached

to a CamScan S4 SEM microscope. For maximum X-ray detection the specimen under

examination was polished, lightly etched, and was tilted to 45° relative to the electron

beam. Again dead times were not allowed to exceed 25% .

2.3.4 X-ray Powder Diffraction

X-ray powder diffraction of mineral powders was carried out using one of two diffractome-

ters - a Rigaku GFX-RAD3C and a Philips PW1710. Both systems used a copper target

and Ni-filter, producing CuKa radiation.
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CHAPTER 3

Titanium-Rich Mineral Phases and the Nucleation of Bainite

3.1 Introduction

As already described in Chapter 1, a great number of investigations have been carried out

on the non-metallic inclusions in steel welds. Such studies have largely tried to elucidate

the chemical nature of non-metallic inclusions which are particularly effective in the nu-

cleation of acicular ferrite (thought to lead to an improvement in toughness). They have

also tried to identify possible mechanisms by which inclusion-caused nucleation may occur.

Unfortunately, inclusions in welds tend to consist of a conglomeration of many crystalline

and amorphous phases (Barrite et al., 1981; Dowling et al., 1986; Barbaro et al., 1988), so
that identification of the particular component responsible for stimulating acicular ferrite

production is inherently difficult.

A major part of the present investigation therefore involved the pressure-bonding of

pure ceramics to steel, so that the resulting interface could be studied without ambiguity.

Similar experiments have been performed previously by Strangwood and Bhadeshia (1988).

However, because of the lack of adequate equipment, high hardenability steels were used,

so that only allotriomorphic ferrite formation was examined.

3.2 The Experimental Technique

An intimate bond between the mineral and steel was achieved by dusting pure mineral

powder on top of a cylinder of steel of diameter 8mm and depth 6mm, placing an identical

steel cylinder on top of the mineral layer, and compressing the composite specimen in the

thermomechanical simulator (described in Chapter 2) - Fig.3.l. The optimum values

of bonding pressure and temperature were determined by trial and error; a compressive

stress of ",8 MPa for 10mins at 1200°C was found to work well. For stresses significantly

lower than this optimum value, adequate mineral-steel bonding was not achieved, while

significantly higher stresses caused unnecessary deformation of the specimen.

In some of the initial experiments, a countersunk region 3mm in diameter and 2mm

in depth was machined in the lower steel cylinder, to house the mineral powder. This was

later deemed unnecessary, as it involved machining, and also created less intimate bonds

between the steel and mineral. Having formed the required ceramic/steel interface, the

transformation behaviour of steel adjacent to the mineral could be compared with that in

the steel away from the interface. Any differences in the reactions at these two locations

could be interpreted to reveal inclusion-stimulated phenomena.
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Acicular ferrite appears to be intragranularly nucleated bainite (Sugden and

Bhadeshia, 1989; Yang and Bhadeshia, 1987; Strangwood and Bhadeshia, 1987; Kluken et
al., 1990). Its morphology, which consists of plates radiating from 'point' nucleation sites, is

different from that of the parallel ferrite plates associated with bainite. This is because the

latter grows from austenite grain surfaces rather than point sites. A planar ceramic/steel

interface is therefore expected to give a conventional bainitic microstructure, rather than

one which looks like acicular ferrite. It is assumed that, since bainite and acicular ferrite

form by the same transformation mechanism, a mineral which is effective in stimulating

bainite should also be useful as a nucleant for acicular ferrite.

In order to design the experiments, it was necessary to determine the bainite-start

temperature (Bs) of the alloy used (A5763). This was estimated using a computer program

designed to calculate TTT behaviour from steel composition (Bhadeshia, 1982). A more

accurate value was obtained by isothermal transformation experiments at temperatures

close to the calculated start temperature, after austenitisation at 1200°C for 10mins (us-

ing the thermomechanical simulator). Microstructural observations showed that bainite

was produced during transformation at temperatures up to ,,-,540°C,with Widmanstatten

ferrite occurring at higher temperatures (Fig.3.2). Bs was therefore identified experimen-

tally to be close to rv540°C, which compares with the calculated value of 560°C.

The heat treatment involved austenitisation of the steel-mineral specimen at 1200°C

for 10mins during which a compressive load of 400N ("-'8MPa) was applied to achieve

bonding, as described above. This load was then removed, and the specimen gas-quenched

(using nitrogen or helium) at rv 40°C/s to 510°C (safely within the bainite region). It was

held at this temperature for 25 seconds, before further gas-quenching to room temperature.

During the quench, any untransformed austenite decomposed to martensite. The bonded

specimens were then sectioned in a plane normal to that of the ceramic/steel interface

using a Struers Accutom-2 precision high speed saw, and prepared for metallographic

examination.
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Mineral Powder

SiC Dies

Figure 3.1 The steel-mineral arrangement used In the bonding experi-
ments

(a) (b)

Figure 3.2 (a) Optical micrograph of the microstructure produced due
to isothermal treatment of A5763 at 520°C. It is dominantly bainitic.

(b) Optical micrograph of the microstructure produced due
to isothermal treatment of A5763 at 560°C. Much coarser Widmanstatten
plates have formed.
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3.3 Testing Titanium-Rich Mineral Phases

As discussed in Chapter 1, a large number of experiments have indicated that inclusions rich

in titanium are most effective in acicular ferrite production (e.g. Terashima and Hart, 1983;
Dowling et al., 1986; Homma et al., 1987; Es-Souni et al., 1991). Despite the frequency of

observation of this titanium effect, identification of the specific titanium-rich compound

responsible is rare. This is because elements such as C, N, or ° are either undetectable,
or their concentrations cannot be estimated with sufficient accuracy to determine the

stoichiometry with titanium. Minerals such as TiN, TiO and TiC have similar structures

and lattice parameters, such that the bulk of diffraction data obtained experimentally

cannot distinguish between them. The obvious importance of titanium-rich minerals in

the production of acicular ferrite, and the confusion over the exact compounds responsible

for nucleation, prompted the testing of TiOz, Tiz03, TiO and TiN for their nucleation

potency in a series of pressure bonding experiments.

3.3.1 Results and Discussion

Each of the various combinations of mineral and steel were found to be quite different in

their response to heat-treatment and are discussed separately:

3.3.1.1 Titanium Dioxide: TiOz

Figure 3.3 reveals that the steel near the TiOz layer shows a lot more bainite than the

bulk of the steel away from the ceramic/steel interface. It would therefore appear to

be very potent in nucleating bainite. Closer examination showed that the bainite does

not emanate directly from the TiOz-steel interface. The presence of TiOz causes the

production of a zone of allotriomorphic ferrite cv 15-20 /-lm thick (Fig 3.4) which contains

amorphous spherical particles approximately 0.5 /-lm in diameter (Fig 3.5, 3.6). These were

found, using microanalysis, to consist almost entirely of silicon and oxygen. A typical EDX

trace of these particles taken on TEM is shown in Fig 3.7. Such spherical particles are

probably amorphous silica. Detailed investigation revealed that silicon was not the only

possible cation constituent, iron and manganese were also present. However, as can be

seen from Fig.3.8, silicon was dominant as the cation constituent. Cross-sectional TEM

revealed that some of the particles were considerably larger than 0.5/-lm , and were not

spherical (Fig.3.9). Further that although the cores of the particles were amorphous, their

surfaces appeared to be microcrystalline (Fig.3.10).

The presence of these particles clearly shows that oxygen has diffused over a distance

of some 20 /-lm from the TiOz into the steel. Similar effects were not found at the surfaces

of the steel which were not in contact with the ceramic, confirming that the observed
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phenomenon was induced by the ceramic (Fig 3.11).
In order to show that it is the property of TiOz to cause oxidation which in turn

induces the ferrite, silica and bainite production, another oxygen producing mineral was

tested in the bonding experiments - KN03 (a mineral which decomposes to give oxygen

at 400°C - Sidgewick, 1950; Irving Sax, 1968). The decomposition of KN03 produced

bainite nucleation as can be seen in Fig 3.12, 3.13. The particles observable in the figure

are composed predominantly of silica - their high Si-content was observed using SEM

EDX (Fig 3.14). These particles are contained within a ferrite layer (Fig 3.15). Thus the

decomposition of KN03, and consequential exposure of the steel to oxygen, produced the

same salient 'reaction zone' features displayed at the TiOz-steel interface.

Furthermore, exposure of the steel to water vapour at 1200°C also caused a 'reaction

zone' adjacent to the free surface (Fig 3.16). Oxidation can therefore duplicate the effects

on the steel found adjacent to TiOz' It seems therefore that it is the ability of TiOz to

cause local oxidation in Alloy A5763 which is responsible for the nucleation observed. The

effects on steel hardenability due to oxygen entry were investigated in detail, and will be

discussed in Chapter 4.

3.3.1.2 Titanium Sesquioxide: Tiz 03

The characteristics of Tiz03 as a stimulant for bainite nucleation were found to be similar
to those of titanium dioxide (Fig 3.17). However, the presence of Tiz03 did not produce
the layer of allotriomorphic ferrite or any silica particles. Furthermore, SEM microanalysis

revealed that the presence of Tiz03 caused the long-range depletion of Mn in the steel

local to the mineral layer; Fig 3.18 illustrates a typical concentration profile, which was

verified on four separate occasions.

Figure 3.19 shows that the oxide is in fact a sink for manganese. Manganese presence

in steel is known to stabilise austenite over ferrite, and so its depletion in the alloy adjacent

to the Tiz03 was clearly responsible for the enhanced bainite production observed. Ex-

actly why Tiz 03 should have absorbed manganese was not obvious. It was thought that
a chemical reaction was occurring which favoured the production of a manganese-rich

mineral within the Tiz03 layer.

3.3.1.2.1 Furnacing Tiz 03 with chippings of A5763

In order to investigate this possibility, some Tiz03 powder was mixed with fine chippings
of A5763. A reference X-ray powder diffraction trace was then taken from this mixture.

It was sealed in a silica tube under partial pressure of argon, and subjected to a furnace

treatment of 3hrs at 1200°C. It was hoped that this treatment would induce enough reac-
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tion that changes in mineralogy could be readily observed in the powder diffraction trace.

X-ray powder diffraction of the post-furnaced mixture was performed and compared to

the pre-furnace trace. Fig.3.20 shows that clear differences in the powder diffraction traces

occurred due to the heat treatment. Interpretation of these traces was not straightforward,

but certain conclusions could be made:

(i) That the peaks corresponding to Ti203 in the pre-furnaced mixture disappear after

heat treatment.

(ii) New peaks emerge which correspond very well with Ti305·
(iii) Other peaks emerge, not associated with Ti305. Exactly what these peaks corre-

spond to is not known, however, they do match reasonably with a manganese-titanium

intermetallic.

Analysis of the mineral powder after furnace treatment with the steel chippings under

TEM confirmed the general observations made from X-ray analysis. Fig.3.21 shows a

diffraction pattern taken from the mineral. It indexes not as Ti203, but as Ti305. TEM

EDX performed on the powder shows a consistent level of manganese is indeed present

(Fig.3.22). However, TEM investigation was unable to elucidate the mineralogical nature

of any manganese-rich regions.

In summary, then, the results from the furnace treatment of Ti203 with steel chippings
confirmed that manganese absorption into the mineral had occurred. Also, that this man-

ganese absorption was associated with a transformation of the titanium oxide from Ti203
to Ti305. Such transformation involves a loss of titanium. The creation of ,-Mnl_2 Ti

intermetallic, although thought unlikely, was consistent with the changes observed in the

titanium oxide.

3.3.1.2.2 Analogues of Ti203

To see if analogous behaviour could be observed in other minerals, V203 and Cr203 were

tested in the bond experiment. These oxides were selected because they are structurally

the same as Ti2 °3. Also the cations are adjacent in the transition element region of the

periodic table. This meant that behavioural similarities were likely. Futher, vanadium,

chromium and titanium may form a variety of oxides, with differing stoichiometry. For all

three cation types, if the stoichiometry of the oxides was the same, then they were struc-

turally similar (see Table 3.1). So, great similarities between Cr203, V203 and Ti203
were apparent. Fig.3.23 and Fig.3.24 show the results of the bonding experiments. Both

Cr203 and V203 caused the nucleation of bainite, as expected. However, nucleation has

not occurred directly from the mineral-steel interface. Instead a layer of ferrite has formed.
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No silica particles were obvious within this layer, so it was thought that the ferrite may

have formed because of considerable reductions in manganese concentrations. This may

have been so, but SEM EDX line profile analysis perpendicular to the CrZ03 and VZ03
revealed that outside the ferrite layer, no manganese depletion was apparent (Fig.3.25 and

Fig.3.26). Thus bainite transformation has occurred in alloy of bulk manganese concentra-

tion. Therefore, despite the apparent similarities between Tiz°3' VZ°3 and Crz°3' only
Tiz03 seemed to react with the steel to cause manganese depletions. The reason for this

was not clear_
In summary Tiz03, when tested in the bond experiment, caused the accelerated for-

mation of bainite in local steel. Unlike TiOz, no reaction zone was associated. It was

found that nucleation was induced due to a tendency of Tiz03 to absorb manganese, so
reducing the hardenability of the local alloy_ Manganese absorption may be related to a

change in the oxide from Tiz03 to Ti30S-

Mineral Type System Space Group Structural Type Lattice Constants / A
a b c

TiOz Tetrag. P4z/m 21/m 2/m TiOz 4.59 4.59 2.96

VOz Monocl. P2db TiOz 5.74 4.52 5.38

CrOz Tetrag. P4z/n 21/C 2/m TiOz 4.42 4.42 2.92

Tiz03 Hex. R3c a-Alz03 5.16 5.16 13.57

VZ03 Hex. R3c a-Alz03 5.43 5.43 -

CrZ03 Hex. R3c a-Alz03 4.95 4.95 13.67

Ti30S Monocl. - - 9.76 3.80 9.45

V30S Monocl. - - 9.98 5.04 9.84

Table 3.1 Summary of some of the structural information for the oxides of
titanium, vanadium and chromium. ote the similarities between oxides
of the same stoichiometries (after Samsonov, 1973).
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3.3.1.3 Titanium Nitride: TiN

The TiN-steel interface can be seen in Fig 3.27. Under an optical microscope it seems

that this interface does not enhance the nucleation of bainite in the steel adjacent to it.

SEM examination confirms that little, if any extra inducement for transformation occurs

adjacent to TiN than elsewhere in the steel. Certainly, the level of bainite production

caused by the TiN-steel interface is meagre when compared with that caused by Ti02
and Ti203-steel interfaces. It would therefore seem that TiN is not an active nucleant for

the production of acicular ferrite in real steel systems. This is contrary to the suggestions

of Barbaro et al. (1988), Watanabe and Kojima (1980), Kluken and Grong (1989), and

Grong et al. (1992).

3.3.1.4 Titanium Monoxide: TiO

The TiO-steel combination is similar to the Ti203-steel interface, in that it induces the

nucleation of bainite in the adjacent steel (Fig 3.28). There is also an absence of the layer

of allotriomorphic ferrite and SiOx particles that occurred with Ti02. However, unlike the

Ti203, SEM EDX indicates that the presence of TiO does not radically affect the substitu-

tional solute concentration in the adjacent steel (Fig 3.29). Slight manganese depletion is

apparent, although it is within the levels of scatter typical of the EDX analysis technique.

Nevertheless, an attempt to exaggerate any depletion was undertaken, by furnace treating

a TiO-bonded specimen at 1200°C for 6hrs. Fig.3.29 also shows the substitutional element

concentration profile measured after this treatment. Again, slight manganese depletion was

evident, but had not been exaggerated. TiO-caused manganese depletion was therefore

not established. The lack of reaction zone implied that nucleation of bainite was not due

to oxygen impregnation of the steel either. Therefore, it seemed that a different nucleation

mechanism was in operation. The observation that TiO does cause bainite nucleation is in

agreement with earlier work (Bailey, 1983; Mori et al., 1981; St.Laurent and L'Esperance,

1992) where it is argued that TiO is effective as a nucleant because it has a good lattice

match with ferrite. In the present context, however, TiN also offers a good lattice match

for ferrite, and yet does not appear to enhance bainite nucleation.

The true mechanism by which TiO causes the nucleation of bainite, when pressure

bonded to steel, is therefore still under consideration and obviously requires further inves-

tigation with a much wider range of minerals.
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3.4 Summary and Conclusions

Using a pressure bonding technique to create interfaces between pure powdered minerals

and steel, nucleation potency of various titanium-rich minerals was investigated. It has

been demonstrated that Ti02, Ti203 and TiO are all effective in enhancing the formation

of bainite in the adjacent steel. The mechanism by which each compound stimulates ferrite

nucleation is found to be different in detail:

• Ti02 appears to induce transformation by oxidising the steel at elevated temperatures.

Exactly how the oxidation process causes nucleation will be discussed in detail in Chapter 4.

• Ti203 appears to act as a sink for Mn and hence causes a reduction of Mn levels in the

steel which surrounds it. Mn is known to retard the transformation of steel to ferrite, and

so any depletion in the steel has the opposite effect.

• TiO is found not to be reactive in the sense discussed above, nor does it act as a sink for

elements such as manganese. It nevertheless enhances the nucleation of bainite although

the mechanism by which this happens is not clear since its lattice match with ferrite is

similar to that of TiN, which does not stimulate bainite formation.

In contrast to these titanium oxides, TiN appears to show little efficacy in inducing bainite

transformation in adjacent steel.

On the basis of these results it would seem that it is titanium oxides and not nitrides

which are important in causing the formation of acicular ferrite in welded and wrought

steels. The mechanisms by which such oxides cause nucleation seem to be dependent on
their stoichiometry.
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Figure 3.3 Optical photomicrograph of the TiOz-steel interface region.
There is clearly more bainite present adjacent to the mineral than else-
where ill the steel
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Figure 3.4 Optical photomicrograph of the ferrite and SiO x particles
produced adjacent to the TiOz
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Figure 3.5 TEM photomicrograph of typical silica particles

Figure 3.6 Diffraction produced from a silica particle illustrating its
amorphous nature
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Figure 3.V'TEM EDX trace (using thin-windowed detector) of the par-
ticles present in the ferrite layer produced adjacent to the TiOz
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Figure 3.8 TEM EDX microanalysis of the cation constituent of the
particles in the reaction zone. Although iron and manganese were observed
present, silicon dominates as the cation species.
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Figure 3.9 Cross-sectional thin-foil examination of the reaction zone
shows that the particles need not be at all spherical in shape. They may
also be somewhat larger than 0.5 f-lm in diameter.

Figure 3.10 Cross-sectional thin-foil examination of the particles showed
them to possess microcrystalline surface coatings.
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Figure 3.11 Optical photomicrograph of a steel-steel interface produced
by pressure bonding. As can be seen, no 'reaction zone' is produced

Original KN03

200 {till

Figure 3.12 Optical micrograph of the interface region between A5763
and KN03. Bainite nucleation is clearly evident
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Figure 3.13 SEM photomicrograph of the KN03-A5763 interface show-
ing the bainite produced local to the KN03" The observable particles are
predominantly silica
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Figure 3.14 SEM EDX results taken from particles in KN03-steel spec-
unen. As can be seen, they are highly enriched in Si
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Figure 3.15 SEM photomicrograph illustrating the ferrite layer which
surrounds the Si-rich particles produced by the KN03

Figure 3.16 SEM photomicrograph of the interface region between
Ti203 and the steel. Bainite production is enhanced by the interface,
but without the production of a ferrite and particle layer
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Figure 3.17 SEM EDX concentration profile showing the relative deple-
tion of Mn caused by the Ti203 mineral layer
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Figure 3.18 SEM EDX concentration profile across the Ti203 layer
showing the presence of Mn within this layer
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Figure 3.19 X-ray powder diffraction showed that mineralogical changes
did occur in Tiz 03 due to furnace treatment with steel chippings.

Figure 3.20 Diffraction pattern taken from the mineral powder after
furnace treatment with steel chippings. This pattern indexes as Ti3 Os
and not Tiz °3,
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Figure 3,21 EDX performed on particles examined on TEM showed
consistent levels of manganese associated with the Ti3°5"
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Figure 3.22 Optical micrograph of the interface region between steel
and Cr203" Clearly nucleation of bainite has been induced, but with an
associated band of ferrite, reminiscent of a reaction zone.
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Figure 3.23 Optical micrograph of the interface region between V2°3
and steel. Bainite nucleation has been produced, but it is associated with

a band of ferrite.
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Figure 3.24 SEM EDX line profile of substitutional elements adjacent

to Cr203'
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Figure 3.25 SEM EDX line profile of substitutional elements adjacent
to V203.

Figure 3.26 Optical photomicrograph of the interface region between
TiN and the steel. There is little if any extra inducement to form bainite
adjacent to the TiN than elsewhere
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Figure 3.27 Optical photomicrograph of the interface between TiO and
the steel. B'ainite nucleation adjacent to the mineral layer is evident, and
no ferrite and particle layer has been produced
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Figure 3.28 SEM EDX line profile of the substitutional elements away
from the TiO-steel interface. No obvious chemical variation exists be-
tween steel adjacent to, and away from, the interface. Also plotted is the
concentration profile measured after heat treatment at 1200° C for 6 hrs.
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CHAPTER 4

Bainite Nucleation from Mineral Surfaces

4.1 Introduction

In the previous chapter, the potency of nucleation of titanium-rich minerals was investi-

gated by the examination of mineral-steel interfaces, produced by pressure bonding. The

nucleation behaviour exhibited was different for each titanium mineral. However, results

from a large number of pressure bonding experiments indicate that an overall pattern of be-

haviour is present. Minerals examined appear to fall naturally into 3 categories, depending

on their effects on the steel. These are as follows:

GROUP I: minerals which appear to react with the steel in a way which induces the

nucleation of bainite. These include TiOz, PbOz, SnOz, MnOz, W03, Mo03, VzOs and

KN03·
GROUP ll: minerals which cause the nucleation of bainite but without any obvious reac-

tion. These include TiO and Tiz03.

GROUP Ill: minerals which do not stimulate the production of bainite. These include

TiN, MnAlz04, ,-Alz03, a-Alz03, bC, CaTi03, SrTi03 and MnS.

4.2 GROUP I

Fig.4.1 illustrates the profuse nucleation produced adjacent to a group I mineral which

is, in the case illustrated, TiOz. The steel away from the ceramic has transformed to a

much smaller extent than in the vicinity of the ceramic. As described in the previous

chapter, bainite nucleation from TiOz does not occur directly from the mineral surface.

There is, instead, a layer of ferrite in contact with the oxide, which contains particles

found largely to be amorphous silica. This layer extends for ~ 15 - 20/-lm normal to the

ceramic/steel interface, beyond which a thick layer (~100 /-lm) ofbainite is observable. The

creation of this ferri te and silica zone (or reaction zone), and the production of baini te are

features which are common to all minerals assigned to group 1. Structural and behavioural

analogues to TiOz (SnOz, PbOz and MnOz - Table 4.1) were all found to exhibit this

group I behaviour (Fig.4.2).

The presence of silica particles within the steel and the fact that reaction zone features

may be duplicated by the decomposition of KN03, or exposure of steel to water vapour (as

described in Chapter 3) clearly indicates that group I features are associated with oxygen

entry into steel.
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In order further to demonstrate the importance of oxygen liberation in determining the

ability of a mineral to nucleate ferrite, a series of bonding experiments was performed using

members of the perovskite mineral group. These minerals were chosen for investigation

because it is possible within the same structural group, to find those which have the ability

to liberate oxygen, and others which do not. Normal perovskites (AB03 - Fig.4.3) have a

similar crystal structure to the defect-perovskites (B03 - Fig.4.4) save for the addition of

the large A-atom. The absence of the A-atom in defect-perovskites allows local relaxations

in the structure which allow further oxygen loss. Consequently, the defect perovskites are

capable of producing many more oxygen vacancies than normal perovskites.

Fig.4.5 shows that defect-perovskites cause classic group I effects on adjacent steel,

whereas normal perovskites (Fig.4.6) seem inert. In spite of structural similarities, only
the defect-perovskites were found to be capable of stimulating the formation of bainite.

It follows that any mineral capable of liberating oxygen should stimulate the formation of

bainite by the 'Group I mechanism'. Exactly how oxygen absorption into the local steel

causes the drive to form ferrite, however, required investigation.

Mineral System Space Group Lattice Parameters / A
Ti02 Tetragonal P 42/m 21/n 2/m a=4.594 c=2.958

Sn02 Tetragonal P 42/m 2dn 2/m a=4.737 c=3.185

,B-Mn02 Tetragonal (Ti02 structure) - a=4.398 c=2.867

,B-Pb02 Tetragonal P 4/m 2/m 2/m a=4.93 c=3.37

Table 4.1 Crystal structure data for Ti02 and its analogues
(Samsonov, 1973).

4.2.1 Effects of Oxygen on the Steel

4.2.1.1 Effects on Substitutional Alloy Chemistry

Line profiles of substitutional element concentrations were taken perpendicular to the

mineral-steel interfaces of group I minerals in order to investigate the effects that oxygen

may have on steel hardenability. A typical SEM EDX profile is shown in Fig.4.7. As can

be seen, there is an apparent depletion of manganese and silicon within the reaction zone.

The depletion of silicon is likely to be due to the formation of the silica particles within

this zone. The depletion of manganese is likely to be due to its expulsion from the growing
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allotriomorphic ferrite. For this to be so, a peak in the manganese concentration beyond the

ferrite/bainite interface would be expected. This cannot be observed. However, it should

be noted that the SEM EDX system samples an area of the order of 5/-lm in diameter, so

that a peak in manganese may not be observable if situated close to a trough, since peak

and trough will be sampled, for the most part, simultaneously. It is suspected that the

lack of observation of such a manganese-peak is due to the poor resolution of the SEM

EDX system. Apart from this substantial depletion within the reaction zone, the oxygen

presence seems to have had no other effect.

Although the silicon and manganese depletion may be explained by the precipitation

of silica particles, and the formation of the ferrite layer, it may be that the oxygen presence

affected the substitutional elements in the austenite prior to the formation of the ferrite.

Indeed, such oxygen effects may have been responsible for the formation of the ferrite layer.

4.2.1.1.1 Water-Quench Experiment

In order to investigate this possibility, Ti02 was bonded to A5763 and then water-quenched

from 1200°C to room temperature. It was hoped that such rapid quenching would prevent

the formation of any ferrite, so allowing observation of the effects on substitutional element

concentrations produced due to oxygen penetration alone. As can be seen from FigA.8,

the formation of the reaction zone was not totally supressed, even at the cooling rates

produced by water-quenching (300-400°C/s).

The extent of growth of the reaction zone was, however, reduced to 4-5/-lm. EDX

analysis showed that the manganese and silicon depletion was again present, but was again

strictly associated with the reaction zone (FigA.9). Such strict association of depletion of

substitutional elements with reaction zone is important:

Both the water-quench experiment and bonding experiments, involving partial trans-

formation, share the austenitising treatment of 10mins at 1200°C. It is likely that the

majority of the oxygen diffusion into the steel occurs during this time, since partial trans-

formation is induced at significantly lower temperatures (510°C) and for only 25 s. It is

reasonable, therefore, to assume that the oxygen diffusion profile away from the Ti02 is

similar in water-quench and in partial transformation experiments. The presence of silica

particles "-'15-20 /-lm away from the Ti02 in the partially transformed specimens indicates

that significant oxygen concentrations have been produced up to 20/-lm away from the

mineral-steel interface. Since a similar oxygen diffusion profile should be present in the

water-quench experiments, effects of oxygen within the steel, independent of the reaction

zone may be examined between 5 and 20 /-lm away from the Ti02-steel interface. As can be
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seen from Fig.4.l0, measurements of substitutional element concentrations at rv10pm away

froITlthe Ti°2, independent of the reaction zone, show no variation from the concentra-

tions in the bulk steel, despite the oxygen presence. It may therefore be concluded, that

oxygen presence alone does not affect the substitutional element concentrations prior to

transformation.

4.2.1.1.2 Bond Experiment with Low Silicon Alloy

This lack of oxygen interaction with substitutional elements was further validated by an

experiment performed to demonstrate that silica formation was not necessary for the pro-

duction of bainite. This experiment was conducted using a low-silicon steel (A5762 - see

Chapter 2). The Bs temperature of this alloy was estimated in the same way as for A5763,

using computer calculation, accompanied by a series of isothermal experiments. For this

alloy, the true molybdenum concentration was too high for the range of the computer

model used, and so an estimated Bs was calculated on the basis of 1.5wt% molybdenum.

This gave Bs rv570°C. Experimentally, it was found to be rv5l0°C in the 4.2wt% molyb-

denum alloy. Partial transformation of the bonded Ti02-A5762 specimens was performed

at 480°C for 55 s.

For this alloy, no reaction zone was found, nor was any layer of allotriomorphic ferrite

formed at the ceramic/steel interface. The oxide, nevertheless, stimulated the formation of

bainite (Fig.4.11). A line profile of the concentrations of silicon and molybdenum produced

adjacent to the Ti02 layer in A5762 is shown in Fig.4.l2. Because of the lack of any reaction

zone in this alloy, the effects produced by oxidation alone may be observed. Clearly, there

is very little, if any, effect on the substitutional elements due to the presence of oxygen.

Further, since bq,inite production was induced without the precipitation of silica, these

particles were clearly not responsible for the nucleation observed in the silicon-rich alloy,

A5763.

4.2.1.1.3 Summary of the Effects of Oxygen on Substitutional Elements

Both the water-quench experiment, and the partial transformation experiment conducted

using A5762, indicate that oxygen presence alone in the steel, although responsible for

causing nucleation, has no observable effect on the substitutional element concentrations.

4-2.1.2 Effects on Interstitial Alloy Chemistry

Any effects on carbon levels in the steel due to the presence of oxygen could not be directly

measured using standard SEM EDX techniques, since the levels of carbon were small, and

the Be-window covering the detector on the EDX system would not allow penetration and
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detection of the soft X-rays associated with electron bombardment of carbon. However, the

strong interactions normally associated with carbon and oxygen suggested that alterations

in carbon levels in solution would occur. Any decarburisation would stabilise ferrite over

austenite, so that accelerated ferrite transformation would be expected in the affected

area. Decarburisation would explain the nucleation effects observed. If this were the case,

then oxygen-releasing minerals would not only be expected to accelerate transformations

from austenite to ferrite, but also to inhibit transformations from ferrite to austenite. If

the ferrite-austenite transformation was examined in bonding experiments, then we would

expect to observe greater transformation to austenite in the bulk material than adjacent

to the oxygen-releasing mineral.

4.2.1.2.1 Duplex Stainless Steel

Examination of this predicted transformation inhibition was undertaken using a duplex

stainless steel (see Chapter 2), ferritic at high temperatures, but which is partly austenitic

at low temperatures. W03 powder was sandwiched between two blocks of this duplex

stainless steel, and was subjected to the following treatment in the thermomechanical

simulator:

The steel was ferritised at 1350°C for 5mins during which a compressive load of 500N was

applied (rv8 MPa) manually, to achieve bonding between steel and ceramic. The composite

specimen was gas-quenched to lOOO°Cand held for 5mins before gas-quenching to room

temperature (quench rates of rv40°C/s were achieved).

Fig.4.13 clearly shows that the extent of transformation to austenite in the region

adjacent to W03 was greatly reduced, and the microstructure refined, as compared with

transformation in the bulk alloy. Such a result is consistent with the decarburisation hy-

pothesis. Other interstitial-oxygen interactions may have occurred, for example between

nitrogen and oxygen in the duplex stainless steel, to cause the same effects on transforma-

tion. Nevertheless, it would appear that oxygen does interact with interstitial elements in

such a way as to stabilise ferrite over austenite.

4·2.1.2.2 Furnace Homogenisation of Carbon Profile

It has been shown that group I minerals, which release oxygen on heating, cause oxygen

impregnation of local steel. This has no apparent effect on the concentration of substi-

tutional elements in the alloy, but may effect the concentrations of interstitial elements.

Oxygen interaction with carbon, to cause local carbon depletion is consistent with the

experimental observations described above.

If local chemical depletion was responsible for the production of bainite adjacent to
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group I minerals, then extended high temperature treatment of bonded specimens would

be expected to equilibrate the system by:

(i) allowing the group I mineral to release all the oxygen possible.

(ii) homogenising the chemical profiles within the steel.

Homogenisation in chemistry would mean that the drive to form bainite would be

uniform across the bonded specimen. Hence, the mineral layer would be expected to

be rendered ineffective in causing nucleation. The examination of such an effect was

undertaken by preparing a series of 6 bonded specimens containing Ti02. These specimens

were held at 1200°C for varying times before allowing partial transformation below Bs.

For holding times 26 hI's, the bonded specimens were sealed in silica tubes under partial
pressure of argon, and heat treated in high temperature furnaces, rather than in the

thermomechanical simulator.

Results showed that there is a very real dependence of the extent of the bainite zone on

time held at 1200°C. Fig.4.14 shows the mean bainite thickness produced adjacent to the

Ti02 as a function of austenitisation time. As can be seen, the thickness drops dramatically

for extended austenitisation times, consistent with homogenisation of chemistry within the

steel. Very short austenitisation times also produced reduced thicknesses of bainite. This

was presumably because the full extent of oxygen diffusion into the steel could not occur

in such a short period.

Clearly, this type of behaviour is entirely consistent with oxygen-caused local carbon

depletion profiles being responsible for the observed nucleation.

4.2.1.2.3 Direct Measurement of Carbon Profile

Experimental evidence points to oxygen impregnation of the steel affecting the local lev-

els of carbon in solution. However, conventional EDX analysis could not determine the

concentrations of carbon. In the Harwell Laboratories, Oxfordshire, though, carbon con-

centration profiles could be measured by using Nuclear Reaction Analysis. A bonded

specimen was prepared containing Ti02 and was water-quenched from 1200°C to min-

imise redistribution of carbon on cooling. This specimen was metallographically prepared

and sent to the Harwell Laboratories for analysis. The results of this analysis can be seen

in Fig.4.15. As can be seen from the figure, the levels of carbon in the steel are strongly

affected by the presence of oxygen, adjacent to the Ti02 layer. However, in contrast to

expectations, the carbon concentration increased, rather than decreased, with proximity

to the interface. Nevertheless, bainite and ferrite production were accelerated in the ap-

parently carbon-enriched region.
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Carbon enrichment and increased stability offerrite over austenite are not compatable

observations. However, this assumes that carbon is present in solution. This may not be

so. One explanation for the apparent contradiction is that carbon has precipitated out

of solution, either by clustering in voids or dislocations produced as a result of oxygen

presence, or by combining with oxygen to form microvoids of carbon-oxide gases. Removal

of carbon by precipitation would cause local regions depleted of carbon, and would hence

reduce the hardenability of the alloy. Such an hypothesis is extremely difficult to test, and

is, therefore, only tentatively suggested.

4.2.2 Summary

To summarise, group I minerals are those which are capable of liberating oxygen, which in

turn is thought to cause a reduction in the levels of carbon in solution in adjacent steel. It is

this decarburisation which stimulates the nucleation of bainite. There are some associated

effects such as the formation of a reaction zone, which are of secondary importance in the

mechanism by which nucleation is stimulated.
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Figure 4.1 Profuse bainite nucleation in the interface region between
A5763 and Ti02. Such levels of nucleation are typical of group I minerals.
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Figure 4.2 Analogues of Ti02 also induce large amounts of transforma-
tion - here bainite production is induced by Sn02,
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o Oxygen at height 0

o Oxygen at height 1/2

• Cation at height 1/2

Figure 4.3 Idealised structure of the normal perovskites (viewed down

[001]).

~ a-axis o Oxygen at height 0

o Oxygen at height 1/2

• Cation at height 1/2

Figure 4.4 Idealised structure of the defect perovskite mineral family
(viewed down [001]) - similar to the normal perovskites, save for the
absence of the large 'A' atom.
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Figure 4.5 Defect perovskites cause profuse nucleation of bainite, and
obvious reaction zone areas.

200 J-lrn

Figure 4.6 Normal perovskites do not enhance nucleation of bainite in
the local steel.
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Figure 4.7 Line profile of the concentrations of substitutional elements
measured p~rpendicular to the interface between a group I mineral and
A5763, using SEM EDX. Depletion of manganese and silicon has occurred,
but the region of depletion is confined to the reaction zone.

Figure 4.8 SEM micrograph of the Ti02-steel interface after water-
quenching from 1200°C. The rapid quench has not been successful in
preventing the formation of the reaction zone, but has reduced its extent
to rvSj.Lm.
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Figure 4.9 SEM EDX line profile taken perpendicular to the Ti02-
steel interfa'Ce in the water-quench experiment. Depletion in silicon and
manganese is still restricted to the reaction zone.
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Figure 4.10 EDX microanalysis 10 f.lm away from Ti02-steel interface
for the water-quench and a partially transformed specimen. Oxygen is
present at this distance from the interface, but, independent of the reaction
zone, has no effect on the concentrations of substitutional elements.

74



Figure 4.11 Optical micrograph of the Ti02-A5762 interface. A thick
bainitic region was produced adjacent to the mineral.
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Figure 4.12 SEM EDX line profile taken perpendicular to the Ti02-
A5762 interface. No alteration from the bulk chemistry has occurred
adjacent to the mineral layer.
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Figure 4.13 SEM micrograph of the interface region between W03 and
the duplex 'stainless steel. Obvious reduction in the extent of transfor-
mation from ferrite to austenite has occurred adjacent to the W03. The
microstructure is also more refined than the austenite in the bulk steel.
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Figure 4.14 Plot showing the thickness of the bainite-rich zone produced
adjacent to Ti02 as a function of the time held at 1200°C before partial
transformation.
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Figure 4.15 Line profile of the carbon concentration away from TiOz in
a water quenched specimen, as measured by the Harwell Laboratories.

4.3 Group Il

It has already been shown that TiO and Tiz 03 appear to stimulate bainite nucleation from

their surfaces (for detailed investigation see Chapter 3). However, this nucleation potency
is not associated with the production of a reaction zone. These minerals would therefore

be classed differently from those of group I, and are instead assigned to 'Group Il'. The

lack of reaction zone does not preclude any oxygen-steel interaction, but it indicates that

such interaction is unlikely to be the dominant reason for their nucleation potency. Indeed,

investigations showed that Tiz03 appears to act as a sink for manganese (Chapter 3). The

mechanism by which TiO causes nucleation remains unknown.

4.4 Group III

This group of minerals was found to remain inert, both chemically and in their ability
,

to stimulate bainite nucleation. TiN was found to belong to this group of minerals, as

described in Chapter 3. However, a variety of other minerals were also found to be inert

and are each discussed briefly below:

4.4.1 a-Alz03

Fig.4.16 shows the steel/ a-Alz 03interface, and the lack of acceleration of the bainite trans-

formation. a-A1203 is not often cited as a major constituent of real non-metallic inclusions.

Alumina has more often been observed in its ,-form.

4.4.2 ,-Alz03

,-Alz03 is a commonly suspected phase in real non-metallic inclusions. It was therefore

important to test its nucleation potency. However, ,-A1203 is a metastable aluminium
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oxide and has a tendency to invert to a-A1203 when held above ",lOOO°C (Rooksby,

1951).

Since the austenitising and bonding procedure used in the bonding experiments involved a

10min isothermal hold at 1200°C, it was possible that by the time the steel was partially

transformed at 510°C, the ,-A1203 would all have transformed to a-AI203. However,

this was not necessarily so, as the ,-A1203 to a-A1203 transition is described as slow.

In order to see if full transformation from the ,-form to the a-form would occur during

the bonding treatment, powdered ,-A1203 was heat-treated in a furnace for 15mins at

1200°C. The powder was then X-rayed on a powder diffractometer, to observe the extent

of transformation. Fig.4.17 shows that a-A1203 was strongly present in the post-furnaced
powder. However, not all the powder had transformed. Some ,-A1203 remained, and so it
was thought likely that some ,-Al203 would still be present in the bonding experiment after

the bonding treatment. Results show that the a-Al203-,-Al203 mixture did not cause

enhanced nucleation adjacent to the mineral-steel interface. It was therefore concluded

that ,-A1203 did not show any nucleation potency.

Another phase commonly observed in real-weld inclusions is MnAl2°4 (or galaxite). Pow-
dered galaxite was not, however, commercially available, and so the first stage in testing

its potency of nucleation was to synthesise some of the mineral. MnAl204 production

was achieved by sintering a-A1203 and MnO in the stoichiometric ratio 1:1. Sintering

was conducted in a ceramic boat of compressed Al203, since this was deemed preferrable
to other ceramic materials, which may have contaminated the galaxite. Sintering for

26 hrs at 1300°C was sufficient to produce galaxite, as verified by X-ray powder diffrac-

tion (Fig.4.18). However, as can be seen from the figure, excess a-A1203 was present

after the heat treatment. It was thought that this excess alumina was due to sintering

being performed in an alumina boat. Fig.4.19 shows the X-ray powder trace obtained

when sintering was performed in a platinum cricible - the excess alumina was considerably

reduced.

However, the presence of excess alumina was not considered to be problematic in

interpreting any potency produced by MnAl2°4' since previous experiments had shown
alumina to be ineffective in the nucleation of bainite. Fig.4.20 shows that the mixture

of galaxite and a-A1203 did not cause the accelerated production of bainite adjacent to

the mineral-steel interface. It was therefore concluded that MnAl204 was not an effective
nucleating mineral.
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4.4.4 NbC

Another mineral phase found in real steels is be. As can be seen in Fig.4.21, it does not

enhance the formation of bainite.

4.4.5 MnS

A very common mineral in non-metallic inclusions in real welds and cast steels is MnS.

When tested in the bonding experiments, it did show a slight tendency to nucleate bainite.

This tendency was minimal (Fig.4.22) and was often not observed at all. MnS was therefore

classified as a non-nucleating mineral, and assigned to group Ill.
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Figure 4.~6 Optical micrograph ofthe interface region between a-Alz 03
and steel. No acceleration of bainite transformation has occurred adjacent
to the interface.
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Figure 4.17 X-ray diffraction trace of the powder produced after heat
treating ,-Alz03 at 1200°C for 15 mins. a-Alz03 is strongly evident, but
,-Alz03 has not totally disappeared.
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Figure 4.18 X-ray diffraction trace produced due to the post-sintered
mixture of MnO and a-AI203• Galaxite has been produced, but excess
alumina was apparent .
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Figure 4.19 X-ray diffraction trace produced after sintering
a-A.l203and MnO in a platinum crucible. The excess alumina has been
considerably reduced.
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Figure 4.20 SEM micrograph showing the lack of nucleation induced by
the galaxite/ alumina mixt ure.

Figure 4.21 SEM micrograph of the bC-steel interface region. Nucle-
ation from the interface has not occurred.
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Figure 4.22 Optical micrograph of the MnS-steel interface area. Slight
nucleation was observed, but was considerably less than in group I, or
group II minerals.
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4.5 Summary of Results, and Conclusions

Extensive bonding experiments have revealed that minerals may be assigned to one of

three groups, depending on their effects on the steel:

(i) Group I: The minerals in group I induce accelerated bainite transformation adjacent to

the mineral-steel interface. They also cause the formation of a reaction zone - a region of

ferrite, containing amorphous silica particles. This behaviour is caused by the ability of

all group I minerals to release oxygen at elevated temperatures. Oxygen enters the steel,

and affects the local carbon concentrations such that the steel hardenability is reduced.

(ii) Group Il: The minerals in group Il induce accelerated bainite transformation adjacent

to the mineral-steel interface, but do not cause reaction zone formation. Instead, bainite

nucleates directly from the mineral-steel interface. Only two minerals were associated with

this group - TiO and Ti203. The mechanism of nucleation due to Ti203 was found to be

a depletion of manganese in local steel, so reducing hardenability.

(iii) Group Ill: The minerals in group III did not induce any acceleration of transformation
adjacent to the mineral-steel interface.

A summary of the minerals assigned to each group is shown in Table 4.2.

Effective: Group I Effective: Group Il Ineffective: Group III

Ti02, Sn02 Ti203 TiN, NbC

Mn02, Pb02 TiO CaTi03, SrTi03

W03, Mo03 a-A1203, f'-A1203

KN03, V20S MnA1204

Table 4.2 Summary table of the minerals tested in the bond experiments,
assigned to groups according to their effects on steel.

The bonding experiments clearly showed that some mineral types could induce nucle-

ation, while others could not. The testing of pure mineral phases, rather than complex real

inclusions, has shown unequivocably the minerals capable of causing nucleation. Moreover,

the bonding experiments have elucidated two mechanisms for nucleation:

(i) Oxygen-caused effects on carbon concentrations locally around the mineral.

(ii) Manganese depletion locally around the mineral.

These two mechanisms of nucleation by inclusions have already been proposed (Carbon-

-depletion - Es-80uni and Beaven, 1990; Es-80uni et al., 1991; Manganese-depletion -
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Yamamoto et al., 1993; Farrar and Watson, 1979), but here they have been clearly shown

in operation.

Lattice matching is a popular explanation for the apparent nucleation potency of the

TiX phase (X=C, N or 0) in welds (Grong et al., 1992). However, the present experiments
indicate that TiO acts as a potent nucleant while TiN does not. Both minerals have a

similar lattice match with ferrite (Bramfitt, 1970; Mills et al., 1987). Therefore, the

bonding results suggest that a consideration of lattice matching alone cannot distinguish

effective from ineffective nucleants.

Differences in thermal expansion coefficients of inclusion and steel cause strains around

an inclusion during cooling. It has been suggested that ferrite transformation adjacent to

the inclusion may relieve this strain (BarTite and Edmonds, 1981). Table 4.3 shows the

thermal expansion coefficients of some of the minerals tested. There is clearly no direct

correlation between the expansion coefficient difference and bainite nucleation potency, as

measured here.

Although many of the mineral phases utilised in the experiments are unlikely to occur

in commercial steels, a number of compounds which do occur have been tested. Specifically

TiO, TiN, Tiz03, ,-Alz03, NbC, MnAlz04 and MnS. The results show that of these

minerals, only TiO and Tiz03 are potent nucleators. Inclusions rich in both TiO and

Tiz03 should help maximise yields of acicular ferrite in welds where alloy design ensures
that grain boundary nucleated phases do not overwhelm intragranularly nucleated phases.

However, some reservation as to the applicability of the bond experiment results to

the production of acicular ferrite in real welds may exist. Because of such reservations, the

further experiments described in Chapter 5 were undertaken.
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Mineral Coef£. of thermal Temp. range Reference

expansion IK-1 of measurement IK
Sn02 4 x 10-6 273-1073 [1]

3.76 x 10-6 295-923 [1]

NbC 7 x 10-6 - [2]

A1203 8.0 x 10-6 293-1853 [1]

8.4 x 10-6 293-1273 [1]

7.5 x 10-6 1273-1573 [1]

a-axis: 7.1 x 10-6 373 [1]

a-axis: 9.7 x 10-6 773 [1]

a-axis: 14.2 x 10-6 1273 [1]

c-axis: 6.0 x 10-6 373 [1]

c-axis: 8.9 x 10-6 773 [1]

c-axis: 13.8 x 10-6 1273 [1]

MnA1204 8 x 10-6 273-1073 [3]

SrTi03 8.9 x 10-6 273-1080 [4]

TiN 9.4 x 10-6 273-1073 [3]

Ti02 9.5 x 10-6 273-1080 [4]

7.8 x 10-6 293-873 [1]

8.19 x 10-6 273-773 [1]

CaTi03 1.2 x 10-5 273-1700 [4]

TiO 1.4 x 10-5 273-1400 [4]

MnS 1.8 x 10-5 273-1073 [3]

Austenite 2.3 x 10-5 [3]

Table 4.3 The coefficient of thermal expansion of a selection of minerals.
References [1,2,3,4] are as follows: [1] - Samsonov (1973), [2] - Barant-
seva (1974), [3] - Brooksbank and Andrews (1972), [4] - Goldsmith et
al. (1961).

86



CHAPTER 5

Acicular Ferrite Nucleation on Minerals Added to Molten Steel

5.1 Introduction

The bonding experiments performed to date have both indicated mineral phases capable of

inducing bainite nucleation, and revealed the mechanisms by which such nucleation occurs

(Chapters 3 and 4). However, the pressure bonding of steel and mineral powder may not

create the conditions required for some nucleation mechanisms to operate. For example,

the application of pressure in the solid-state does not necessarily lead to an intimate

bond, on an atomic scale, between the chosen mineral and steel. Such lack of intimacy

may preclude epitaxial relationships across the interface. Therefore minerals which cause

nucleation by offering surface epitaxy with acicular ferrite may not be effective. This is

not expected to be a problem when the mineral is added directly to the melt.

A second difficulty is that the ceramic is bonded in the form of powder, which does not

fully densify during pressure bonding. Any difference in thermal expansivity between the

steel and ceramic may not lead to the development of contraction stresses of the magnitudes

expected when liquid steel, containing inclusions, solidifies and cools.

A further objection to the application of bonding results to the likely efficacies of

various mineral types in producing acicular ferrite microstructures, is that the bond exper-

iments investigated the production of bainite, and not acicular ferrite. Evidence suggests

that bainite and acicular ferrite transform in the same manner (Yang and Bhadeshia, 1987;

Sugden and Bhadeshia, 1989). Nevertheless, a direct investigation into the effects of pure

mineral inclusions on the production of acicular ferrite specifically, would yield less equiv-

ocable results. It was therefore decided to attempt to investigate the nucleation properties

of minerals introduced to molten steel.

5.2 Experimental Technique

A potential difficulty with experiments in which minerals are added to liquid steel is

that they may react, and change their character. Consequently, a number of different

techniques was attempted, with the aim of rapid melting and cooling in order to reduce

the opportunity for reaction. Melting using a Nd-Yag pulsed laser (O.5kW average power)

proved ineffective; the laser was traversed across a slit in a steel sample, the slit being filled

with the desired mineral. The small depth of melting, and considerable spatter made it

impossible to exercise effective control.
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Melting of 60g mixtures of steel and mineral in an argon arc furnace led to the strong

clustering of mineral particles (Fig.5.1), and to excessive solidification-induced chemical

segregation. Such segregation has large effects on transformation behaviour, which can

mask the role of the mineral addition. An attempt was made to homogenise the solidified

sample by heat-t.reatment. However, many of the minerals investigated in Chapters 3

and 4 were found to stimulate bainite nucleation by oxidising and decarburising adjacent

steel. The effectiveness of nucleation produced by this mechanism was found to diminish

dramatically after heat treatment at 1200°C for time periods in excess of 6hr (Fig.5.2).

Therefore, it was likely that homogenising the steels would affect the nucleating capabilities

of the mineral inclusions added.

All of these problems were avoided by melting using the RF -induction coil in the

Thermecmastor (described in Chapter 2). A countersunk region of 2mm diameter and

3mm depth was drilled in a cylinder of A5763, of diameter 8mm, and depth 6mm. This

was filled with powdered mineral, as shown in Fig.5.3. The sample was contained in an

alumina crucible, and was heated manually to melting, and held in the molten state for

five seconds before allowing the melt to solidify. The arrangement was then gas-quenched,

using He, to room temperature. The relatively rapid solidification and cooling resulted in a

specimen with no visible signs of chemical segregation. Furthermore, the mineral particles

were found to be evenly distributed throughout the sample, presumably because of the

electromagnetic stirring of the melt in the RF -field.

A number of mineral powders were used in the experiments: TiOz, Tiz03, TiN, MnS,
(MnAlz04 + a-Alz03), ,-Alz03 and W03.

5.3 Characterisation of Inclusions

Electron diffraction and microanalytical experiments (using energy dispersive X-ray anal-

ysis, EDX) were conducted on the solidified samples, in order to establish whether or not

the particles added to the melt had been successfully incorporated into the solid state.

These experiments were all conducted on particles extracted on carbon replicas.

It should be noted that relatively small particles (~ 0.1 p,m), of apparently consistent

mineralogy, could be found present in all the replicas examined, irrespective of the mineral

powder deliberately added (Table 5.1). These particles showed no EDX signal above

background levels. They also all produced electron diffraction data consistent with a f.c.c.

mineral of lattice parameter arv3.6.A (Fig.5.4).
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Mineral Added dhkl Observed Angular Relationships

to Melt Observed 2.1A:2.1A 2.1A:1.8A 2.1A:1.3A 1.3A:1.3A

Ti02 2.1A 72° 55° 60° 58°

1.8A

1.3A

Ti203 2.1A 72° 55°

1.8A

1.3A

,-A1203 2.1A 71° 54° 90° 60°

1.8A

1.3A

MnA1204 2.1A 70° 54° 90° 90°

& a-Alz03 1.8A

1.3A

W03 2.1A 70° 90° 90°

1.8A

Table 5.1 Shows the interplanar spacings and interplanar angles found
from the small crystallites present in all the melts produced. The spacings
and angles are largely the same irrespective of the powder added.

5.3.1 TiN Additions

Fig.5.5a shows the classic facetted cubic shape of the added TiN particles. The particles

examined were titanium-rich, and gave diffraction patterns (Fig.5.5b) consistent with f.c.c

TiN (a=4.2A). Table 5.2 summarises the electron diffraction information obtained. Taking

the evidence as a whole, the particles appear to have been transferred successfully into the
solid steel.

5.3.2 MnS Additions

Particles typical of those produced due to MnS powder additions to the steel melt are shown

in Fig.5.6. Such particles EDX as containing manganese and sulphur, and the diffraction

data (Table 5.3) is consistent with a cubic form of MnS (with space group F43m and lattice
parameter a=5.612A).
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Observed Observed Likely Likely Calculated Calculated

d1 d2 d1 ~ d2 Phase (hkl )1 (hkl)2 d1 d2 d1 ~ d2

2.0A. 2.3A. 55° Ti (200) (111) 2.1A. 2.4A. 54.7°

2.0A. 2.0A. 90° TiN (200) (020) 2.1A. 2.1A. 90°

2.3A. 2.3A. 71° TiN (111) (111) 2.4A. 2.4A. 70.5°

2.0A. 2.3A. 56° TiN (200) (111) 2.1A. 2.4A. 54.r

1.4A. 2.3A. 90° TiN (220) (111) 1.5A. 2.4A. 90°

Table 5.2 Electron diffraction patterns from added particles in the TiN
inoculated sample. The data index well to TiN.

Observed Observed Likely Likely Calculated Calculated

d1 d2 d1 ~ d2 Phase (hkl)1 (hkl)2 d1 d2 d1 ~ d2

3.2A. 3.2A. 71° MnS (111) (111) 3.2A. 3.2A. 70.5°

1.4A. 1.4A. 60° MnS (331) (313) 1.3A. 1.3A. 60°

1.2A. 1.4A. 90° MnS (116) (331) 1. lA. 1.3A. 90°

1.4A. 1.4A. 60° MnS (331 ) (313) 1.3A. 1.3A. 60°

3.4A. 3.4A. 71° MnS (111) (Ill) 3.2A. 3.2A. 70.5°

Table 5.3 Electron diffraction patterns from added particles in the MnS
inoculated sample. The data index well to MnS.

5.3.3 ,-A1203 Additions

Fig.5.7 shows a particle which was typical of those found in the ,-A1203 inoculated spec-

imen. Such particles EDX as aluminium-rich, and diffraction data, on the whole, is con-

sistent with ,-AI203• This is surprising, since it was expected that the subjection of the

particles to temperatures significantly above 1000°C would cause an inversion from the

metastable ,-form to the stable a-form (Rooksby, 1951). Clearly the melting process

used does not have sufficient kinetic strength to induce the transformation.
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Observed Observed Likely Likely Calculated Calculated

d1 d2 d
1

A d2 Phase (hkl)l (hkl)2 d1 d2 d
1

A d2

2.9A 2.5A 64.5° ,-A1203 (220) (113) 2.sA 2.4A 64.So

4.7A 4.7A 70° ,-A1203 (111) (111) 4.56A 4.56A 70.5°

5.2A 3.sA 77° Other A1203
2.9A 2.4A 90° ,-A1203 (220) (113) 2.sA 2.4A 90°

Table 5.4 Electron diffraction patterns from added particles In the ,-
Al203-inoculated sample. The data index well to ,-AI203.

5.3.4 (MnAI204 & a-AI20J Additions

Galaxite (MnA1204) was prepared by heating together a mixture of alumina and man-

ganese oxide, as described in Chapter 4. The formation of galaxite was confirmed by

X-ray diffraction, but some a-A1203 could not be avoided from the alumina crucible

used. It was a mixture of galaxite and a-A1203 that was, therefore, added to the melt.
The galaxite was found to be polycrystalline, and clear electron diffraction patterns proved

very difficult to obtain. Microanalysis did confirm that the particles contained both man-

ganese and aluminium, so it is assumed that galaxite is retained in the solidified melt.

5.3.5 W03 Additions

This experiment was unsuccessful, III that tungsten oxides could not be found III the

solidified steel, presumably because the oxide sublimes readily.

5.3.6 Ti203 Additions

Particles typically produced by the addition of Ti203 to molten steel are shown in Fig.5.8.
Such particles, when microanalysed, were composed dominantly of titanium. However,

diffraction data suggests that, in the smaller titanium-rich particles, and in the surfaces

of the larger particles, the oxide is present as TiO, and not Ti203 (Fig.5.Sb). In some

cases Ti30s was found. Results from the bonding experiments suggested that oxygen

loss, or absorption of manganese, associated with titanium oxide mineralogical changes,

were responsible for their apparent nucleation potency. It seems that similar mineralogical

changes have also occurred here. The diffraction data are summarised in Table 5.5.
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Observed Observed Likely Likely Calculated Calculated

d1 d2 d1~ d2 Phase (hkl)1 (hld)2 d1 d2 d1~ d2

1.3A 2.2A 71° TiO (311) (020) 1.3A 2.14A 72.5°

2.5A 1.5A 90° TiO (111) (220) 2.48A 1.53A 90°

3.5A 3.8A 88.5° Ti30s (111) (202) 3.3A 3.5A 89.8°

1.6A 1.6A 61° Complex Ti-Oxide

2.5A 2.5A 70.5° TiO (111) (111) 2.48A 2.48A 70.5°

Table 5.5 Diffraction data from the steel inoculated with Ti2 °3, All the
cases reveal mineralogy changes.

5.3.7 Ti02 Additions

The morphology of the particles resulting from Ti02 additions is illustrated in Fig.5.9.

Microanalysis showed them to be titanium based. However, the diffraction patterns did

not index as any form of Ti02. Some patterns are consistent with TiO (Fig.5.9b), but the

majority of the patterns taken are more likely to correspond to some of the many complex

deoxidation products, intermediate between Ti02 and TiO. This kind of deoxidation was

entirely expected from the work described in Chapters 3 and 4.

Observed Observed Likely Likely Calculated Calculated

d1 d2 d1~ d2 Phase (hkl)1 (hkl)2 d1 d2 d1~ d2

2.oA 1.75A 55° Complex Ti-oxide

2.5A 2.55A 68.3° TiO (111) (111) 2.48A 2.48A 71°

2.4A 3.1A 68° Complex Ti-oxide

2.4A 3.1A 69° Complex Ti-Oxide

4.4A 4.4A 90° Complex Ti-oxide

Table 5.6 Data from steel inoculated with Ti02. The observed changes
from Ti02 are suspected to involve oxygen loss.

92



Figure 5:1 SEM micrograph of the particle clustering which occurred
after arc melting. This case illustrates TiN-clusters.
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Figure 5.2 Plot showing the variation in the thickness of the bainite
layer adjacent to TiOz with the time held at 1200°C before partial trans-
formation.
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Steel

--
RF-Coil

c5
Alumina Crucible

Mineral Powder

Figure 5.~ Experimental arrangement for RF-induction coil melts, using
the thermomechanical simulator.

Figure 5.4 Diffraction pattern from the small crystallites present m
all the inoculated alloys produced. Diffraction data was consistent with
a f.c.c. crystal, arv3.6A. On this basis the pattern shown indexes as
(111):(111)

94



Ca) Cb)

0.4 A-]

Figure 5.5 Ca) Bright field TEM image of a typical particle present in
the melt to which TiN powder had been added. The cubic morphology of
these particles and their Ti-rich composition suggests that they are TiN.

Cb) Diffraction pattern from the particle is consistent with
(200):(020) of TiN.

Ca)

0.2 J-lID

L-..J

Cb)

Figure 5.6 Ca) Bright field TEM image of particles typically found in
the melt to which MnS had been added.

Cb) EDX analysis indicates that these particles contain man-
ganese and sulphur, and the diffraction patterns taken confirm the MnS
mineralogy.
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(a) (b)

Figure 5.7 (a) Bright field TEM image of a particle in an extraction
replica taken from I'-AI203 additions to steel.

(b) Diffraction patterns taken indicate that the particles have
remained in the I'-form, and have not transformed to the stable a-form.

0.1 J1rn
L--J

(a) (b)

Figure 5.8 (a) Bright field TEM image of a particle present after the
addition of Ti2 03 to the molten steel.

(b) This diffraction pattern was taken from one of the thinner
particles. It does not index as Ti203, but as TiO.
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(a)

0.1 ~lm
L-J

(b)

Figure 5.9 (a) Bright field TEM image of a particle present after the
addition of Ti02 to the molten steel.

(b) This diffraction pattern from one such particle indexes
as TiO, however, most diffraction patterns were probably from complex
intermediate structures produced due to deoxidation of Ti02.
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5.4 Partial Transformation Experiments

Having characterised the particles in the inoculated alloys, it remained to establish the

activity of the incorporated inclusions with respect to the nucleation of ferrite. A rank-

ing experiment was designed in which the alloys were partially transformed below the

bainite-start temperature, Bs. The thermal processing was the same as for the bonding

experiments, but no stress was applied (i.e. 1200°C for 10mins; gas-quench at 40°Cs-1 to

510°C; isothermal hold for 25 s, before gas-quenching to room temperature.) More effective

inclusions are expected to lead to a greater degree of transformation given the same trans-

formation time and temperature. It was also hoped to directly observe the intragranular

nucleation of ferrite from inclusion surfaces.

5.4.1 Results

As can be seen from the series of micrographs shown in Figures 5.10-5.16, quite different

microstructures are obtained from the different mineral additions. The extent of transfor-

mation observed in the steel containing ,-Al203 particles (Fig.5.11) is much less than in

the steel to which Ti02 additions were made (Fig.5.15). The differences were measured

by point counting on a series of random SEM photographs (Table 5.7).

Mineral Addition % Transformed Estimated Error j%

W03 20 ±2.9

,-A1203 52 ±2.9

TiN 65 ±2.9

(MnA1204 & a-A1203) 68 ±2.9

MnS 71 ±2.9

Ti02 80 ±2.9

Ti203 84 ±2.9

Table 5.7 Point counting results illustrating the extent of transforma-
tion induced by various mineral additions to the steel, given the same
transformation time.

The observed variation in transformation kinetics due to different mineral additions

again indicates that all mineral types are not equal in their abilities to nucleate ferri tic

98



phases. The results also show a strong correlation with the work described in Chapters 3

and 4. In all cases titanium oxides are particularly potent in causing nucleation.

5.5 Bainite vs Acicular Ferrite

The experiments described above indicate the relative potencies of the different inclusions

in terms of transformation kinetics. A further series of experiments was designed to see

how acicular ferrite (nucleated intragranularly on inclusions) competes against bainite

(nucleated at the austenite grain boundaries).

A new set of samples was made by adding i-A1203' (MnA1204 & a-A1203), Ti02,

Ti203, TiN and MnS to the steel melt as described earlier. These alloys were austenitised

for 15mins at 1200°C before gas-quenching at 50°C S-l to 510°C. They were held at

510°C for 5mins to allow full transformation to occur, before gas-quenching to room

temperature. All heat treatments were performed on the thermomechanical simulator.

To meaningfully compare the levels of acicular ferrite and bainite requires a control

of the austenite grain size. Smaller grain size favours bainite at the expense of acicular

ferrite (Yang and Bhadeshia, 1987; Rees and Bhadeshia, 1994). In fact, the austenite

grain size was similar for all samples except that containing TiN powder, which had signif-

icantly smaller size. Hence the TiN-containing alloy was reaustenitised at 1300°C instead

of 1200°C, in order to achieve a greater grain size, before fully transforming at 510°C.

Table 5.8 shows the grain size data for all the samples.

Mineral Addition Mean Linear Estimated Austenitising

Intercept / /-lm Error / /-lm Temp. rC
Ti02 167 ±11.5 1200

Ti203 111 ±6.2 1200

i-A1203 117 ±6.3 1200

(MnA1204 & a-A1203) 173 ±12.1 1200

MnS 139 ±8.7 1200

TiN 105 ±6.6 1300

Control 128 ±8.0 1200

Table 5.8 Prior austenite grain sizes of the steels to which various mineral
additions have been made, after austenitisation and full transformation
below Bs.
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Eight random photgraphs were taken using scanning electron microscopy, at magnifi-

cations of 500 and 1000. Areas which could be identified as obviously bainitic were traced

out onto acetate, and measured by point counting to quantitatively define the fraction of

bainite. All microstructural areas not obviously bainitic were therfore classified here as

acicular. This method has unquantifiable errors, since the acicular ferrite content is likely

to be somewhat overestimated. Nevertheless, it is the best that could be done given the

fine scale of the microstructures.

5.5.1 Results

Figures 5.17-5.22 illustrate microstructures which are representative. Alloys containing

(MnAlz04 & a-Alz03), ,-Alz03 and MnS are obviously quite bainitic (Figures 5.17-

5.19), whereas additions of TiN, Tiz03 and TiOz have produced much more highly refined
microstructures (Fig.5.20-5.22). Amongst the titanium mineral additions there is also an

increase in refinement from TiN to Tiz03 to TiOz. TiOz additions have been particularly
effective in producing the fine interlocking acicular ferrite microstructure (Fig.5.22) (note

that the mineralogy of TiOz is likely to have changed on addition to the melt). The

microstructural results are shown in Table 5.9, which confirms the trends illustrated in the

figures.

Mineral Addition Area Fraction Inferred Area Fraction

ab aacic.

Control 0.67 0.33

MnAlz04 & a-Alz03 0.60 0.40

MnS 0.56 0.44

,-Alz03 0.42 0.58

TiN 0.37 0.64

Tiz03 0.23 0.77

TiOz 0.09 0.91

Table 5.9 Microstructural point counting results showing the area frac-
tions of bainite and acicular ferrite produced due to the addition of various
mineral powders to molten steel.

The results are In reasonable accordance with the mineral efficacies inferred from

100



analysis of the partial transformation experiments. The titanium oxide additions are par-

ticularly effective in causing intragranular nucleation. TiN too, seemed to be reasonably

effective.

The results are also largely consistent with those from pressure bonding. This sug-

gests that the mechanisms of nucleation identified in the pressure bonding experiments,

apply also in these melt experiments. TEM analysis has shown that deoxidation of the

titanium oxides has occurred as a result of addition to the molten alloy, and since this was

capable of inducing nucleation in the bonding experiments, it seems likely as the nucleating

mechanism operating here. Manganese-absorption has been shown to occur as a result of

reactions between steel and Ti203, and this may also be contributory to nucleation.

5.6 Removal of Grain Boundary Sites

The problems associated with distinguishing inter- from intra- granular nucleation of bai-

nite plates has already been discussed. In the previously described set of experiments, only
areas which were obviously bainitic were classified as grain boundary nucleated. Clearly,

other regions of sheaves, not obviously bainitic, may also have nucleated from grain bound-

aries. Hence, some degree of uncertainty as to the exact levels of intragranular nucleation

induced by the various powder additions exists. In order to combat this uncertainty, an-

other series of particle additions to molten steel was produced. With these alloys the

intention was to decorate the prior austenite grain boundaries with allotriomorphic ferrite,

before partially transforming the remaining austenite below Bs. Decoration of austenite

grain boundaries with allotriomorphic ferrite largely prevents the production of bainite -

only variants with favourable orientation with both matrix austenite, and grain boundary

ferrite may form. Thus virtually all transformation produced below Bs in the alloys could

be said to have nucleated intragranularly. If given the same levels of partial transforma-

tion, then the density of the acicular ferrite produced for each powder addition would be

indicative of the specific mineral's efficacy in causing nucleation.

Heat treatments of the alloys were again performed in the thermomechanical simulator.

They were austenitised at 1250°C for 5min, then gas-quenched at 50°C S-l to 700°C,

and held for 80 s to produce allotriomorphic ferrite at the grain boundaries, before gas-

quenching to room temperature at 20°C S-l (so allowing some level of transformation on

cooling). This heat treatment was devised by trials performed on undoped alloy A5763.

The aim was to produce complete covering of prior austenite grain boundaries and find

a cooling rate which was likely to show good contrast in levels of transformation induced

between effective nucleants and ineffective nucleants.

101



5.6.1 Results

Although the intention was to analyse the variation in mineral potential in nucleating

acicular ferrite, this was not achieved. Instead, the microstructures produced gave a greater

indication as to the various mineral efficacies for nucleating idiomorphic ferrite. During the

isothermal hold, designed to cause allotriomorphic ferrite decoration of grain boundaries,

some inclusion types caused the nucleation of idiomorphs. Interestingly, the minerals most

potent in this respect did not seem to be those most potent in acicular ferrite production,

indicated from the previous experiments.

Specifically MnS, TiN, TiO and Tiz03 all produced dominantly idiomorphic ferrite

microstructures (Fig.5.23-5.26). Tiz03, however, also caused significant production of

acicular ferrite between idiomorphs (Fig.5.26). TiOz (previously observed to be extremely

potent in the production of acicular ferrite), VZ03, SnOz, ,-Alz03 and (MnAlz04 & (Y-

Alz03) did not nucleate idiomorphs to nearly the same extent as MnS, TiN, TiO and

Tiz03 (Fig.5.27-5.31).

5.6.2 Brief Discussion

These results imply that the effective nucleation of intragranular allotriomorphic ferrite is

dependent on different inclusion properties to that of effective acicular ferrite nucleation.

TiO and TiN are considered to offer good lattice matching with ferrite, and were both ob-

served to nucleate idiomorphs. However, MnAlz04 and ,-Alz03 are also suspected to offer

potential epitaxial relationships with ferrite, but did not induce idiomorphic nucleation.

TiOz, VZ03 and SnOz were all observed to be effective as nucleants in the context

of the pressure bonding experiments, and yet appeared not to produce significant levels

of idiomorphic ferrite. It is therefore believed that the mechanism by which non-metallic

inclusions stimulate the nucleation of acicular ferrite (which is a displacive transformation)

is different from that which stimulates ferrite which grows by a reconstructive mechanism.

This may be responsible for the different effects observed for acicular ferrite and idiomor-

phic ferrite, but the details remain to be resolved in future work.

5.7 Note on Inert Surface Mechanism

One suggested mechanism by which inclusions cause nucleation, as mentioned previously, is

that they merely offer an inert surface from which heterogeneous nucleation may occur. In

general, this mechanism is dismissed since such a wide variation in the apparent nucleation

efficacies of various mineral types exists. This level of potency variation is not consistent

with the inert surface theory. However, during investigation of nucleation induced by
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particles added to molten steel, a great many instances of direct nucleation from individual

mineral particles were observed. Such observations of direct particle-caused nucleation

were not restricted to mineralogies judged to be particularly potent. Instead it seemed

that any particle type, irrespective of mineralogy, could cause intragranular nucleation

under certain circumstances (Fig.5.32, 5.33).

The implication, therefore, is that the presence of any mineral surface can induce

nucleation of acicular ferri te to some degree. An inert surface mechanism seems therefore

contributory to mineral-caused nucleation, although other mechanisms may operate for

inclusions of specific potent mineralogies.

5.8 Conclusions

(i) All mineral types are not equal in their abilities to nucleate acicular ferrite. Ti02
and Ti203 additions are extremely potent; TiN seems to show moderate efficacy, while

MnA1204 & a-A1203, ,-A1203 and MnS seem relatively poor as nucleants.

(ii) That Ti02 and Ti203 additions should show the greatest potency in nucleating acicular

ferrite is consistent with results from the pressure bonding experiments. It would seem

reasonable to assume that in both types of experiment, nucleation is induced due to the

operation of the same mechanism. Therefore, acicular ferrite nucleation has been induced

by mineral-caused local depletion zones of either carbon or manganese.

(iii) That TiN shows moderate efficacy in the melt experiments, but not in the bond

experiments, indicates that the contact between mineral and molten steel is necessary

for the nucleation mechanism to operate. This would be consistent with TiN offering an

epitaxial relationship with the ferrite lattice.

(iv) The factors governing the nucleation of acicular ferrite are different from those which

govern the nucleation of idiomorphic ferrite.
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Figure 5.10 SEM micrograph of the extent of transformation induced
due to additions of W03 to molten steel. It is suspected that W03 com-
pletely decomposes during the melting of the steel sample.

Figure 5.11 SEM micrograph of the extent of transformation due to
,-A1203 additions to the steel.
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Figure 5.12 SEM micrograph of the extent of transformation induced
due to partial transformation of steel containing TiN additions.

Figure 5.13 SEM micrograph of transformation induced in steel to which
MnAl204 & a-A1203 additions have been made.
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Figure 5.14 SEM micrograph of the microstructure produced on partial
transformation of steel to which MnS particles had been added.

Figure 5.15 SEM micrograph of the microstructure produced on partial
transformation of steel to which Ti02 particles had been added.
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Figure 5.16 SEM micrograph of the microstructure produced on partial
transformation of steel to which Ti203 particles had been added.

Figure 5.17 Full transformation of steel to which MnAl204 & a-Al203
additions have been made. The microstructure is reasonably bainite-rich.
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Figure 5.18 Full transformation of alloy containing MnS particles. The
microstructure is reasonably bainitic.

Figure 5.19 Full transformation of alloy containing ,-Alz03 particles.
Again the microstructure is reasonably bainitic.
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Figure 5.20 Full transformation of steel containing TiN particles. Lev-
els of acicular ferrite are higher here than in the previously illustrated
microstructures.

Figure 5.21 Full transformation of steel to which Ti203 powder addi-
tions have been made. A reasonable amount of acicular ferrite is present.
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Figure 5.22 Full transformation of steel to which Ti02 additions have
been made. As can be seen, the microstructure is extremely acicular.

Figure 5.23 SEM micrograph showing the microstructure induced when
grain boundary decoration with allotriomorphic ferrite was attempted in
steel containing MnS particles. Much idiomorphic ferrite has been pro-
duced.
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Figure 5.24 Idiomorphs induced by the presence of TiN particles.

Figure 5.25 Idiomorphs induced by the addition of TiO to the molten
steel.
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Figure 5.26 Idiomorphic ferrite produced by the addition of Ti203 to
the molten steel.

Figure 5.27 Addition of V203 does not induce formation of idiomorphs.
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Figure 5.28 Addition of SnOz particles does not induce idiomorph for-

mation.

Figure 5.29 TiOz addition to the molten steel does not, in this instance,
induce formation of idiomorphic ferrite.
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Figure 5.30 ,-Alz03 addition to the molten steel does not induce sig-
nificant formation of idiomorphic ferrite.

Figure 5.31 MnAlz04 & a-Alz03 additions do not induce significant
formation of idiomorphs.
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Figure 5.32 Direct observation of nucleation on a particle in the Sn02-
inoculated steel.

Figure 5.33 Direct observation of nucleation on TiN particle.
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CHAPTER 6

Additions of Mineral Powders to Steel Welds

6.1 Introduction

Results from the pressure bonding experiments (Chapters 3 and 4) and from the inoculation

of steel melts with mineral powders (Chapter 5), showed that titanium-rich compounds

were particularly potent in the nucleation of ferritic phases. The bonding experiments

also showed that W03 was extremely potent in causing nucleation. On the basis of these

results, and as an extension of the research, attempts were made to add titanium-rich

and tungsten-rich compounds to submerged arc steel welds via powders introduced into

the flux. The aim was to investigate the effects that such additions would have on weld

microstructures.

6.2 Experimental

Two senes of experimental 0.5 m long submerged arc welds were produced, with weld

geometry as shown in Fig.6.1. The welding conditions for all the welds are summarised in

Table 6.1. The first series of welds (B-D) involved variations in titanium and the second

(E-G) in tungsten. A control weld (A) was also made for comparison purposes, without

any deliberate mineral addition (Table 6.2). The welding wire used was ESAB AB Autrod

12.22. The exact weld chemistries formed by various powder additions are discussed in the

following sections.

I

: 20mm
I
I
I

12mm

16mrn
--------------------------

50mm

Figure 6.1 Geometry of the experimental welds produced
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Weld Flux used <P Interpass Temp. Current Type Voltage Current Speed

/mm rC /Volts /Amps /m/h

A Basic Flux 4.0 175 ± 25 DC+ 29 580 33

B Basic Flux + TiOz powder 4.0 175 ± 25 DC+ 29 580 33

C Basic Flux + FeTi powder 4.0 175 ± 25 DC+ 29 580 33

D Basic Flux + Ti powder 4.0 175 ± 25 DC+ 31 580 33

E Basic Flux + W03 powder 4.0 175 ± 25 DC+ 29 580 33

F Basic Flux + W powder 4.0 175 ± 25 DC+ 29 580 33

G Basic Flux + FeW powder 4.0 175 ± 25 DC+ 29 580 33

Table 6.1 Welding conditions for experimental submerged arc welds.

FeSi SiMn SiOz Alz03 MgO AlSi CaFz

1.7 2 5 15.9 43.6 5 26.8

Table 6.2 Composition of the basic flux to which powder additions were
made. Concentrations shown are in wt%

6.3 Titanium-Rich Additions

Weld A was produced using the unmodified flux (Table 6.2). Titanium was introduced

differently in each of the other welds in the titanium series, but, in each case the powder

added constituted 4wt% of the flux composition. Additions were as follows: flux rich

in TiOz powder was used to produce Weld B; FeTi powder was added to the flux to

produce Weld Cj Ti-powder was added to the flux for 'Veld D. The weld compositions

thus achieved are shown in Table 6.3. The titanium concentration increases across the

series A-----+D,without significant variations in the C, Si or Mn concentrations.

6.3.1 As-Deposited Microstructure

The welds were sectioned perpendicular to the welding direction and the top bead isolated

for metallographic examination. Because of the fine scale, the microstructures had to be

characterised using scanning electron microscopy. Figures 6.2-6.5 show that an increase

in the titanium concentration seems to lead to a corresponding increase in the acicular
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Weld C Si Mn Al Ti 0 N

A 0.075 0.36 1.26 0.012 0.003 280 48

B 0.082 0.49 1.29 0.015 0.019 218 64

C 0.090 0.70 1.34 0.028 0.081 204 90

D 0.091 0.73 1.28 0.030 0.124 134 64

Table 6.3 Composition of the titanium series welds. Concentrations are
given in wt.%, with 0 and N given in parts per million by weight.

ferrite content. At the same time, the amount of grain boundary allotriomorphic ferrite

and Widmanstiitten ferrite was observed to decrease, eventually with complete elimination

from the microstructure.

Variations in 'V"idmanstiitten ferrite are expected with changes in the frequency of

intragranular nucleation events. Widmanstiitten ferrite grows from the austenite grain

surfaces and its growth can be stifled by impingement with intraganularly nucleated acic-

ular ferrite. If the latter forms more rapidly, then the fraction of Widmanstiitten ferrite is

expected to decrease. Thus the reduction of Widmanstiitten ferrite may be explained by

an increase in the nucleation potency of the inclusions, as titanium levels are increased. It is

more surprising that the amount of allotriomorphic ferrite is reduced since its growth starts

from a significantly higher temperature than acicular ferrite (Bhadeshia et al., 1985). It is

possible that, in addition to any nucleation effect due to increased levels of titanium-rich

phases in the inclusions, some of the titanium is retained in solution, enhancing harden-

ability, which in turn is reflected in the reduced allotriomorphic ferrite content.

Kluken and Grong (1989) have developed methods to estimate the constitution of

inclusions in steel welds, by sequentially distributing the oxygen and nitrogen, beginning

with the most potent oxidisers etc .. The method has been stated explicitly in (Bhadeshia

and Svensson, 1993) and is used here to estimate the likely constituents of the non-metallic

inclusions present in the weld series, and also to examine the likelihood that excess titanium

may be present in solution in the high titanium welds. The results of the analysis are

presented in Table 6.4.

As can be seen from the table, according to calculations, the levels of titanium present

in welds C and D were such that excess titanium would indeed be present in solution.

Despite being a ferrite stabiliser (Massalki, 1986), titanium in solution has been observed

to cause a dramatic increase in steel hardenability (Widgery, 1976).
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Weld Allocation of Oxygen /ppmwt Allocation of Titanium /ppmwt

Alz03 Tiz03 MnO SiOz TiN Tiz03 Ti in solution

A 107 15 80 78 0 30 0

B 121 95 1 1 0 190 0

C 173 31 0 0 308 63 439

D 181 0 0 0 219 0 1021

Table 6.4 Calculated allocation of titanium and oxygen to mineral groups
in non-metallic inclusions

Despite this hardenability effect, it should be noted that areas of bainite could readily

be observed in Weld C, but not in Weld D. Bainite and acicular ferrite compete directly

as transformation products - their mechanism of transformation being the same, save that

bainite nucleates from planar grain boundaries, and acicular ferrite nucleates from point

sources within grains. The reduction of bainite in Weld D implies that intragranular nu-

cleation has been enhanced over grain boundary nucleation. It seems, from metallographic

observations alone, that the role of titanium is therefore two-fold:

(i) Its presence in solution increases the hardenability of the weld metal.

(ii) It causes greater levels of intragranular over grain boundary nucleation - probably

attributable to changes in the nucleation potency of non-metallic inclusions.

6.3.2 Examination of Inclusions

Carbon extraction replicas were prepared for each of the welds in this titanium-series.

These replicas allowed examination of the weld inclusions and analysis of their chemical,
mineralogical, and morphological information.

As expected, EDX microanalysis revealed that increased titanium led to inclusions

richer in Ti (Fig.6.6). More profound chemical differences were also identified. Figures 6.7-

6.9 show that for Welds A & B (the titanium-poor welds) the levels of silicon, aluminium

and manganese were reasonably constant in all inclusions examined (i. e. there were specific
peaks in the distributions of chemical concentrations). As the level of titanium increased,

the manganese and silicon concentrations dropped, and the distribution of aluminium
within the inclusions became more homogeneous.

The change from specific concentrations of aluminium in the low titanium welds to a

more homogeneous concentration distribution implies a change in the state of aluminium

in the non-metallic inclusions. This change, accompanied by the removal of silicon and
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manganese, is consistent with a mineralogical change from manganese-aluminium oxide, or

manganese-aluminium silicate-rich inclusions, to those containing varying levels of alumina

as a phase component in the inclusion. The likelihood of such mineralogical changes is

supported by the calculated results shown in Table 6.4.

Diffraction patterns taken from crystalline inclusions revealed the presence of MnS

(only in Ti-poor welds - Fig.6.10), Alz03 (apparently in several forms, in all welds -

Fig.6.12, Fig.6.13), TiX (where X=C, N, or 0, in all welds - Fig.6.11), MnAlz04 (in

Weld D only, Fig.6.14) and a sulphide phase suspected to be a copper sulphide (in all

welds, Fig.6.15). Crystalline silicate was never observed, presumably because the silicate

was present in its glassy form.

Information from specific diffraction patterns is summarised in Table 6.5. The miner-

alogies present are largely the same across the weld series. However, the relative amounts

of each mineral phase varies - as inferred from chemical changes, and also from qualitative

morphological observations:

Often, inclusions which were demonstrated to contain a lot of Ti by microanalysis, showed

angular, cuboidal shapes consistent with TiN. The number of such cuboidal inclusions

increased across the weld series, but showed a dramatic jump between Weld B and Weld C

(Figures 6.16 and 6.17). This sudden increase in levels of TiN is supported by the calculated

results in Table 6.4.

6.3.3 Thin-foil Examination

Although the levels of titanium in the weld metals were quite low, an attempt to demon-

strate the presence of titanium in solution in the matrix steel was made, by preparing

thin-foils for matrix microanalysis. Unfortunately, the concentration of Ti was below the

resolution of the EDX system employed. However, three cases of detectable titanium levels

in matrix steel were recorded - all for the titanium-rich weld, Weld D.
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Weld Observed Likely Phase Likely Calculated

d1 d2 d
1

A d
2 (hkl)l (hkl )2 d1 d2 d

1
A d

2

Weld A 2.7A 1.6A 72° MnS (311) (020) 2.6A 1.6A 72°

Weld A 2.4A 1.45A 88° ,-A1203 (311) (115) 2.4A 1.5A 87°

Weld A 2.3A 2.oA 54° TiX (111 ) (200) 2.4A 2.1A 54.7°

Weld B 1.9A 1.2A 90° CuxS

Weld B 2.4A 2.35A 60° a-A1203 (110) (210) 2.4A 2.4A 60°

Weld B 1.3A 1.3A 60° TiX (311 ) (113) 1.28A 1.28A 63°

Weld B 3.7A 3.7A 68° Form of A12°3
Weld B 2.7A 8.5A 78° Complex Ti-oxide

Weld B 2.oA 2.oA 82° Form of A12°3
Weld C 2.6A 2.6A 70° TiX (111) (111) 2.4A 2.4A 70.5°

Weld C 2.2A 2.2A 90° TiX (020) (200) 2.1A 2.1A 90°

Weld C 2.3A 1.4A 90° CuxS

Weld C 2.6A 2.6A 65° a-A1203 (104) (014) 2.6A 2.6A 60°

Weld C 2.7A 4.2A 86° ,-A1203 (111) (220) 2.8A 4.56A 90°

Weld C 3.6A 3.6A 88° a-A1203 (012) (102) 3.5A 3.5A 86°

Weld C 3.oA 3.oA 90° MnA1204 (220) (220) 2.9A 2.9A 90°

Weld D 4.8A 4.7A 70° ,-A1203 (111) (111) 4.56A 4.56A 70.5°

WeldD 2.1A 2.1A 70.5° CuxS

Weld D 2.9A 3.1A 90° MnA1204 (220) (220) 2.9A 2.9A 90°

Weld D 2.5A 1.5A 90° TiX (111) (220) 2.4A 1.5A 90°

Weld D 2.1A 2.1A 70° CuxS

Table 6.5 Summary of the data obtained from diffraction patterns taken
from particles in the titanium series of welds.
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Figure 6.2 SEM micrograph of the as-deposited microstructure
in Weld A (low titanium weld).

Figure 6.3 SEM micrograph of the as-deposited microstructure
in Weld B.
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Figure 6.4 SEM micrograph of the as-deposited microstructure
in Weld C.

Figure 6.5 SEM micrograph of the as-deposited microstructure
in Weld D (titanium-rich weld).
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Figure 6.6 (left) Titanium concentration distribution in inclusions
across the titanium-weld series. Concentrations are in wt% .
Figure 6.7 (right) Silicon concentration distribution in inclusions
across the titanium-weld series. Concentrations are in wt% .
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Figure 6.8 (left) Manganese concentration distribution in inclusions
across the titanium-weld series. Concentrations are in wt% .
Figure 6.9 (right) Aluminium concentration distribution in inclusions
across the titanium-weld series. Concentrations are in wt% .
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0.4 A-1

Figure 6.10 Diffraction pattern from part of an inclusion in Weld A. It
is consistent with MnS. This phase does not appear in the more titanium-

rich welds.

0.4 A-)

Figure 6.11 Diffraction patterns consistent with TiX were found in all
the welds, but become more common with increases in titanium addition.
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Figure 6.12 Different alumina types were distinguished in particles
across the titanium-weld series. This pattern is consistent with ,-Al2 °3,

Figure 6.13 This diffraction pattern is consistent with a-Al203·
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0.4 A-I

Figure 6.14 Several diffraction patterns were found which corresponded
well with MnAI204. Here some super-periodicity is illustrated by the
numerous satellite spots.

Ca)

0.1 /-lID

Cb)

Figure 6.15 Ca) A sulphur-rich phase was frequently observed, which
did not contain significant levels of manganese. It was suspected that this
phase was a copper sulphide of some kind.

Cb) Diffraction patterns from this sulphide phase were con-
sistent with an f.c.c. mineral, arv3.6A.
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0.1 /-lID

Figure 6.16 TEM micrograph showing the morphology typical of
inclusions in Weld B. They are well rounded.

0.1 /-lID

Figure 6.17 TEM micrograph showing more angular inclusions fre-
quently observed in Weld C and Weld D.
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6.4 Tungsten-Containing Welds

Welds A, E, F and G contained systematic variations in tungsten. As already stated,

Weld A was prepared using the unmodified flux (Table 6.2). Weld E was produced by

addition of W03 powder to the flux; additions of W powder produced Weld F; FeW

powder was added to the flux to produce Weld G. The compositions of the welds are

shown in Table 6.6.

Weld no. C Si Mn W Al Ti 0 N

Weld A 0.075 0.36 1.26 0.014 0.012 0.003 280 48

Weld E 0.064 0.22 1.01 0.683 0.011 0.002 401 53

Weld F 0.075 0.41 1.24 1.479 0.014 0.004 314 81

Weld G 0.072 0.40 1.22 1.693 0.032 0.004 313 73

Table 6.6 Compositions of the tungsten weld series. Concentrations are
given in wt.%, and 0 and N in parts per million by weight.

6.4.1 As-Deposited Microstructure

A cross-section of the top bead was examined using optical microscopy (Figures 6.18-

6.21), which illustrates a continuous reduction in the amount of grain boundary nucleated

phases with increasing tungsten content. The low tungsten welds, Weld A and Weld E,

show considerable quantitites of allotriomorphic and Widmanstiitten ferrite. In weld

Weld F, the thickness of the allotriomorphic ferrite layers is greatly reduced, although

Widmanstiitten ferrite can still be seen.

The as-deposited microstructures show an increasing dominance of intragranular

phases over grain boundary nucleated phases, with increasing tungsten. However, the

reduction in allotriomorphic ferrite again implies hardenability changes as well as possible

alterations in the inclusion potency.

The greater refinement of the as-deposited microstructure may therefore have oc-

curred for two reasons:

(i) increased nucleation efficacy of inclusions which changed in chemistry/mineralogy as

tungsten was added.

(ii) increased hardenability of the alloy due to tungsten present in solution.
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6.4.2 Examination of Inclusions

Carbon extraction replicas were prepared from each of the top weld beads to characterise

the inclusions. TEM EDX analysis was performed in order to investigate variations in the

levels of tungsten present, as well as other potential chemical, and hence mineralogical

differences between the inclusion populations. The work revealed the following:

(i) Tungsten was not detected in any of the one hundred and forty-seven particles exam-

ined. The experiments have not resulted in the incorporation of tungsten oxide in the

welds. The tungsten is present in solid solution in the ferrite.

(ii) The chemical composition of the inclusions did not change much for the different welds

(Figures 6.22-6.25). Some minor variations were found (e.g. manganese levels decrease

while aluminium levels increase as the additions of tungsten increase), but were judged

not to be of much consequence.

Diffraction patterns were taken when possible, during the collection of EDX micro-

analysis data. These showed the presence of ,-A1203 (Fig.6.26), TiX (where X=C, N or 0,

Fig.6.27), MnS (Fig.6.28), and a phase which indexed as f.c.c. with a"'3.6A (as in the melt

experiments, Chapter 5). No obviously crystalline silicon-rich areas could be observed,

presumably because of the presence of glass silicate.

Although the spatial and size distributions of the inclusions across the weld series were

not measured quantitatively, no significant differences seemed apparent. Fig.6.29 a,b are

from the high and low tungsten welds, and show that the inclusion sizes and spatial distri-

butions are qualitatively similar. Further, no obvious inclusion morphological differences

are apparent.

6.4.3 Hardenability Effect of Tungsten

Since different concentrations of tungsten present In the experimental welds produced

no significant effects on the non-metallic inclusion populations, it is suspected that mi-

crostructural alterations have been produced due to the effects of tungsten in solution.

In order to demonstrate the hardenability effect of tungsten, standard thermome-

chanical specimens (cylinders of diameter 8mm, and height 12mm) were machined from

weld metal of the low and high tungsten extremes of the weld series. These were austeni-

tised at 1000°C for 5mins before gas-quenching to room temperature. Radial dilatational

information was recorded during the quench to determine the transformation kinetics.

Two different cooling rates were used to study transformations - 10 and 50°C S-l. As

the dilatational curves in Fig.6.30 a,b indicate, the onset of transformation was retarded
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in the high tungsten samples. The onset temperatures for the two weld metals can be seen

in Fig.6.31 a,b (high W rv690°C, low W rv720°C at 10°C s-\ high W rv530°C, low W

rv580°C at 50°C s-l). The hardenability of the alloy is clearly increased by tungsten in

solution.

Optical micrographs of the microstructures produced by these gas-quench experiments

are shown in Figures 6.32 and 6.33. There is more martensite in the high tungsten alloy,

as would be expected from its greater hardenability.

6.5 Conclusions

Variations in levels of titanium and tungsten in experimental submerged arc welds have

been achieved by the addition of various powders to a standard welding flux. Increasing

titanium has caused a general increase in intragranular as opposed to grain-boundary

phases in the as-deposited weld microstructure. The microstructural changes have arisen

due to an apparent dual effect of titanium:

(i) Increases in titanium have caused increases III Ti-rich minerals in the non-metallic

inclusions. This has been associated with an increased efficacy for nucleating acicular

ferrite.

(ii) For large levels of titanium, such as in Weld C and Weld D, much of the titanium

remains in solution. This seems to cause increased alloy hardenability.

Increasing tungsten has also caused a general increase in acicular ferrite. However,

tungsten is not involved as a cation in the non-metallic inclusions. Instead, microstructural

refinement has occurred due to hardenability effects of tungsten in solution.
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Figure 6.18 Optical micrograph of the as-deposited microstructure of
Weld A (the lowest tungsten addition).

Figure 6.19 Optical micrograph of the as-deposited microstructure of
weld Weld E.
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Figure 6.20 Optical micrograph of the as-deposited microstructure of
weld Weld F.

Figure 6.21 Optical micrograph of the as-deposited microstructure of
weld Weld G (the most tungsten rich of the weld series).
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Figure 6.22 (left) Titanium concentration distributions in the inclusions
across the tungsten-weld series. Concentrations are in wt% .
Figure 6.23 (right) Silicon concentration distributions in the inclusions
across the tungsten-weld series. Concentrations are in wt% .

o 20 40 60 80 100
Conc"of Mn in particle / %

o

60-o
~~c
~'40
o-c
CD 0L- _--o"0 >
CD L-
~ : 20
0.0
E 0
L-e
Z

100

G

E
11
it t
" "" F. . "
I "· '/· ,· ,.~

: .J. ,
I 'r., ,~
I '.,. ,.
': ,. /
I· ,. -'':., ' ..
I ,.,..; •... , ..""'.. ., ..o

o 20 40 60 80
Cone" of AI in particles / %

80-o
~~c
~'60
o-c
CP 0
L-_---0 ~ 40
CP L-
~ CP= enE -g 20
L-o
Z

Figure 6.24 (left) Aluminium concentration distributions in the inclu-
sions across the tungsten-weld series. Concentrations are in wt% .
Figure 6.25 (right) Manganese concentration distributions in the inclu-
sions across the tungsten-weld series. Concentrations are in wt% .
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Figure 6.26 Diffraction patterns taken from strongly diffracting inclu-
sions, found during EDX analysis, showed the presence of various minerals.
This pattern illustrates the presence of ,-A1203.

Figure 6.27 Diffraction patterns consistent with a TiX phase were ob-
tained.
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Ca)

0.4 A-I

Cb)
1 /-lill

Figure 6.28 Ca) Diffraction consistent with MnS was obtained in inclu-
sions across the weld series.

Cb) Dark and bright field micrographs of the MnS regions
within one inclusion. This illustrates the inhomogeneous, multicrystalline
nature of real weld inclusions.

Ca)

1 Ilill
L.--J

Cb)

1 p,ill
L-..J

Figure 6.29 Ca) TEM bright field micrograph showing the qualitative
size and distribution of inclusions in Weld A.

Cb) TEM bright field micrograph showing the qualitative size
and distribution of inclusions in weld Weld G.
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Figure 6.30 (a) Dilatation curves obtained during the gas-quenching of
weld metal Weld A and Weld G (low and high tungsten respectively)
at lOoe s-1-_

(b) Dilatation curves obtained for gas-quenching
at 500e s-l.
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Figure 6.31 (a) Dilatation curves obtained during gas-quenching at
lOoe s-l, illustrating the differences in temperatures at which tranfor-
mation was initially observed.

(b) Dilatation curves showing the onset temperatures of
transformation during gas-quench of 500e s-l.
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Figure 6.32 Optical micrograph of the microstructure of the low tung-
sten weld (Weld A) after quenching at 50°C s-l from lOOO°C.

100 /-LID

Figure 6.33 Optical micrograph of the microstructure of the high tung-
sten weld (Weld G) after quenching at 50°C s-l from lOOO°C. There
is more marten site apparent in the high tungsten alloy, illustrating its
greater hardenability.
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APPENDIX 1
A Model for the Investigation of Epitaxy

1.1 Introduction

The experiments described in Chapters 3-5 identified two dominant mechanisms of het-

erogeneous nucleation of bainite or acicular ferrite on non-metallic inclusions:

(i) Localised oxidation with associated depletion of carbon in adjacent regions.

(ii) Localised depletion of manganese.

Such chemical effects being responsible for stimulating nucleation have been discussed

previously (Farrar and Watson, 1979; Es-Souni and Beaven, 1990; Es-Souni et al., 1991).

Most research, however, suggests that mineral particles induce nucleation because of their

crystallographic similarity with the b.c.c. ferrite lattice (Mori et al., 1981; Saggese et al.,

1982; Thewlis, 1990; Grong et al., 1992). This lattice matching theory is investigated here.

Although progress in the investigation has been made, the results obtained were limited by

the crude nature of the developed model. Hence this section is presented as an appendix.

1.2 Lattice Matching

The usual analysis of lattice matching follows Bramfitt (1970):

(hkl). _ ~ ~ (d[uVWE cas() - d[uvw]~)
O(hkl) - 3 L.J d x 100

n 1=1 [UVw]~

,(hkl) I tt· . h b Iu(hkl): = a Ice mlsmatc etween two panes

(hkl)s = low index plane of the substrate

(hkl)n = low index plane of nucleated solid
[uvw]s = low index direction in (hkl)s
[uvw]n = low index direction in (hkl)n
d[uvw]. = interatomic spacing along [uvw]s
d[uvw]n = interatomic spacing along [uvw]n
()= the angle between [uvw]s and [uvw]n

Subscripts '5' and 'n' denote reference to substrate and nucleated solid respectively.
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Misfit values for some of the minerals discussed in Chapters 3-5 have been calculated

using the Bramfitt analysis by Mills et al. (1987), and are shown in Table 1.1. Of these

minerals only TiO was herein observed to cause significant ferrite nucleation. Although the

Bramfitt analysis does predict a good lattice match between {100}TiO and {lOO} 0" it also
predicts good matching for galaxite, ,-A1203 and TiN for the same relative orientation with

ferrite. These three minerals were not observed to cause significantly enhanced nucleation

experimentally in the pressure bonding experiments, and were not amongst the most potent

nucleants when introduced into steel melts. Thus Bramfitt analysis does not seem to

properly discriminate between nucleant and non-nucleant minerals. This suggests that

lattice matching is not responsible for any of the nucleation observed.

However, it may be the case that new ideas are needed to examine the lattice match-

ing concept. A model was therefore developed to re-evaluate interfacial epitaxy between

mineral surfaces. Although this model clearly possesses shortcomings, it is conceptually

interesting.

Parallelism (ferritellsubstrate) Extent of disregistry (% )

Planar Directional TiO ,-A1203 Galaxite TiN

{lOO} 11{lOO} < 100 >11< 110 > 3.0 3.2 1.8 4.6

{110} 11{lOO} < 100 >11< 110 > 22.0 16.7 20.5 23.9

{lOO} 11{110} < 100 >11< 110 > 24.4 19.0 22.8 26.3

{110} 11{110} < 100 >11< 110 > 37.4 33.3 35.6 39.5

{111} 11{110} < 110 >11< 100 > 14.6 9.8 13.2 16.4

{lOO} 11{111} < 100 >11< 110 > 34.5 28.5 32.8 36.5

{110} 11{111} < 100 >11< 110 > 15.9 11.0 14.4 17.6

{111} 11{111} < 110 >11< 110 > 27.2 31.5 28.0 26.0

{111} 11{lOO} < 110 >11< 110 > 20.8 23.6 20.9 20.6

Table 1.1 Bramfitt-type misfit values for four of the minerals tested ex-
perimentally for their nucleation potency (after Mills et at. , 1987).
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1.3 Details of the Model

1.3.1 Data Input

The information required includes the lattice type, lattice parameters, structural motif,

atomic type and Miller indices of the planes in contact at the interface, for both the

substances involved in the analysis. The analysis is restricted to orthonormallattices. This

is not a serious constraint, because hexagonal and trigonal minerals can be considered using

their orthorhombic representations. Only monoclinic and triclinic minerals are excluded.

1.3.2 Planes of Interest

Having specified the Miller indices of the interface plane for each of the two minerals under

consideration, the program must isolate all atoms which lie on this plane. It does this by

first generating a miniature crystal, using the unit cell information supplied by the user.

It then sections this small group of cells along the proposed interface plane, and identifies

the atoms whose co-ordinates exactly lie on this plane. Atoms which lie on the plane, and

their x, y and z co-ordinates are held in memory, and the rest of the crystal is discarded.

Expressing atomic co-ordinates in terms of x, y and z now becomes cumbersome, since

all the atoms of interest are co-planar. A series of subroutines transforms the co-ordinate

system, so that atomic positions are described in two dimensions, with an atom at the

ongm.

In a perfect crystal, all the structural information of that crystal is contained within

the description of one unit cell. Similarly, for a plane within a crystal, all the structural

information is contained within a 2-dimensional unit mesh. The next stage in the program

is to define this unit mesh for the selected planes of the interface. All lattice points are

labelled in the program. The lattice points which lie at the corners of the unit mesh are

defined by selecting the two lattice points nearest to the origin (itself a lattice point),

whose position vectors were non-parallel. These two non-parallel position vectors were

simply summed to give the position vector of the fourth corner of the unit mesh.

All other atoms on the plane of interest, are then considered, and if their co-ordinate

positions lie within the unit mesh defined above, they are held in memory, others being

discarded. In this way, all the atoms contained within one unit mesh are isolated, and the

unit mesh completely defined.

1.3.3 Topography of the Atomic Surfaces

Once the positions of all the atoms within the unit mesh had been defined, the relief of the

atomic surface needed to be modelled. In order to do this, the radii of the various atoms are
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required, and were represented by the ionic radii. The use of ionic radii is a limitation in

the program, particularly for highly covalent mineral structures. For austenite and ferrite,

the metallic radius of iron was considered. Physical protrusion of the atomic surface above

the base plane was calculated for each x, y position in the unit mesh. The x, y positions

considered were discrete so that the mesh was effectively divided into a large number of

pixels. Initially the atomic shape was modelled as conical. Although unconventional, it was

felt that conical protrusions may tessellate more cleanly than hemispherical ones, yielding

clear results after meshing analysis.

At this point in the programming, it was important to check that the atomic surfaces

had been modelled reasonably, so that any results from epitaxy analysis could be viewed

with a certain amount of confidence. To this end, the information describing the unit mesh

and its atomic topography was presented graphically (Fig.1.1-Fig.1.4). As can be seen from

the figures, the modelling of the atomic surface within one mesh could be achieved, this

being varified for a wide range of minerals.

The next area of the model required a direct comparison between the two atomic

surfaces across the user-proposed interface plane, in order to quantify the degree of epitaxy

possible. The method used involved comparing the atomic topography of one surface with

the topography of the hollows in the other surface. Direct comparison therefore involved

inverting one of the surface topographies - in efFectcreating a relief which corresponded to

a mould of the original surface. Such an inverted surface is shown in Fig.1.5 and Fig.1.6.

The inverted and non-inverted surfaces from the two minerals of interest were then directly

compared by calculating the difference function between the heights of atoms and depths

of hollows. The value of this difference function obviously varied, depending on the relative

position and orientation of the two surfaces. In order to find a minimum difference function,

and therefore the best epitaxial fit in terms of atom relief, the two surfaces were moved

and rotated systematically relative to each other, and after each relative movement, the

difference function was calculated. The value of the minimum difFerence obtained overall

was retained in memory, and displayed as the end result of the program. The lower this

minimum value, the better the epitaxial fit was expected to be.

It should be noted that relative movement of one atomic surface with the other,

involved high resolution in terms of non-rotational shift. However, only relative rotations

of 90° were considered. This was used initially for simplicity, but represented a serious

flaw in the model.
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Figure 1.1 Photograph of the graphical output representing the surface
topography of a unit mesh of the {lOO} section of MnS

Figure 1.2 Photograph of the graphical output representing the surface
topography of a unit mesh of the (110) section of Ti02
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Figure 1.3 Photograph of the graphical output representing the surface
topography of a unit mesh of the {llO} section of CaTi03

Figure 1.4 Graphical output of the modelled atomic relief of the {lOO}
section of W03
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Figure 1.5 Photograph of the graphical output of the topography of the
hollows in the atomic surface of a unit mesh of the {lOO} section of ferrite

Figure 1.6 Graphical output showing the topography of the hollows of
the unit mesh of the {lll} section of ferrite
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1.4 Results of the Model and Conclusions

Some obvious limitations to this meshing program exist:

(i) That the relative rotation of the atomic surfaces is limited to 90°.

(ii) That the atom protrusion above the plane base is modelled as conical.

(iii) That the radii of the atoms are taken from ionic radius data, and will therefore be

highly inaccurate for the more covalent minerals.

(iv) That the comparison between two atomic surfaces involving calculation of the differ-

ence function is slow even on the Sun minicomputer.

(v) That only the relief is considered in the meshing analysis. Properties such as charge

distribution are ignored.

Such limitations were likely to seriously affect the reliability of the results produced.

Therefore, it has been the main aim of this chapter to describe the method used, and the

concept behind the model, rather than analyse results obtained. For more reliability of

analysis the above program limitations must be addressed.
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APPENDIX 2
Meshing Analysis Program

INTEGER PIX1(50000), PIY1(50000)
INTEGER PIX2(50000), PIY2(50000),RESY2,RESX2
INTEG ER PICAR1 ,PICAR2,RESY1 ,RESX1 ,ASISE2,PICSIZ,ASISE 1
INTEGER CSHY,CR,CSHX
DOUBLE PRECISION REX2(1024), RWHY2(1024),RMIN,RWHY1(1024)
DOUBLE PRECISION VALUE1(50000), VALUE2(50000),REX1(1024)
OPEN (unit=3,file= 'data3.out')
CALL FUN CTION1(PIX1 ,PIY1 ,VALUE1,PICAR1,RESY1 ,RESX1 ,PICSIZ,

& ASISE1,REX1,RWHY1)
CALL FUN CTION2(PIX2,PIY2, VALUE2,PICAR2,ASISE2,VAL UE2,

& REX2,RWHY2,RESY2,RESX2,PICSIZ)
* Want to store the shiftx, shifty and rotation that produces the minimum
* RMIN so that it may be redetermined using a fine resolution, and plotted
* on Ulllras.

IF (PICAR1 .GT. PICAR2) THEN
CALL RMESH(PICAR2,PICAR1 ,PIX2,PIY2,PIX1 ,PlY1 ,ASISE 1,

& VALUE1,REX1,RWHY1,VAL UE2,RESY2,RESX2,RMIN ,PICSIZ,RESY1,
& CSHY,CR,CSHX)

ELSE
CALL RMESH(PICAR1 ,PICAR2,PIX1 ,PIY1 ,PIX2,PIY2,ASISE2,VAL UE2,

& REX2,RWHY2,VAL UE1 ,RESY1 ,RESX1 ,RMIN ,PICSIZ,RESY2,CSHY ,CR,CSHX)
ENDIF
STOP
CALL ACCUR( CR,CSHX,CSHY ,PIX1 ,PIY1,PICAR1 ,VALUE1 ,RESX1,

& RESY1 ,PICAR2,PIX2,PIY2,ASISE2,VAL UE2,REX2,RWHY2,PICSIZ,RESY2)
END

SUBRO UTINE FUNCTION1(PICX1,PICY1 ,VALl ,PICARRAY1,RESLX1,
& RESLY1,PICSI,ASIZE1,RX1,RY1)

INTEGER X1(1024), Y1(1024), Zl(1024), LP1(1024),PICSI
INTEGER H1, K1 ,L1, ASIZE1, LAT1, I, MOTIF1,PICARRAY1
DOUBLE PRECISION A1, B1, Cl, RAD1(1024)
DOUBLE PRECISION RX1(1024), RY1(1024), RZ1(1024)
CHARACTER*4 ELEMENTS(187),TYP1(1024)
DOUBLE PRECISION IO ICR(187)
DOUBLE PRECISION VAL1(50000)
INTEGER PICX1( 50000) ,PICY1( 50000 ),RESLX1 ,RESLY1
COMMON / ATOM/ ELEMENTS
COMMON /RADIUS/ IONICR
OPEN (unit=l,file='datal.out')
CALL DATAIN(X1,Y1,Zl,LP1,H1,K1,L1,

& ASIZE1,LAT1,MOTIF1,A1,B1,C1,TYP1)
CALL PCELL(X1,Y1,Zl,TYP1,LAT1,ASIZE1,LP1)
CALL MINICRYST(X1,Y1,Zl,TYP1,ASIZE1,LP1)
CALL PLANE(X1, Y1, Zl, TYP1, ASIZE1, H1, K1, L1, LP1)
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CALL ORIGIN(X1,Y1,Zl,TYP1,LP1,ASIZE1,MOTIF1)
CALL TRANS1(X1 ,Y1 ,Zl ,TYP 1,A1,B 1,C1,H1,K1 ,L1,ASIZE1 ,RX1 ,RY1 ,LP 1)
CALL TRANS2(Zl ,TYP 1,A1,B 1,Cl ,H1,K1 ,L1 ,ASIZE1 ,RX1,RY1 ,RZ1 ,LP 1)
CALL MESH(RX1 ,RY1, TYP 1,LP 1,ASIZE1)
CALL RADIUSS(TYP1,ASIZE1,RAD1)
CALL PIXEL(RAD 1,RX1 ,RY1 ,PICX1 ,PICY1, VAL1 ,ASIZE1,

& A1,B1,PICARRAY1,RESLX1,RESLY1,PICSI)
* So picarray gives the size of the pixel array

DO 21I=1,PICARRAY1
WRITE(1,*) PICX1(I),PICY1(I),VAL1(I)

21 CONTINUE
END

SUBRO UTINE FUN CTIO N2(PICX2,PICY2, VAL2,PICARRAY2,ASIZE2,
& VAL2,RX2,RY2,RESLY2,RESLX2,PICSI)

INTEGER X2(1024), Y2(1024), Z2(1024), LP2(1024),PICSI
INTEGER H2, K2 ,L2, ASIZE2, LAT2, I, MOTIF2,PICARRAY2
DOUBLE PRECISION A2, B2, C2, RAD2(1024)
DOUBLE PRECISION RX2(1024), RY2(1024), RZ2(1024)
CHARACTER*4 ELEMENTS(187),TYP2(1024)
DOUBLE PRECISION IONICR(187)
DOUBLE PRECISION VAL2(50000)
INTEG ER PICX2( 50000),PICY2( 50000),RESLX2,RESLY2
COMMON j ATOMj ELEMENTS
COMMON jRADIUSj IONICR
OPEN (unit=2,file='data2.out')
CALL DATAIN (X2, Y2,Z2,LP2,H2,K2,L2,

& ASIZE2,LAT2,MOTIF2,A2,B2,C2,TYP2)
CALL PCELL(X2, Y2,Z2, TYP2,LAT2,ASIZE2,LP2)
CALL MINICRYST(X2,Y2,Z2,TYP2,ASIZE2,LP2)
CALL PLANE(X2, Y2, Z2, TYP2, ASIZE2, H2, K2, L2, LP2)
CALL ORIGIN(X2,Y2,Z2,TYP2,LP2,ASIZE2,MOTIF2)
CALL TRANS 1(X2, Y2,Z2, TYP2,A2,B 2,C2 ,H2,K2,L2,ASIZE2,RX2,RY2,LP2)
CALL TRANS2( Z2, TYP2,A2,B2, C2,H2 ,K2,L2,ASIZE2,RX2 ,RY2,RZ2,LP2)
CALL MESH(RX2,RY2,TYP2,LP2,ASIZE2)
CALL RADIUSS(TYP2,ASIZE2,RAD2)
CALL PIXEL(RAD2,RX2,RY2,PICX2,PICY2,VAL2,ASIZE2,

& A2,B2,PICARRAY2,RESLX2,RESLY2,PICSI)
* So picarray gives the size of the pixel array

CALL INVPIXEL(VAL2,PICARRAY2)
DO 21 I=1,PICARRAY2

WRITE(2, *) PICX2(I) ,PICY2(I), VAL2(I)
21 CONTINUE

END
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SUBROUTINE DATAIN(EX,WHY,ZEE,LATP,ACH,KAY,EL,
& ASIZ,LAT,MOTIV,AY,BE,CE,TYP)

INTEGER EX(1024), WHY(1024), ZEE(1024), LATP(1024)
INTEGER ACH, KAY ,EL, ASIZ, LAT, I, N, MOTIV
DOUBLE PRECISION AY, BE, CE
CHARACTER*4 TYP(1024)
ASIZ=O
WRITE(6,*) 'LATTICE TYPE ?'
WRITE(6,*) '1=Primitive'
WRITE(6,*) '2=Body centred'
WRITE(6,*) '3=Face centred'
WRITE(6,*) '4=A-centred'
WRITE(6,*) '5=B-centred'
WRITE(6,*) '6=C-centred'
READ(5,*) LAT
WRITE (6,*) 'Give me the lattice parameters then!'
READ (5,*) AY, BE, CE
WRITE(6,*) 'How many atoms are there in the motif ?'
READ(5,*) N
DO 91=1, N

WRITE(6,*) 'Give me fractional co-ords in WRITE(6,*) 'placing an atom at the
origin'

READ(5,*,END=8) EX(I), WHY(I), ZEE(I)
LATP(I)=I
ASIZ=ASIZ+ 1
WRITE(6,*) 'And what is the atomic type?'
WRITE(6,*) 'What we need is the chemical species and the'
WRITE(6,*) 'ionic charge if the crystal were considered'
WRITE(6,*) 'as ionic e.g FE+3'
READ (5,*) TYP(I)

9 CONTINUE
8 MOTIV=ASIZ

WRITE (6,*) 'Size of array of points',ASIZ
WRITE (6,*) 'So, what plane are we considering here ?'
WRITE (6,*) 'Give the Miller indices'
READ (5,*) ACH, KAY, EL
END

* This subroutine takes the elements of the Primitive
* unit cell motif and creates a cuboid of unit cells
* from which to section the plane of atoms in which
* we are interested

SUBROUTINE MINICRYST(X,Y,Z,T,ASIZE,LP)

INTEGER ASIZE, I, X(ASIZE), Y(ASIZE), Z(ASIZE)
INTEGER LP(ASIZE)
CHARACTER*4 T(ASIZE)
DO 201=1, ASIZE
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X(ASIZE + I) = X(I) + 100
Y(ASIZE + I) = Y(I)
Z(ASIZE + I) = Z(I)
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP (I)

20 CONTINUE
ASIZE=2* ASIZE
DO 21 1=1, ASIZE

X( ASIZE + I) = X(I)
Y(ASIZE + I) = Y(I) + 100
Z(ASIZE + I) = Z(I)
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

21 CONTINUE
ASIZE=2* ASIZE
DO 221=1, ASIZE

X( ASIZE + I) = X(I)
Y(ASIZE + I) = Y(I)
Z(ASIZE + I) = Z(I) + 100
T( ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

22 CONTINUE
ASIZE=2* ASIZE
DO 231=1, ASIZE

X( ASIZE + I) = X(I) - 200
Y( ASIZE + I) = Y(I)
Z(ASIZE + I) = Z(I)
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

23 CONTINUE
ASIZE=2* ASIZE
DO 241=1, ASIZE

X( ASIZE + I) = X(I)
Y(ASIZE + I) = Y(I) - 200
Z(ASIZE + I) = Z(I)
T( ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

24 CO TINUE
ASIZE=2* ASIZE
DO 251=1, ASIZE

X( ASIZE + I) = X(I)
Y(ASIZE + I) = Y(I)
Z(ASIZE + I) = Z(I) - 200
T( ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

25 CONTINUE
ASIZE=2* ASIZE
END
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* This subroutine creates the primitive unit cell motif

SUBROUTINE PCELL(X,Y ,Z,T ,L,ASIZE,LP)

INTEG ER ASIZE,X( ASIZE), Y( ASIZE) ,Z(ASIZE) ,LP( ASIZE) ,L,I
CHARACTER*4 T(ASIZE)

* If L=l the lattice is already Primitive
*IF(L.EQ.1)RETURN
* If L=2 then the lattice is body centred and (LINE31)
* requires the following addition to make an
* effectively primitive lattice

IF (L .EQ. 2) THEN
DO 101=1, ASIZE

X( ASIZE + I) = X(I) + 50
Y(ASIZE + I) = Y(I) + 50
Z(ASIZE + I) = Z(I) + 50
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

10 CO TINUE
ASIZE=2* ASIZE

ENDIF
* If L=3 then the lattice is face centred

IF (L .EQ. 3) THEN
DO 11 1=1, ASIZE

X( ASIZE + I) = X(I) + 50
Y(ASIZE + I) = Y(I) + 50
Z(ASIZE + I) = Z(I)
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)
X(2* ASIZE + I) = X(I) + 50
Y(2* ASIZE + I) = Y(I)
Z(2* ASIZE + I) = Z(I) + 50
T(2* ASIZE + I) = T(I)
LP(2* ASIZE + I) = LP(I)
X(3* ASIZE + I) = X(I)
Y(3* ASIZE + I) = Y(I) + 50
Z(3* ASIZE + I) = Z(I) + 50
T(3* ASIZE + I) = T(I)
LP(3* ASIZE + I) = LP(I)

11 CONTINUE
ASIZE=4 *ASIZE

ENDIF
* If L=4 then the lattice is an A lattice

IF (L .EQ. 4) THEN
DO 121=1, ASIZE

X(ASIZE + I) = X(I)
Y(ASIZE + I) = Y(I) + 50
Z(ASIZE + I) = Z(I) + 50
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)
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12 CONTINUE
ASIZE=2* ASIZE

ENDIF
* If L=5 then the lattice is a B lattice

IF (L .EQ. 5) THE
DO 131=1, ASIZE

X( ASIZE + I) = X(I) + 50
Y(ASIZE + I) = Y(I)
Z(ASIZE + I) = Z(I) + 50
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP(I)

13 CONTINUE
ASIZE=2* ASIZE

ENDIF
* If L=6 the the lattice is a C lattice

IF (L .EQ. 6) THEN
DO 141=1, ASIZE

X(ASIZE + I) = X(I) + 50
Y(ASIZE + I) = Y(I) + 50
Z(ASIZE + I) = Z(I)
T(ASIZE + I) = T(I)
LP(ASIZE + I) = LP (I)

14 CONTINUE
ASIZE=2* ASIZE

ENDIF
END

* This subroutine takes the co-ords generated
* by minicryst and selects those points which
* lie on a selected plane

SUBROUTINE PLANE(X,Y,Z,T,ASIZE,H,K,L,LP)

INTEGER ASIZE,H,K,L,COUNT,I
INTEGER X(ASIZE), Y(ASIZE), Z(ASIZE), LP(ASIZE)
INTEGER M(100), N(100), 0(100), Q(100)
CHARACTER*4 T(ASIZE),P(100)
COUNT=O
IF ((H .EQ. 0) .AND. (K .EQ. 0) .AND. (L .NE. 0)) THEN

DO 301=1, ASIZE
IF (Z(I) .EQ. INT(100jL)) THEN

COUNT = COUNT + 1
M(COUNT) = X(I)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP(I)

ENDIF
30 CONTINUE

ENDIF
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IF ((H .EQ. 0 ) .AND. ( L .EQ. 0 ) .AND. ( K .NE. 0) ) THEN
DO 31 1=1, ASIZE

IF (Y(I) .EQ. INT(100/K)) THEN
COUNT = COUNT + 1
M(COUNT) = XCI)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP(I)

ENDIF
31 CONTINUE

ENDIF
IF ((K .EQ. 0 ) .AND. ( L .EQ. 0 ) .AND. ( H .NE. 0) ) THEN

DO 321=1, ASIZE
IF (X(I) .EQ. INT(100/H)) THEN

COUNT = COUNT + 1
M(COUNT) = XCI)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP (I)

ENDIF
32 CONTINUE

ENDIF
IF ((H .EQ. 0 ) .AND. ( K .NE. 0 ) .AND. ( L .NE. 0) ) THEN

DO 331=1, ASIZE
IF (INT((Y(I)/L) + (Z(I)/K)) .EQ. INT(100/(K*L))) THEN

COUNT = COUNT + 1
M(COUNT) = XCI)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP (I)

ENDIF
33 CONTINUE

ENDIF
IF ((H .NE. 0 ) .AND. ( K .EQ. 0 ) .AND. ( L .NE. 0) ) THEN

DO 341=1, ASIZE
IF (INT((X(I)/L) + (Z(I)/H)) .EQ. INT(100/(H*L))) THEN

COUNT = COUNT + 1
M(COUNT) = XCI)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP(I)

ENDIF
34 CONTINUE

ENDIF
IF ((H .NE. 0 ) .AND. ( K .NE. 0 ) .AND. ( L .EQ. 0) ) THEN

DO 351=1, ASIZE
IF (INT((X(I)/K) + (Y(I)/H)) .EQ. INT(100/(H*K))) THEN
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COUNT = COUNT + 1
M(COUNT) = X(I)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP (I)

ENDIF
35 CONTINUE

ENDIF
IF ((H .NE. 0 ) .AND. ( K .NE. 0 ) .AND. ( L .NE. 0) ) THEN

DO 361=1, ASIZE
IF (INT(X(I)/(K*L) + Y(I)/(H*L) + Z(I)/(H*K))

& .EQ. INT(100/(H*K*L))) THEN
COUNT = COUNT + 1
M(COUNT) = X(I)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP(I)

ENDIF
36 CONTINUE

ENDIF
DO 371=1, COUNT

M(I) = M(I)
X(I) = M(I)
N(I) = N(I)
Y(I) = N(I)
0(1) = 0(1)
Z(I) = 0(1)
T(I) = P(I)
LP(I) = Q(I)

37 CONTINUE
ASIZE = COUNT
END

* This subroutine takes the cartesian axes and
* shifts them relative to a plane of co-ordinates
* such that the y-axis, z-axis and plane-normal
* are co-planar

SUBRO UTINE TRANS1(X,Y ,Z,T ,A,B,C,H,K,L,ASIZE,RX,RY ,LP)

INTEGER ASIZE, H, K, L, I
INTEGER X(ASIZE), Y(ASIZE), Z(ASIZE), LP(ASIZE)
DOUBLE PRECISION J, A, B, C, ANG1, PI, DET, TEMP1, TEMP2
DOUBLE PRECISION RX(ASIZE), RY(ASIZE)
CHARACTER*4 T(ASIZE)
PI = 3.1418
IF ( (H .NE. 0) .AND. (K .EQ. 0) .AND. (L .EQ. 0)) THEN

ANG1 = PI/2
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ENDIF
IF ( (H .EQ. 0) .AND. (K .NE. 0) .AND. (L .EQ. 0)) THEN

ANG1 = 0
ENDIF
IF ( (H .EQ. 0) .AND. (K .EQ. 0) .AND. (L .NE. 0)) THE

ANG1 = PIj2
ENDIF
IF ( (H .NE. 0) .AND. (K .NE. 0) .AND. (L .EQ. 0)) THEN

J = (AjH)**2 + (BjK)**2
DET = 1j(DSQRT(J))
ANG1 = DACOS(DET*(AjH))

ENDIF
IF ( (H .NE. 0) .AND. (K .EQ. 0) .AND. (L .NE. 0)) THEN

ANG1 = PIj2
ENDIF
IF ( (H .EQ. 0) .AND. (K .NE. 0) .AND. (L .NE. 0)) THEN

ANG1 = 0
ENDIF
IF ( (H .NE. 0) .AND. (K .NE. 0) .AND. (L .NE. 0)) THEN

J = (AjH)**2 + (BjK)**2
DET = 1j(DSQRT(J))
ANG1 = DACOS(DET*(AjH))

ENDIF
DO 401=1, ASIZE

TEMP1 = (X(I)*DCOS(ANG1)) - (Y(I)*(Bj A)*DSIN(ANG1))
TEMP2 = (X(I)*(AjB)*DSIN(ANG1)) + (Y(I)*DCOS(ANG1))
RX(I) = TEMP 1
RY(I) = TEMP2
Z(I) = Z(I)
T(I) = T(I)
LP(I) = LP(I)

40 CONTINUE
END

* This subroutine transforms the axes such that
* the z axis will lie parallel to the plane normal

SUBROUTINE TRANS2(Z, T ,A,B,C,H,K,L,ASIZE,RX,RY ,RZ,LP)

INTEGER ASIZE, H, K, L, I
INTEGER Z(ASIZE), LP(ASIZE)
DOUBLE PRECISION J, A, B, C, ANG2, PI, DET, TEMP1, TEMP2
DOUBLE PRECISION RX(ASIZE), RY(ASIZE), RZ(ASIZE)
CHARACTER*4 T(ASIZE)
PI = 3.1418
IF ( (H .NE. 0) .AND. (K .EQ. 0) .AND. (L .EQ. 0)) THEN

ANG2 = PIj2
ENDIF
IF ( (H .EQ. 0) .AND. (K .NE. 0) .AND. (L .EQ. 0)) THEN

ANG2 = PIj2
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ENDIF
IF ( (H .EQ. 0) .AND. (K .EQ. 0) .AND. (L .NE. 0)) THEN

ANG2 = 0
ENDIF
IF ( (H .NE. 0) .AND. (K .NE. 0) .AND. (L .EQ. 0)) THE

ANG2 = PIj2
ENDIF
IF ( (H .NE. 0) .AND. (K .EQ. 0) .AND. (L .NE. 0)) THEN

J = ((AjH)**2) + ((CjL)**2)
DET = 1j(DSQRT(J))
ANG2 = DACOS(DET*(AjH))

ENDIF
IF ( (H .EQ. 0) .AND. (K .NE. 0) .AND. (L .NE. 0)) THEN

J = ((BjK)**2) + ((CjL)**2)
DET = 1j(DSQRT(J))
ANG2 = DACOS(DET*(BjK))

ENDIF
IF ( (H .NE. 0) .AND. (K .NE. 0) .AND. (L .NE. 0)) THEN

J= (((B*C)j(K*L))**2) + (((A*C)j(H*L))**2)
& + (((A *B)j(H*K))**2)

DET = 1j(DSQRT(J))
ANG2 = DACOS( ((A *B)j(H*K))*DET )

ENDIF
DO 501=1, ASIZE

RX(I) = RX(I)
TEMP1 = (RY(I)*DCOS(ANG2)) - (Z(I)*(CjB)*DSIN(ANG2))
TEMP2 = (RY(I)*(BjC)*DSIN(ANG2)) + (Z(I)*DCOS(ANG2))
RY(I) = TEMP1
RZ(I) = TEMP2
T(I) = T(I)
LP (I) = LP(I)

50 CONTINUE
END

* This subroutine will take the co-ordinates of the
* points on a chosen plane and transport them so that
* the plane lies on the origin - it moves a lattice
* point to the origin

SUBROUTINE ORIGIN(X,Y,Z,T,LP,ASIZE,MOTIF)

INTEGER ASIZE, I,J, COUNT, MOTIF
INTEGER X(ASIZE), Y(ASIZE), Z(ASIZE)
INTEGER LP(ASIZE)
INTEGER M(1000), N(1000), 0(1000), Q(1000)
CHARACTER*4 T(ASIZE),P(lOOO)
DO 63 J = 1, MOTIF

COUNT = 0
DO 60 I = 1, ASIZE

IF ( LP(I) .EQ. 1) THEN
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COUNT = COUNT + 1
M(COUNT) = X(I)
N(COUNT) = Y(I)
O(COUNT) = Z(I)
P(COUNT) = T(I)
Q(COUNT) = LP(I)

ENDIF
60 CONTINUE

IF (COUNT .LT. 3) THEN
WRITE(6,*) 'There are not enough lattice point in this plane'
WRITE(6,*) 'to define a unit mesh.'
WRITE(6,*) 'We must change the lattice atom!'
CALL SWAPLP(LP,MOTIF,ASIZE)

ELSE
GOTO 64

ENDIF
63 CONTINUE
64 1=0

DO 61 I = 1, ASIZE
X(I) = X(I) - M(l)
Y(I) = Y(I) - N(1)
Z(I) = Z(I) - 0(1)
T(I) = T(I)
LP(I) = LP(I)

61 CONTINUE
END

SUBROUTINE MESH(X,Y,T,LP,ASIZE)

INTEGER ASIZE, LP(ASIZE), I, Cl
INTEGER LATTP(1000), COUNT2, COUNT3
INTEGER NLATTP(1000)
INTEGER KEEPP(1000)
DOUBLE PRECISION X(ASIZE), Y(ASIZE), LATTX(1000), LATTY(1000),MAG
DOUBLE PRECISION KEEPX(1000), KEEPY(1000), M, N
DOUBLE PRECISION NLATTX(1000), NLATTY(1000)
CHARACTER*4 T(ASIZE)
CHARACTER *4 LATTT( 1000) ,NLATTT( 1000) ,KEEPT( 1000)

* Want to select only those points on the plane
* which are lattice points

WRITE(6,*)'THE ARRAYS OF X AND Y PASSED TO MESH ARE:'
DO 59 I = 1,ASIZE

WRITE(6,*) X(I), Y(I)
59 CONTINUE

Cl = 0
COUNT3 = 0
DO 50 I = 1, ASIZE

IF (LP(I) .EQ. 1) THEN
Cl = Cl + 1
LATTX(C1) = X(I)
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LATTY(Cl) = Y(I)
LATTT(Cl) = T(I)
LATTP(Cl) = LP(I)

ENDIF
50 CONTINUE

WRITE(6,*)'Only looking at the lattice points at coords:'
DO 58I=I,Cl

WRITE(6,*) LATTX(I), LATTY(I)
58 CONTINUE
* Subroutine sort should list the magnitudes of
* the distances of all lattice vectors in ascending order

CALL SORT(LATTX,LATTY ,LATTT ,LATTP,Cl)
WRITE (6,*) 'Sort gives the following distance order:'
DO 57 1= I,Cl

MAG = (LATTX(I)**2 + LATTY(I)**2)**(1.0/2.0)
WRITE(6,*) MAG

57 CONTINUE
* Subroutine nonpar takes the arrays of lattice points
* in ascending order of distances from the origin and
* selects the two of lowest distance from the origin
* which are non-parallel. It then generates the co-ords
* of the 4 corners of the unit mesh.

CALL NONPAR(LATTX,LATTY ,LATTT ,LATTP,Cl)
* Now select only those points which are non-lattice points

COUNT2 = 0
DO 51 I = 1, ASIZE

IF (LP (I) .NE. 1) THEN
NLATTX(COUNT2+1) = X(I)
NLATTY(COUNT2+1) = Y(I)
NLATTT(COUNT2+1) = T(I)
NLATTP(COUNT2+1) = LP(I)
COUNT2 = COUNT2 + 1

ENDIF
51 CONTINUE

COUNT3 = 0
* Next keep only those non-lattice points which lie
* within the lattice motif

IF (COUNT2 .GT. 0) THEN
DO 52 1=1, COUNT2

PARTl = (LATTY(2)*NLATTX(I)) - (LATTX(2)*NLATTY(I))
PART2 = (LATTY(2)*LATTX(3)) - (LATTX(2)*LATTY(3))
N = PARTl/PART2
PART3 = (LATTY(3)*NLATTX(I)) - (LATTX(3)* LATTY(I))
PART4 = (LATTY(3)*LATTX(2)) - (LATTX(3)*LATTY(2))
M = PART3/PART4
IF (M .GE. 0 .AND. M .LE. 1

& .AND. N .GE. 0 .AND. N .LE. 1 .AND. NLATTT(I) .NE. 0) THEN
KEEPX(COUNT3+1) = NLATTX(I)
KEEPY(COUNT3+1) = NLATTY(I)
KEEPT(COUNT3+1) = NLATTT(I)
KEEPP(COUNT3+1) = NLATTP(I)
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COUNT3 = COUNT3 + 1
ENDIF

52 CONTINUE
END1F

* Now need to reassign x,y,t,lp,asize, so that only the
* unit mesh is considered

DO 53I=1,C1
X(I)=LATTX(I)
Y(1)=LATTY(1)
T(1)=LATTT(1)
LP(I)=LATTP(1)

53 CONTINUE
DO 54I=1,COUNT3

X(C1+ I)=KEEPX(I)
Y(Cl + I)=KEEPY(I)
T(C1 + I)=KEEPT(I)
LP( Cl + I)=KEEPP(I)

54 CONTINUE
ASIZE=C1 + COUNT3
END

SUBROUTINE SORT(X,Y,T,LP,KOUNT)

INTEGER KOUNT, LP(KOUNT),I,K
DOUBLE PRECISION X(KOU T), Y(KOU T),M,N
DOUBLE PRECISION TEMP1, TEMP2, TEMP4
CHARACTER*4 T(KOUNT),TEMP3
DO 60 K=2, KOUNT

1=K
DO WHILE (I .GT. 1)

M = (X(I-1)**2) + (Y(1-1)**2)
N = (X(1)**2) + (Y(I)**2)
IF ( M .GT. N) THEN

TEMP1 = X(I-1)
TEMP2 = Y(I-1)
TEMP3 = T(1-1)
TEMP4 = LP(I-1)
X(1-1) = X(1)
Y(I-1) = Y(I)
T(I-1) = T(1)
LP(I-1) = LP(I)
X(I) = TEMP1
Y(I) = TEMP2
T(I) = TEMP3
LP(1) = TEMP4
1=1-1

ELSE
1= 1

END1F
END DO
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60 CONTINUE
KOUNT = KOUNT
END

* Subroutine nonpar takes the arrays of lattice points
* in ascending order of distances from the origin and
* selects the two of lowest distance from the origin
* which are non-parallel. It then generates the co-ords
* of the 4 corners of the unit mesh

SUBROUTINE NONPAR(X,Y,T,LP,KOUNT)

INTEGER KOUNT,LP(KOUNT),I, KEEP
DOUBLE PRECISION X(KOUNT), Y(KOUNT),TEMP(100)
CHARACTER *4 T(KOUNT)

* The DO loop ignores the 0, 0 point i.e x(1), y(1)
TEMP(2) = (X(2)/Y(2))**2
DO 70 1=3, KOUNT

TEMP(I) = (X(I)/Y(I))**2
IF (TEMP(I) .NE. TEMP(2)) THEN

KEEP = I
GOTO 71

ENDIF
70 CONTINUE

WRITE (6,*)'Minicryst has not produced enough'
WRITE (6,*)'non-parallellattice vectors'

* Reassign values for the 4 corners of the unit mesh
71 X(1) = X(1)

Y(1) = Y(1)
T(1) = T(1)
LP(1) = LP(1)
X(2) = X(2)
Y(2) = Y(2)
T(2) = T(2)
LP(2) = LP(2)
X(3) = X(KEEP)
Y(3) = Y(KEEP)
T(3) = T(KEEP)
LP(3) = LP(KEEP)
X(4) = X(2) + X(3)
Y(4) = Y(2) + Y(3)
T( 4) = T(1)
LP( 4) = LP(1)
KOUNT = 4
END
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SUBROUTINE SWAPLP(L,M,ASYZE)

INTEGER ASYZE,I, J, L(ASYZE),M
DO 70 I = 1, ASYZE

DO 71 J = 2, M
IF (L(I) .EQ. 1) THEN

L(I) = M + 1
ENDIF
IF (L(I) .EQ. J) THEN

L(I) = J - 1
ENDIF

71 CONTINUE
IF (L(I) .EQ. (M + 1)) THEN

L(I) = M
ENDIF

70 CONTINUE
END

BLOCK DATA

INTEGER I
CHARACTER*4 ELEMENTS(187)
DOUBLE PRECISION IONICR(187)
COMMON / ATOM/ ELEMENTS
COMMON /RADIUS/ IONICR
DATA (ELEMENTS(I), I=I,151)j' AC+3' ,'AG+ 1','AG+2','AL+3','AM+3',

& 'AM+4','AR+l','AS-3','AS+3','AS+5',
& 'AT+7','AU+l','AU+3','B+l','B+3',
& 'BA+l','BA+2','BE+l','BE+2','BI+l',
& 'BI+3','BI+5','BR-l','BR+5','BR+7',
& 'C-4','C+4','CA+l', 'CA+2','CD+l','CD+2','CE+l','CE+3','CE+4',
& 'CL-I' ,'CL+5' ,'CL+ 7','CO+2','CO+3' ,'CR+ 1','CR+2','CR+3' ,'CR+6',
& 'CS+l ','CU +1 ','CU +2' ,'DY+3','ER+3' ,'EU+3','EU +2','F-l ','F + 7',
& 'FE+2' ,'FE+3' ,'FR+ l' ,'GA+ l' ,'GA +3' ,'GD+3' ,'GE-4','GE+2', 'GE+4',
& 'H-l','HF+4','HG+l','HG+2','HO+3','I-l','I+5', 'I+7','IN+3',
& 'IR+4' ,'K + l' ,'LA+ 1', 'LA+3' ,'LI+ l' ,'LU+3', 'MG+ l' ,'MG+2' ,'MN+2',
& 'MN+3','M +4','MN+7','MO+l','MO+4','MO+6',' -3','N+1',' +3',
& 'N+5', 'NA+ 1', 'NB+ 1', 'NB+4' ,'NB+5', 'ND+3' ,'NE+ l' ,'NI+2' ,'NP+3',
& 'NP+4','NP+7','O-2','O-1', 'O+1','O+6','OS+4','OS+6','P-3',
& 'P+3' ,'P+5' ,'PA +3', 'PA+4' ,'PA+5' ,'PB+2' ,'PB+4' ,'PD+2','PD+4',
& 'PM +3', 'PO+6' ,'PR+3' ,'PR+4', 'PT +2','PT +4' ,'PU +3' ,'PU +4', 'RA+2',
& 'RB+1','RE+4','RE+7','RH+3','RU+4','S-2','S+2', 'S+4','S+6',
& 'SB-3', 'SB+3' ,'SB+5' ,'SC+3' ,'SE-2', 'SE-I', 'SE+ l' ,'SE+4' ,'SE+6',
& 'SI-4' ,'SI-1 ','SI+1' ,'SI+4','SM+3','SN-4','SN-1' ,'SN+2','S +4'/

DATA (ELEMENTS(I), I=152,187)/'SR+2','TA+5','TB+3','TB+4','TC+7',
& 'TE-2','TE-1','TE+1','TE+4','TE+6',
& 'TH +4' ,'TI + l' ,'TI + 2', 'TI +3', 'TI +4',
& 'TL+l','TL+3','TM+3','U+4','U+6',
& 'V+2','V+3','V+4','V+5','W+4',
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&
&

&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&
&

'W +6' ,'Y +3' ,'YB+2' ,'YB+3' ,'ZN + 1',
'ZN+2' 'ZR+1' 'ZR+4' 'AUST' 'FERR' 'XXX'/, , , , ,
DATA (IONICR(I), 1=1,187)/1.18,1.26,0.89,0.51,1.07,
0.92,1.54,2.22,0.58,0.46,0.62,1.37,0.85,0.35,0.23,
1.53,1.34,0.44,0.35,0.98,0.96,0.74,1.96,0.47,0.39,
2.60,0.16,1.18,0.99,1.14,0.97,1.27,1.034,0.92,1.81,
0.34,0.27,0.72,0.63,0.81,0.89,0.63,0.52,1.67,0.96,
0.72,0.908,0.881,0.950,1.09,1.33,0.08,0.74,0.64,1.80,
0.81,0.62,0.938,2.72,0.73,0.53,1.54,0.78,1.27,1.10,
0.894,2.20,0.62,0.50,0.81,0.68,1.33,1.39,1.016,0.68,
0.85,0.82,0.66,0.80,0.66,0.60,0.46,0.93,0.70,0.62,
1.71 ,0.25,0.16,0.13,0.97,1.0,0.74,0.69,0.995,1.12,
0.69,1.10,0.95,0.71,1.32,1.76,0.22,0.09,0.88,0.69,
2.12,0.44,0.35,1.13,0.98,0.89,1.2,0.84,0.8,0.65,
0.979,0.67,1.013,0.9,0.8,0.65,1.08,0.93,1.43,1.47,
0.72,0.56,0.68,0.67,1.84,2.19,0.37,0.3,2.45,0.76,
0.62,0.732,1.91,2.32,0.66,0.50,0.42,2.71,3.84,0.65,
0.42,0.964,2.94,3.70,0.93,0.71,1.12,0.68,0.923,0.84,
0.979,2.11,2.5,0.82,0.70,0.56,1.02,0.96,0.94,0.76,
0.68,1.4 7,0.95,0.87 ,0.97 ,0.8,0.88,0. 74,0.63,0.59,
0.7,0.62,0.893,0.93,0.858,0.88,0.74,1.09,0.79,1.29,
1.24,0.0/
END

* Subroutine rad takes the type of the atoms in the motif and
* assigns them their ionic radii in the array rad/radii. This
* array labels each atom during the various subroutines to follow,
* not only lattice no. but atomic radius for each atom.

SUBROUTINE RADIUSS(T,ASIZE,RAD)

INTEGER ASIZE,I, DONE, COUNT
CHARACTER *4 T( ASIZE) ,ELEMENTS( 187), TEMP 1,TEMP2
DOUBLE PRECISION RAD(ASIZE)
DOUBLE PRECISION IONICR(187)
COMMON / ATOM/ ELEMENTS
COMMON /RADIUS/ IONICR
COUNT = 1
DO 80 J = 1, ASIZE

DONE = 0
1= 1
DO 70 1=1,187

TEMP 1= ELEMENTS(I)
TEMP2=T(J)
IF (ELEMENTS(I) .EQ. T(J)) THEN

RAD(COUNT) = IONICR(I)
DONE = 1
COUNT = COUNT +1

ENDIF
70 CONTINUE
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IF (DONE .EQ. 0) THEN
WRITE(6,*) 'Error message: Element is not in data file!'

ENDIF
80 CONTINUE

END

SUBROUTINE PIXEL(RAD ,X,Y,PICX,PICY ,VAL,ASIZE,A,B,
& COUNT,RESOLX,RESOLY,PICSIZE)

* This sub should take the information from the unit mesh
* and assign values of the matter function to pixels within the mesh

INTEGER ASIZE, COUNT, XMAX,XMIN,YMAX,YMIN,I,J
INTEGER PICX(50000), PICY(50000),TEMP,TEM,RESOLX,RESOLY,PICSIZE
DOUBLE PRECISION X(ASIZE),Y(ASIZE),RAD(ASIZE),ROOT,ROOT1,ROOT2
DOUBLE PRECISION VAL(50000),M,N,PART1,PART2,A,B

* HERE we make x and y of fractional atomic coords into real
* angstrom values(*100)

DO 29 I = 1,ASIZE
X(I)=A *X(I)
Y(I)=B*Y(I)
RAD(I)=100*RAD(I)

29 CONTINUE
CALL EXTE T(X,Y,ASIZE,XMIN,XMAX,YMIN,YMAX)

* Now create array of pixels in Cartesian form
COUNT = 0

* Resol are integers controlling the resolution of the
* description of the matter function of the unit mesh.
* The magnitude of resol = the number of pixels in the
* x or y direction

PICSIZE=4
RESOLX = (XMAX - XMIN)/PICSIZE
RESOLY = (YMAX - YMIN)/PICSIZE
DO 30 I = 1, RESOLX

DO 31 J = 1, RESOLY
TEM=( (1-1)*PICSIZE)+XMIN
TEMP=((J-1)*PICSIZE)+ YMIN
PICX(RESOLY*(I-1) + J)=TEM
PICY(RESOLY*(I-1) + J)=TEMP
COUNT = COUNT + 1

31 CONTINUE
30 CONTINUE

TEMP=PICX(2)
TEM=PICY(2)

* Now assign values to the pixels
DO 32 J=l, COUNT

VAL(J) = 0.0
DO 331=1, AS1ZE

ROOT1=P1CX(J)
ROOT2=P1CY( J)
ROOT1=(P1CX( J)-X(1))**2.0
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ROOT2=(PICY( J)- Y(I) )**2.0
ROOT=(ROOT1 + ROOT2)**0.5
TEMP = RAD(I) - ROOT
IF (TEMP .GE. 0) THEN

VAL(J) = VAL(J) + TEMP
ELSE

VAL(J) = VAL(J)
ENDIF

33 CONTINUE
32 CONTINUE
* Here we assign all pixels which lie outside the unit mesh the
* value of -1. This is really a labelso that such pixels may be
* ignored when calculating difference functions

DO 341=1, COUNT
PART1 = (Y(2)*PICX(I)) - (X(2)*PICY(I))
PART2 = (Y(2)*X(3)) - (X(2)*Y(3))
N = PART1/PART2
PART3 = (Y(3)*PICX(I)) - (X(3)*PICY(I))
PART4 = (Y(3)*X(2)) - (X(3)*Y(2))
M = PART3/PART4
IF (M .GE. 0 .AND. M .LE. 1

& .AND.N .GE.O.AND.N .LE.1)THEN
VAL(I) = VAL(I)

ELSE
VAL(I) = -1.0

ENDIF
34 CONTINUE
* DO 35I=1,COUNT
* WRITE(6,*)'SUB GIVES',PICX(I),PICY(I),VAL(I)
* 35 CONTINUE

END

SUBROUTINE EXTENT(XX, YY ,ASIZ,MINX,MAXX,MINY ,MAXY)

* This sub. finds extent of the unit mesh
* superimposed onto a cartesian reference frame
* in terms of min and max x and y

INTEGER MINX,MAXX,MINY,MAXY,I,ASIZ
DOUBLE PRECISION XX(ASIZ),YY(ASIZ)
MINX = INT(XX(l))
MAXX = INT(XX(l))
MINY = INT(YY(l))
MAXY = INT(YY(l))
DO 10 I = 1, ASIZ

IF (INT(XX(I)) .LT. MINX) THEN
MINX = INT(XX(I))

ENDIF
IF (INT(XX(I)) .GT. MAXX) THEN

MAXX = INT(XX(I))
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ENDIF
IF (INT(YY(I)) .GT. MAXY) THEN

MAXY = INT(YY(I))
ENDIF
IF (INT(YY(I)) .LT. MINY) THEN

MINY = INT(YY(I))
ENDIF

10 CONTINUE
END

SUBROUTINE INVPIXEL(VAL,COUNT)

INTEGER COUNT
DOUBLE PRECISION VAL(COUNT),VALMAX,TEMP
VALMAX=O.O

* First establish the maximum value of the matter
* function - valmax

DO 10I=1,COUNT
TEMP = VAL(I)
IF (TEMP .GT. VALMAX) THEN

VALMAX = TEMP
ELSE

VALMAX = VALMAX
ENDIF

10 CONTINUE
* Now produce the inverse values in the inv matter function

DO 11 I = 1, COUNT
TEMP = VALMAX - VAL(I)
VAL(I) = TEMP
IF (VAL(I) .GT. VALMAX) THEN

VAL(I) = -1.0
ENDIF

11 CONTINUE
* If in the original matter function the value was assigned as
* negative then the new value will be greater than valmax. This
* is therefore diagnostic of pixels outside the unit mesh. For
* the moment reassign such pixels with the value of -1.0

END

SUBRO UTINE RMESH(PICARR1 ,PICARR2 ,PICX1 ,PI CY1 ,PICX2,PI CY2 ,ASIZ2,
& VAL2,X2,Y2, VAL1 ,RESOLY1 ,RESO LX1,MINR,PICSI,RESO LY2,CTSHY,
& CTR,CTSHX)

INTEGER PICARR1 ,PICARR2,ASIZ2,RESO LY1 ,RESO LX1,I
INTEGER PICX1(PICARR1) ,PICY 1(PICARR1 ),RESOLY2
INTEGER PICX2(PICARR2),PICY2(PICARR2),PICSI,J ,COUNT
INTEGER CTSHY,CTR,CTSHX
DOUBLE PRECISION VAL1(PICARRl),VAL2(PICARR2),ROUGH
DOUBLE PRECISION X2(ASIZ2),Y2(ASIZ2),MINR,MIN ,RMEAN ,RTOTA
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MINR=1.0D+lO
MIN =l.OD+lO
ROUGH=5.0
COUNT=RESOLYl/ROUGH
WRITE(6,*) 'Entering rmesh'
RMEAN=O.O
DO 101=1, (RESOLYl/ROUGH)

CTSHX=O
CALL RROW (PICARRl ,PICARR2,PICX 1,PICYl ,PICX2,PICY2,

& ASIZ2,VAL2,X2,Y2,VALl,RESOLYl,RESOLXl,MI ,PICSI,RESOLY2,
& ROUGH,RTOTA,CTSHX,CTR)

IF (MIN .LT. MINR) THEN
MINR=MIN
CTSHY=(I-l)*ROUGH

ENDIF
RMEAN=RMEAN + (RTOTA/COUNT)
DO 11 J=l,ROUGH

CALL SHIFTY(RESOLXl,RESOLYl,VALl,PICARRl)
11 CONTINUE
10 CONTINUE

WRITE(6,*)'RMIN is :',MINR
WRITE(6,*)'RMEAN is',RMEAN
END

SUBRO UTINE RROW (PICARl ,PICAR2,PIXl ,PIYl ,PIX2,PIY2,
& ASIZE2,VAL UE2,EX2,WHY2,VAL UEl ,RESYl,RESXl ,RRMIN ,PICSIZE,RESOY2,
& RUGH,RTOTAL,CSHX,CR)

INTEG ER PICARl ,PICAR2,ASIZE2 ,RESYl ,RESXl ,I,PICSIZE,RESOY2,J
INTEGER PIXl(PICARl ),PIYl(PICARl ),PIX2(PICAR2) ,PIY2(PICAR2) ,COUNT
INTEGER CSHX, CR, TEMPR
DOUBLE PRECISION VALUEl(PICARl),VALUE2(PICAR2),RPIC(50000)
DOUBLE PRECISION EX2(ASIZE2),WHY2(ASIZE2),RRMIN,MIN,RUCH
DOUBLE PRECISION RTOTAL,RTOTT
MIN=1.0D+4
CSHX=O
WRITE(6,*) 'Entering rrow'
RTOTAL=O.O
COUNT=RESXl/RUGH
DO 10I=1,(RESXl/RUGH)

CALL RUNIT( PI CARl ,PICAR2,PIXl ,PIYl ,PIX2,PIY2,
& ASIZE2,VAL UE2,EX2,WHY2,MIN ,VALUEl,PICSIZE,RESOY2,RPIC,
& RUGH,RTOTT,CR)

IF (MIN .LT. RRMIN) THEN
RRMIN = MIN
CSHX=INT((I-l)*RUGH)
TEMPR=CR

ENDIF
RTOTAL = RTOTAL+(RTOTT /COUNT)
DO 11 J=l,RUGH
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CALL SHIFTX(VALUE1,RESX1,RESY1,PICAR1)
11 CONTINUE
10 CONTINUE

WRITE(6,*) 'After rrow, rmin is',RRMIN
WRITE(6,*) 'After rrow, rmean is',RTOTAL
CR = TEMPR
END

SUBROUTINE RU IT(PICARR1,PICARR2,PICX1,PICY1,PICX2,PICY2,
& ASIZ2,VAL2,X2,Y2,RMIN ,VALU1,PICSI,RESY2,RP,RUFF ,RTOT,
& CTROT)

INTEG ER PICARR1,PICARR2,ASIZ2,I,RESY2
INTEGER PICX1(PICARR1 ),PICY1(PICARR1 ),CTROT
INTEG ER PICX2(PICARR2) ,PICY2(PICARR2) ,PICSI
DOUBLE PRECISION VAL2(PICARR2),X2(ASIZ2),Y2(ASIZ2),RTOT
DOUBLE PRECISION VALU1(PICARR1),RMIN,RV,RP(50000),RUFF
WRITE(6,*) 'Entering runit'
RTOT=O.O
RV =0.0
DO 101=1,4

CALL RVALUE(RV ,PICARR1,PICARR2,PICX1 ,PICY1 ,PICX2,PICY2,
& ASIZ2,VAL2,X2,Y2,VALU1,PICSI,RESY2,RUFF)

* Only rv / 4 because rotate takes array through 90 degrees
RTOT=RTOT+(RV /4)
IF (RV .LE. RMIN) THEN

RMIN=RV
CTROT=I-1

ENDIF
CALL ROTATE(PICX1 ,PICY1 ,PICARR1)
WRITE(6,*)'The r-value pased to runit is',RV

10 CONTINUE
WRITE(6,*) 'After runit, rmin is',RMIN
WRITE(6,*) 'After runit, rmean is',RTOT
END

SUBROUTINE RVALUE(R,PICAR1 ,PICAR2,PIX1,PIY1 ,PIX2,PIY2,
& ASIZE2, VALUE2,EX2, WHY2,VAL1,PICSIZE,RESOLY2,ROU GH)

INTEGER PICAR1 ,PICAR2, TEMPA,TEMPB ,PIX1(PICAR1) ,PIY1(PICAR1)
INTEGER ASIZE2, PIX2(PICAR2),PIY2(PICAR2),I,PICSIZE
INTEGER RESOLY2,COUNT
DOUBLE PRECISION VALUE2(PICAR2),EX2(ASIZE2),WHY2(ASIZE2),RR
DOUBLE PRECISION V2, VAL1(PICAR1),FRAC,ROUGH,R
WRITE(6,*) 'Entering rvalue'
R=O.O
COUNT=O
DO 20I=1,(PICAR1/ROUGH)

COUNT = COUNT + 1
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FR = I
A* = PICAR1jROUGH
FRAC=FRjAC

* WRITE(6,*)'Fraction through rval=',FRAC
TEMPA=PIX1(I*ROUGH)
TEMPB=PIY1(I*ROUGH)
CALL VOUTMESH(TEMPA,TEMPB,VALUE2,EX2,WHY2,

& PICAR2,ASIZE2,PIX2,PIY2,V2,PICSIZE,RESO LY2,PICAR1)
IF (VAL1(I*ROUGH) .LT. 0.0) THEN

RR=O.O
ELSE

RR=( (VAL1(I*ROUGH)- V2)**2.0)**0.5
ENDIF

* WRITE(6,*) RR
R =R+RR
IF (ROUGH .EQ. 1) THEN

WRITE(3,*) TEMPA,TEMPB,RR
ENDIF

20 CONTINUE
R = R*ROUGHjPICAR1
END

SUBROUTINE V0UTMESH(PX 1,PY1,V2,X2 ,Y2,PICARR2,ASIZE,PX2,
& PY2, VAL2,PICSI,RESY ,PICARR1)

* This subroutine takes a pixel from outside the unit mesh
* and assigns the value to it which the point would have if
* the mesh were continuous over all space
* px=pixel number along x of unassigned value

INTEGER PX1, PY1, REMX, REMY, ASIZE, PICARR2,RESY
INTEGER PICARR1
DOUBLE PRECISION VAL2, REM1, REM2, K, L,TEMP1,TEMP2
DOUBLE PRECISION V2(PICARR2)
INTEGER PX2(PICARR2), PY2(PICARR2),PICSI
INTEG ER YMIN ,YMAX,XMIN ,XMAX
DOUBLE PRECISION X2(ASIZE),Y2(ASIZE)

* Next we take the value of px1 and py1 and find out what
* the value of function2 would be at that point.
* First step is to take point back to within one unit mesh
* vector of function2 from the origin

TEMP1=(INT(Y2(2))*PX1) - (INT(X2(2))*PY1)
TEMP2=(INT(Y2(2))*X2(3)) - (INT(X2(2))*Y2(3))
L = TEMP1jTEMP2
TEMP1=(INT(Y2(3))*PX1) - (INT(X2(3))*PY1)
TEMP2=(INT(Y2(3))*X2(2)) - (INT(X2(3))*Y2(2))
K = TEMP1jTEMP2
REM1 = K - INT(K)
REM2 = L - INT(L)

* Puts the pixel into the unit mesh already defined-problems if rem1,
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* or rem2 are negative because, although scaled to within dimensions
* of the unit mesh, they may still lie outside the mesh

IF ((REM1 .LT. 0) .AND. (REM2 .GE. 0)) THEN
REM1 = REM1 + 1.0

ENDIF
IF ((REM1 .GE. 0) .AND. (REM2 .LT. 0)) THEN

REM2 = REM2 + 1.0
ENDIF
IF ((REM1 .LT. 0) .AND. (REM2 .LT. 0)) THEN

REM1 = REM1 + 1.0
REM2 = REM2 + 1.0

ENDIF
* Now the rem1, rem2 should give remx and remy within the mesh
* of function2

REMX = INT((REM1 *X2(2)) + (REM2*X2(3)))
REMY = INT((REM1 *Y2(2)) + (REM2*Y2(3)))
CALL EXTENT(X2,Y2,ASIZE,XMIN ,XMAX,YMIN ,YMAX)
REMX=(REMX- XMIN) /PICSI
REMY=(REMY-YMI )/PICSI
A=( (REMX)*RESY)+ REMY+ 1
IF (A .GT. PICARR2) THEN

A=A-PICARR2
ENDIF
VAL2=V2(A)
END

SUBROUTINE SHIFTX(VAL,RESX,RESY ,PICARR)

INTEGER RESY, PICARR,ROW,RESX
DOUBLE PRECISION VAL(PICARR), TEMP(10000)
WRITE( 6,*) 'Entering shiftx'
ROW=RESX
DO 20I=1,ROW

TEMP(I) = VAL(I)
20 CONTINUE

DO 21 1=1, PICARR-RESY
VAL(I) = VAL(ROW + I)

21 CONTINUE
DO 22I=1,ROW

VAL((PICARR- ROW)+ I)=TEMP(I)
22 CONTINUE

END

SUBROUTINE SHIFTY(RESX,RESY ,VAL,PICARR)

INTEGER RESX, RESY, PICARR,COLY,ROWX
DOUBLE PRECISION VAL(PICARR)
WRITE(6,*) 'Entering shifty'
COLY=RESX
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ROWX=RESY
DO 30 J=l,ROWX

TEMP= VAL(((J-1 )*COLY)+ 1)
DO 31 1=1, COLY-1

VAL(I+( (J-1 )*COLY))= VAL(I+ 1+( (J-1 )*COLY))
31 CONTINUE

VAL(J*COLY)=TEMP
30 CONTINUE

END

SUBROUTINE ROTATE(PICX,PICY,PICARR)

INTEGER PICARR, PICX(PICARR), PICY(PICARR)
WRITE(6,*) 'Entering rotate'
DO 401=1, PICARR

TEMP=PICX(I)
PICX(I)=-PICY(I)
PICY(I)=TEMP

40 CONTINUE
END

SUBROUTINE ACCUR( COUNTR,COUNTSHX,COUNTSHY ,PICX1 ,PICY1,
& PICARR1 ,VALU1,RESOX1 ,RESOY1,PICARR2,PICX2,PICY2,ASIZ2,
& VALU2,X2,Y2,PICSI,RESOY2)

INTEGER COUNTR, COUNTSHX, COUNTSHY,PICARR1,PICARR2
INTEGER ASIZ2,RESOX1,RESOY1,RESOY2,I
INTEGER PICX1(PICARR1 ),PICY1(PICARR1)
INTEG ER PICX2(PICARR2) ,PI CY2(PICARR2)
DOUBLE PRECISION VALU1(PICARR1),VALU2(PICARR2)
DOUBLE PRECISION X2(ASIZ2), Y2(ASIZ2),RV,RUFF
RUFF=1.0
DO 10 I = 1,COUNTR

CALL ROTATE(PICX1,PICY1,PICARR1)
10 CONTINUE

DO 11 1= 1, COUNTSHX
CALL SHIFTX(VALU1,RESOX1,RESOY1,PICARR1)

11 CONTINUE
DO 121= 1, COUNTSHY

CALL SHIFTY(RESOX1,RESOY1,VALU1,PICARR1)
12 CONTINUE

CALL RVALUE(RV ,PICARR1 ,PICARR2,PICX1 ,PICY1,PICX2,PICY2,
& ASIZ2,VALU2,X2,Y2,VALU1,PICSI,RESOY2,RUFF)

END
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