Plastic Strain and Variant Selection during Diffusional Transformation in Steels

Dae Woo Kim, Dong-Woo Suh, C. Capdevila, H.K.D.H. Bhadeshia

Graduate Institute of Ferrous Technology
Pohang University of Science and Technology
Reviews: *Variant selection in displasive transformation*

The interaction energy U between the stress and the plate of martensite:

$$U = \sigma N \zeta + \tau \delta$$

100-pole figure of martensite for the transformation of Cube oriented austenite grains. (b) is the experimental result and (c) shows favored variants of martensite and (d) shows all possible variants.*

- Shape deformation model (J.R. Pater et al., 1953) : Maximum work (Stress-Displacive shear)
- Active slip system model (J. Nutting et al, 1967) : Maximum resolved shear stress
- Bain strain model (Furubayashi et al., 1988) : Maximum work (Stress-Bain strain)

Reviews: *Variant selection in reconstructive transformation*

(a) is ODF(\(\Phi=45^\circ\)) of ferrite obtained in hot rolled 0.12C-1.47Mn-0.05Nb steel.
(b) was calculated result from KS orientation relationship*

‘Complicated metallurgical variables’ (H. J. Bunge, 1983)

Acta Metall. 24 (1976), 159
Research Aim

Un-deformed sample

Phase transformation by reconstructive mechanism

G.B plane orientation, Interfacial energy minimization

Deformed sample

Strain energy by dislocation field in each grains

Orientation relationship between γ and α, Variants selection of precipitations
Experimental procedures

(covering wt.%)

<table>
<thead>
<tr>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>Al</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.595</td>
<td>0.98</td>
<td>1.01</td>
<td>1.50</td>
<td>Balance</td>
</tr>
</tbody>
</table>

- **BHAR DIL-805**
- **EBSD**: Scanning Electron Microscope (ZEISS SUPRA™ (Step size: 0.2 μm))
- **Software**: OIM data collection, analysis 5.0
Results: *Un-deformed sample*

- $\alpha_1 \sim \alpha_7$: group 1 (precipitated at γ_1/γ_2 grain boundary)
- $\alpha_8 \sim \alpha_{15}$: group 2 (precipitated at γ_3/γ_4 grain boundary)

IQ map (a), Phase map (b) and Inverse pole figure (c) of scanned area.
Results: *Un-deformed sample*

<table>
<thead>
<tr>
<th>Grain</th>
<th>Deviation angle from KS relationship</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With respect to γ^1</td>
<td>With respect to γ^2</td>
</tr>
<tr>
<td>Group 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>α^1</td>
<td>1.73°</td>
<td>17.3°</td>
</tr>
<tr>
<td>α^2</td>
<td>1.50°</td>
<td>18.3°</td>
</tr>
<tr>
<td>α^3</td>
<td>4.37°</td>
<td>18.4°</td>
</tr>
<tr>
<td>α^4</td>
<td>2.05°</td>
<td>19.8°</td>
</tr>
<tr>
<td>α^5</td>
<td>3.30°</td>
<td>18.1°</td>
</tr>
<tr>
<td>α^6</td>
<td>2.13°</td>
<td>19.3°</td>
</tr>
<tr>
<td>α^7</td>
<td>4.89°</td>
<td>19.8°</td>
</tr>
<tr>
<td>γ^1</td>
<td></td>
<td>41.7°</td>
</tr>
<tr>
<td>γ^2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
<th>With respect to γ^3</th>
<th>With respect to γ^4</th>
</tr>
</thead>
<tbody>
<tr>
<td>α^8</td>
<td>27.6°</td>
<td>7.9°</td>
</tr>
<tr>
<td>α^9</td>
<td>2.02°</td>
<td>27.8°</td>
</tr>
<tr>
<td>α^{10}</td>
<td>28.2°</td>
<td>2.19°</td>
</tr>
<tr>
<td>α^{11}</td>
<td>28.3°</td>
<td>2.87°</td>
</tr>
<tr>
<td>α^{12}</td>
<td>28.1°</td>
<td>1.74°</td>
</tr>
<tr>
<td>α^{13}</td>
<td>17.5°</td>
<td>1.22°</td>
</tr>
<tr>
<td>α^{14}</td>
<td>4.30°</td>
<td>25.3°</td>
</tr>
<tr>
<td>α^{15}</td>
<td>13.4°</td>
<td>6.24°</td>
</tr>
<tr>
<td>γ^3</td>
<td>38.0°</td>
<td></td>
</tr>
<tr>
<td>γ^4</td>
<td></td>
<td>38.0°</td>
</tr>
</tbody>
</table>
Results: *Deformed sample*

IQ image (a), Inverse pole figure (b) and Taylor factor map (c)
Results: *Deformed sample*

(a) 110 and 111 pole figure of austenite 1 and 2
(b) 110 pole figure of ferrite group
(c) 111 pole figure of ferrite group

\{111\} of γ_1 // Grain boundary plane

All ferrite has KS-type with γ_2
Discussion: *Grain boundary plane orientation*

\[\Delta G^* = \frac{-1}{4 \Delta G_V} \frac{E^2}{V} \]

\(\Delta G_V \): volume free energy change
\(E \): changes of an interface energy
\(V \): volume of the critical nucleus

Activation energy according to the tilt angle (\(\theta \)) for nucleation (*)

Low energy interface (facetted) // Matrix grain boundary

* Acta metal. 23:799, 1979
Discussion: Dominant factor in strained sample

At high energy boundaries and incoherent boundaries when

\[
\frac{\Delta G^1_s - \Delta G^2_s}{\Delta G_s} \gg 0
\]

Why not?

Case I: ‘Nucleation selection’ dominant

\[
\Delta G = -\frac{4\pi}{3} r^3 (\Delta G_v + W) + 4\pi r^2 \sigma_{\gamma\alpha} \\
\Delta G^* = \frac{\Gamma \sigma_{\gamma\alpha}^3}{(\Delta G_v + W)^2}
\]

Benefit by Strain E ↑ >> Loss of Interfacial E ↑

→ Ferrite should have KS with \(\gamma_1\)

(Austenite free energy increase: \(\gamma_1 > \gamma_2\))

Case II: ‘Growth selection’ dominant

Existence of very small ferrite which have KS-type with \(\gamma_1\)

→ All possible nuclei conditions in early stage of nucleation

High E
{111} plane // Grain boundary

Low E
{111} plane ≠ Grain boundary

Low energy orientation relationship → Random orientation relationship

Austenite 1

Austenite 2

Why not?
Discussion: **Growth selection**

Case (b) is more advantageous in activation minimization, however!

- **growth rate ↑↑**
 - (high dislocation density, high boundary mobility)

- **growth rate ↓**
 - (low dislocation density)

- **growth rate ↓**
 - (low boundary mobility)

KS with γ_1 and γ_2.
- ‘Double orientation relationship’ irrespective of Taylor factor
- γ/γ boundary $E \downarrow$ (Very stable)
- Boundary mobility \downarrow (Both semi-coherent boundaries)
→ Invisible difference in growth rate between both sides
Summary

Un-deformed sample

{111} of γ_1 parallel to γ_1-γ_2 grain boundary

Nucleation selection

Low energy O.R with γ_1

Deformed sample

At high energy boundaries

At CSL boundaries

Coherent boundaries

Incoherent boundaries

$\frac{\Delta G_s^1 - \Delta G_s^2}{\Delta G_s} \gg 0$

$\frac{\Delta G_s^1 - \Delta G_s^2}{\Delta G_s} \approx 0$

Growth Selection

Nucleation selection

Low energy O.R with γ_1

Low energy O.R with γ_2

Low energy O.R with γ_1

Low energy O.R with γ_1 and γ_2
Thank you for your listening!