Dual-Phase Hot-Press Forming Alloy

Hongliang Yi and H. K. D. H. Bhadeshia

23 April, 2010

Computational Metallurgy

Graduate Institute of Ferrous Technology GIFT

Hot-press forming

Typical applications

Conventional HPF alloys

- Before heat treatment: ferrite+pearlite
- After heat treatment: martensite
- Mechanical property: UTS ~1500 MPa, TEL ~7%

Advantage and shortage

 Advantages: accurate shape forming non spring back

high strength for anti-intrusion

- Shortages: low ductility for energy absorption
- Solution: keeping the high strength level improving the ductility

Wt%	С	Si	Mn	Al	Р	S	Ν
Alloy	0.40	0.26	2.02	2.50	0.02	0.0013	0.0032

Before heat treatment

Cold-rolled

Hot-rolled Ferrite: 3.1 ± 0.2 µm

Heating cycles

840 °C 3min 860 °C 3min 880 °C 3min 900 °C 3min 20 °C/s -40 °C/s Standard metallographic theory [DeHoff 1968]

\overline{T} —	LV_V^{α}	<u> </u>	$LV_V^{\alpha'}$
L_{α} –	N^{lpha}	$L_{\alpha'}$ —	$N^{\alpha'}$

He	eat–treatment T / $^{\circ}\mathrm{C}$	$100V_V^{lpha}$	$C_{\alpha'} / wt\%$	\overline{L}_{lpha} / $\mu{ m m}$	$\overline{L}_{lpha'}$ / $\mu{ m m}$
84	0	38 ± 5	0.64 ± 0.05	1.2 ± 0.1	1.7 ± 0.3
86	0	34 ± 9	0.60 ± 0.07	1.1 ± 0.1	1.9 ± 0.1
88	0	32 ± 6	0.58 ± 0.05	1.1 ± 0.2	2.4 ± 0.2
90	0	26 ± 6	0.54 ± 0.05	1.0 ± 0.1	2.5 ± 0.4

Heat-treated

Percolation theory [Garboczi et al., 1995]

 $V_V^{\alpha} = 0.29$

840 °C

880 °C

Non-propagating cracks in ferrite

Cracks in martensite

Conclusion 6

- Conventional HPF steels: fully martensitic
- Novel structure: at the forming temperature, allotriomorphic ferrite + austenite, the latter changing into martensite on quenching
- Commercial advantage: maximum heat treatment temperature is at least 20-60 °C lower than convention
- Mechanical property advantages: total elongations are slightly better than those of the fully martensitic alloys; In terms of uniform elongation, the dual–phase steel significantly outperforms the fully martensitic counterparts
- Interpretation of the mechanisms of ductility and strength suggest that there is room for improvement

Thank you