
Theory of the Pearlite Transformation in

Steels

By

Ashwin Suresh Pandit

Robinson College, Cambridge

University of Cambridge

Department of Materials Science and Metallurgy

Pembroke Street, Cambridge CB2 3QZ

A dissertation submitted for the

degree of Doctor of Philosophy

at the University of Cambridge

June 2011



Preface
This dissertation is submitted for the Doctor of Philosophy in Natural Sciences

at the University of Cambridge. The research reported herein was conducted under

the supervision of Professor H. K. D. H. Bhadeshia in the Department of Materials

Science and Metallurgy, University of Cambridge, between June 2008 and June 2011.

This work is to the best of my knowledge original, except where acknowledgment

and references are made to the previous work. Neither this, nor any substantially

similar dissertation has been or is being submitted for any degree, diploma or other

qualification at any other university or institution. This dissertation does not exceed

the word limit of 60,000 words.

Some of the work described herein has been published:

1. A. S. Pandit and H. K. D. H. Bhadeshia, “Mixed Diffusion-Controlled Growth

of Pearlite in Binary Steel”, Proceedings of the Royal Society A 467, 508-521

(2011).

2. A. S. Pandit and H. K. D. H. Bhadeshia, “Diffusion-controlled Growth of

Pearlite in Ternary Steels”, Proceedings of the Royal Society A, In press.

Ashwin Suresh Pandit

June 2011

i



Acknowledgements
I would like to express my sincere gratitude to my supervisor Professor Harshad

Kumar Dharamshi Hansraj Bhadeshia for his invaluable guidance, inspiration and

encouragement during the work and my stay here. Without his motivation and quest

for excellence, this work would have never been fruitful.

I would like to thank Professor A. L. Greer for the provision of Laboratory fa-

cilities in the Department of Materials Science and Metallurgy at the University of

Cambridge.

I earnestly acknowledge the financial support and study leave provided by Tata

Steel Limited to pursue my research at the University of Cambridge. I would like to

acknowledge the valuable support and guidance provided by Dr. Debashish Bhat-

tacharjee, Director (Research, Development and Technology, Tata Steel Europe) as

my industrial supervisor. I also express my gratitude to Robinson College Cambridge

and Cambridge Philosophical Society for their valuable financial support during the

course of completion of my research.

I would like to thank every member of the Department and staff for being helpful

and supportive to me especially Kevin, Frank, Simon and Dave. I would like to thank

Mathew, Arijit and Steve for the fruitful technical discussions on related matters.

All the help and support provided by Amir, Stephane, Radu, Jaiven, Pei Yan, Hala,

Aseel, James, Lucy, Ivan, Hector and other past and present group members is

greatly acknowledged. I shall cherish for long the memory of being with the PT-

group and the coffee time discussions. The association with friends in the college

and the department has been very fruitful.

I wish to express the deepest sense of gratitude to my parents for instilling good

values in me and for being a constant source of inspiration. I am greatly indebted to

my wife, Nishita and daughter, Devanshi for their wholehearted support, understand-

ing and for motivating me to pursue my goals. I really appreciate the perseverance

ii



and self-sacrifice displayed by my wife through the course of this work and for stand-

ing firm by my side through the difficult situations. I am grateful to all my family

members and friends for their continuous moral support.

iii



Abstract
A new theory has been proposed for the growth of pearlite in a binary Fe-C alloy,

which tackles simultaneously the diffusion flux in the austenite and through the

transformation interface. This has been shown to better represent the experimental

data reported on the growth of pearlite in spite of the fact that considerations of

equilibrium at junctions between interfaces are abandoned for the sake of simplicity.

The theory, for the first time, leads to a realistic value for the activation energy for

the interfacial diffusion of carbon, less than that for volume diffusion in austenite and

greater than for volume diffusion in ferrite. The maximum growth rate and maximum

rate of entropy production criteria for determining the critical interlamellar spacing

have been derived in the context of mixed flux model with the result that certain

parameters which are normally assumed to be constant, become a function of the

transformation temperature.

For the sake of completeness, a third diffusion flux through the ferrite has also

been incorporated in the mixed diffusion–controlled growth theory. Although inclu-

sion of flux through the ferrite leads to an increase in the growth rate as compared to

that through the austenite alone, it is shown that the combination of fluxes through

austenite and the interface represents the experimental data rather well. Further-

more, the evidence for cementite thickening behind the transformation front, which

is a natural consequence of the flux through the ferrite, is weak. Hence it is suggested

that this consideration may be excluded from the proposed theory.

The growth of pearlite in a more complex ternary system containing a mixture

of interstitial and substitutional solutes has also been addressed. None of the ex-

perimental data for Mn and Cr containing steels are consistent with transformation

involving no-partitioning or even the negligible–partitioning of the solute between the

phases involved. The available data suggest that the growth of pearlite in ternary

or multicomponent steels is accompanied by the partitioning of the substitutional

solute between the product phases using the assumption of local equilibrium. The
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growth rate is deduced using Hillert’s approach based on the thermodynamic data

available from the ternary phase boundaries and assuming that the interlamellar

spacing adopted is consistent with maximum rate of entropy production. The im-

portance of a reliable value of interfacial energy, (σαθ
) of ferrite-cementite interfaces

is emphasised, especially when the growth rates are to be calculated in the absence

of interlamellar spacing data.

In order to be able to implement the theory developed so far to an industrial

scenario, a “divorced”eutectoid transformation exploited during the spheroidising

annealing of steels has been discussed quantitatively. It has been shown through a

rigorous analysis that there exists a wider window for the processing of these steels,

which should lead to a more efficient heat treatment process.

It is thought that the work presented in this thesis can be integrated into the si-

multaneous transformation model which includes various other transformation prod-

ucts typical in steels, that would lead to better algorithms for the calculation of

microstructure.
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Chapter 1

Introduction

Pearlite is a common constituent of steels and materially adds to its strength. Typical

applications of pearlitic steels include rails, ropes for bridges and elevators, tyre cords

etc. to list a few. It has been identified since more than a century and derives its

name after Sorby, who first reported that the structure resembles the irridescence

of a pearl [1]. The differential etching of ferrite with respect to cementite results

in the latter acting as diffraction grating for the light of various wavelengths from

the pearlite colony, thus giving it a “pearly”appearance. A colony of pearlite when

viewed in three dimensions consists of an interpenetrating bicrystal of ferrite and

cementite [2–4]. In planar sections the phases appear as lamellae which grow at a

common front with the austenite.

It is well established that with the exception of cobalt, all other alloying ele-

ments retard the transformation of austenite to pearlite as these elements decrease

the nucleation and the growth rate of pearlite by shifting the time-temperature-

transformation curve to longer times. This has a great technological importance in

the context of the ability to produce low temperature microstructures such as bainite

and martensite.

It is well known that formation of pearlite is a reconstructive process and the

growth is characterised by two distinct processes: (a) redistribution of carbon into
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cementite and (b) change in crystallographic structure since the product phases have

a structure different from the parent austenite and that the rate of growth is governed

by the diffusion of carbon atoms especially in Fe-C steels [5]. The active nucleus for

pearlite formation can be either ferrite or cementite depending on the temperature

and composition. The nucleation sites can be grain boundaries or inclusions and

once either the ferrite or cementite is nucleated, the conditions surrounding the new

nucleus are ripe for nucleation of the other and pearlite grows in a co-operative

manner. When the austenite is supercooled below the A1 (eutectoid temperature),

and isothermally transformed, the pearlite grows at a constant rate with a constant

interlamellar spacing between the ferrite and cementite. The interlamellar spacing

decreases at higher undercoolings and the pearlite formed under such conditions

cannot be resolved using the optical microscope. When the interlamellar spacing

is large, the diffusion distances for the transport of solute are larger and hence the

growth of pearlite is slowed down. The growth rate increases at higher undercoolings

since the free energy change accompanying the transformation increases. However

since the reaction is diffusion-controlled, the diffusion distances must be reduced to

compensate for the decrease in diffusivity. Consequently the interlamellar spacing is

reduced as the transformation temperature decreases.

Under certain set of conditions, pearlite may exist as spheroidised cementite in

the matrix of ferrite, also termed as “divorced eutectoid”. The microstructure has

been named so in recognition of the fact that there is no co-operation between the

ferrite and cementite as in the case of lamellar pearlite. Such structures are pro-

duced by spheroidising annealing treatment where the primary objective is to re-

duce the hardness in order to achieve good machinability as in the case of bearings

steels. The formation of divorced eutectoid relies on the presence of finely spaced

pre-existing cementite particles in the austenite matrix. The key to achieve a com-

pletely spheroidised structure lies in the heat treatment process which should avoid

the formation of lamellar structure when the steel is being cooled from the austenis-

ing temperature. This summary of a few aspects of the pearlite reaction conceals

numerous difficulties in the quantitative expression of its growth kinetics. The de-
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1.1 Scope of research

tails are described in a subsequent chapter but it is important to realise that the

theoretical design of steels become difficult without a proper treatment of pearlite

as an intervening phase mixture.

1.1 Scope of research

It has long been possible to estimate the growth rate of pearlite assuming volume

diffusion–control [6, 7] and the work has been reviewed thoroughly in [8–11]. There

have, on the other hand, been reports [12–14] that the rates calculated in this way sig-

nificantly underestimate those measured, possibly because of mass transport within

the transformation interface [15, 16]. Most of the comparisons with experimental

data have been based either on the volume or interface diffusion–controlled approach

in isolation, but none of them have proved to be convincing. The former assumes

that the redistribution of carbon at the transformation front occurs as a result of

diffusion through the volume of austenite while the latter relies on the migration of

solute through the advancing pearlite-austenite growth front. There is in principle

no reason why fluxes through both of these routes should not operate simultaneously.

In the absence of a clear understanding of controlling mechanisms, the outcomes of

calculations are ambiguous or rely on uncertain assumptions.

Most of the commercially produced steels contain either one or more alloying addi-

tions, principally in order to improve the hardenability. The ternary steels, Fe-C-X,

containing a substitutional solute (X) have been studied in considerable detail during

the growth of pre-eutectoid ferrite from austenite. With pearlite there is an addi-

tional complication because of the partitioning of the substitutional solute between

the product phases. It has been reported that the growth of pearlite in such steels

is accompanied by either long-range partitioning of X, termed as partitioning local

equilibrium or by a limited partitioning resulting in a concentration spike ahead of

the transformation front, or negligible partitioning local equilibrium. Earlier studies

indicated a so-called no-partitioning temperature below which the substitutional so-

lute does not partition and the growth of pearlite is limited by the diffusion of carbon

3



1.1 Scope of research

[17–19]. Above this characteristic temperature the diffusion of the substitutional so-

lute through the boundary controls the growth rate of pearlite. However neither of

these two scenarios could correctly predict the growth rate at low temperatures.

In view of the uncertainties surrounding the exact mechanism for the growth of

pearlite in binary and ternary steels, the current research aims at providing a sim-

plified theory without making any prior assumptions regarding the conditions under

which one or the other diffusion flux is dominant.
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Chapter 2

Literature Review

2.1 General Phase Transformations in Steel

Solid-state phase transformations in steel can be classified as reconstructive or dis-

placive. A reconstructive transformation leads to an uncoordinated movement of

atoms in which there is no atomic correspondence between the parent and product

phase. There is a diffusion flux of atoms that leads to a new crystal structure. The

flow of matter is sufficient to minimise the strain energy so that only the volume

change contributes to the alteration of shape. Such a process requires long-range

diffusion, which may be sluggish at low temperatures. Allotriomorphic ferrite, id-

iomorphic ferrite and pearlite are examples of reconstructive transformations.

Displacive transformation is characterised by a well-coordinated movement of

atoms in which the atomic correspondence between the parent and product phases is

preserved. This leads to a macroscopic change in shape of the sample when the latter

is not constrained. In a polycrystalline material involving several grains adjacent to

each other this product phase grows in the form of thin plates which is a morphology

which reduces the strain energy associated with these transformations. Displacive

transformations can occur at temperatures where diffusion becomes impossible over

the time scales involved. Widmanstätten ferrite, bainite and martensite, all belong
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2.1 General Phase Transformations in Steel

to the class of displacive transformations.

2.1.1 Rate controlling factors

The rate at which the transformation interface moves depends on its intrinsic mobility

(related to the transfer of atoms across the interface) and the ease of partitioning

of solutes by diffusion ahead of the transformation front. These two processes are

in series and the interface velocity as calculated from the mobility always equals

that based on the diffusion of solute ahead of the interface. Both of these processes

dissipate the free energy available for moving the interface. When most of this

free energy is dissipated in the diffusion process, the interface motion is said to

be controlled by diffusion. On the other hand, when the majority is consumed

in transferring the atoms across the interface, the reaction is said to be interface

controlled. The concentration profiles for both these modes are shown schematically

in Fig. 2.1. The terms α and β represent the phases involved, where the former is

growing from the latter. The average concentration of the solute far away from the

interface is represented as c̄ and the term c
αβ refers to the concentration of solute in

α which is in equilibrium with β and c
βα is similarly interpreted.

Figure 2.1: Schematic concentration profiles associated with modes of growth.
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2.2 Theory of Pearlite Nucleation

2.2 Theory of Pearlite Nucleation

2.2.1 Classical nucleation theory

One of the early contributions to classical nucleation theory was made by Volmer, and

Becker and Döring, which led to intense activity on the subject. The theory states

that atoms are in a state of random thermal fluctuations and only those clusters

which lead to a reduction in free energy may survive and grow further. When small

particles of a new phase form, there is initially an increase in the free energy because

a significant proportion of atoms are situated in the transition region between the

phases, where they do not have the characteristic pattern of the new phase. These

small particles are thus enclosed by an interface which raises the free energy of the

system. The contribution from the interfaces decreases eventually as the surface

area to volume ratio of the particle decreases. In a metastable system this leads to

a critical size of fluctuation beyond which the particle can grow with a reduction

in free energy. Considering homogenous nucleation of a small spherical particle of

radius r of a new phase α from the parent phase γ, the change in free energy is given

by:

∆G =
4

3
πr

3∆Gchem +
4

3
πr

3
Gstrain + 4πr

2
σ

αγ (2.1)

where ∆Gchem = G
α
V −G

γ
V , is the chemical free energy change and Gstrain is the strain

energy per unit volume associated with creation of α. G
α
V and G

γ
V represent the free

energy per unit volume of ferrite and austenite respectively. σ
αγ is the interfacial free

energy per unit area hindering the creation of the new phase. If the interfacial energy

is zero then there is no barrier for nucleation and transformation starts as soon as

the equilibrium temperature is exceeded. The free energy change, as a function of

size of the spherical particle is shown in Fig. 2.2. Equation 2.1 can be differentiated

with respect to radius, r and equating it to zero gives the maximum.

δ(∆G)

δr
= 4πr

2[∆Gchem + Gstrain] + 8πrσ
αγ (2.2)

7



2.2 Theory of Pearlite Nucleation

Figure 2.2: Activation energy barrier G
∗.

The critical radius, r
∗, can be obtained as

r
∗ = − 2σαγ

∆Gchem + Gstrain
(2.3)

Substituting r
∗ in the equation 2.1 gives:

G
∗ =

16π(σαγ)3

3(∆Gchem + Gstrain)2
(2.4)

The steady state nucleation rate per unit volume, JV will depend on the attempt

frequency, ν, the number of nucleation sites available per unit volume, NV and the

probability of a successful attempt:

JV = ZNVν exp

�
−G

∗

kT

�
exp

�
−Q

kT

�
(2.5)
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2.2 Theory of Pearlite Nucleation

where Q is the barrier for the transfer of atoms across the interface into the new

phase. The above equation can also be written as:

JV = ZNV
kT

h
exp

�
−G

∗

kT

�
exp

�
−Q

kT

�
(2.6)

The terms k and h represent the Boltzmann’s constant and the Planck’s constant

respectively. The density of nucleation sites depends on the mode of nucleation i.e.

from grain boundaries to edges to corners. NV in the generic equation 2.6 can then

be replaced by Nb, Ne and Nc depending on the site of nucleation. Cahn has derived

the following expressions for the density of nucleation sites [20]

Nb = NV(δ/d)

Ne = NV(δ/d)2

Nc = NV(δ/d)3

where δ is the thickness of the grain boundary and d is the austenite grain size.

The G
∗ can be written as: G

∗ = Ψ/∆G
2
V [21]. Ψ represents the difference in energy

required for the creation of an interface and the energy released due to removal of

the grain boundary area. The creation of a new nucleus requires energy for interface

formation between the parent and product phase, which in turn is supplied by the

removal of grain boundary area. The uncertainty in Ψ makes the nucleation rate

difficult to estimate. A model by Lange gives Ψ = 2.1 × 10−6 J3 m−6 for a nucleus

where the shape is assumed as a pillbox [22]. Another by Clemm and Fisher predicts

the Ψ as 3.3 × 10−3 J3 m−6 for grain corner nucleation [23]. ∆GV, which is the

driving force for austenite to pearlite transformation can be calculated based on

thermodynamics.

2.2.2 Theory of transient nucleation

According to classical nucleation theory, the time dependent nucleation rate can be

expressed as [24]:

JV = ZνNV exp

�
−G

∗

kT

�
exp

�
−τ

t

�
(2.7)
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2.3 Methods to Determine the Rate of Nucleation

where Z is the Zeldovich non-equilibrium factor which gives steady-state concentra-

tion of critical nuclei as opposed to the equilibrium concentration, τ is the incubation

time and t is the time for nucleation. The time independent part of the above equa-

tion gives the steady state nucleation rate.

Offerman et al. studied a Fe-0.71C-0.61Mn-0.26Cr-0.34Si wt% steel to measure

the nucleation and growth rate of pearlite using in-situ three-dimensional neutron

dipolarisation technique [21]. They studied the steel at three different temperatures

namely 953 K, 948 K and 943 K by holding each of them for different lengths of

time. The nucleation rate was estimated based on the number of pearlite nuclei

formed as a function of transformation time. It was observed that the number of

pearlite colonies increased quadratically with time. The value of Ψθ was calculated

as 2.2× 10−3 J3 m−6 for cementite nucleation during pearlite formation. From syn-

chrotron measurements they determined Ψα as 5× 10−8 J3 m−6 for the nucleation of

ferrite from austenite in a medium carbon steel [25]. The effect of interfacial energy

on the activation energy of pearlite nucleation is about 5 orders of magnitude higher

for cementite than for ferrite nucleation. It was suggested that the main difference

between nucleation of pro-eutectoid ferrite and pearlitic cementite is that the former

takes place on the high energy γ−γ grain boundaries, whereas the latter takes place

on the low energy γ − α interfaces. The lower value of Ψα suggested that the nu-

cleation of proeutectoid ferrite was relatively easy as compared to that of pearlitic

cementite.

2.3 Methods to Determine the Rate of Nucleation

The rate of nucleation is generally defined as the number of nuclei forming per unit

time per unit volume of the untransformed matrix, designated as JV and expressed

as no. mm−3 s−1. Mehl and co-workers have shown that the nucleation rate of

pearlite increases with time and decreases with temperature before passing through a

maximum and is slowed down by alloying additions which increases the hardenability

10



2.3 Methods to Determine the Rate of Nucleation

of the steel [26]. In the case of pearlite, where nucleation occurs on grain boundaries,

NV will be a function of the austenite grain size.

2.3.1 Measurements based on stereology

Stereological methods involve the estimation of the number of pearlite nodules per

unit volume by measuring the particle size distribution [22]. The particle density,

when divided by the unreacted grain boundary area per unit volume, gives the num-

ber of particles per unit unreacted grain boundary area. Such a procedure is re-

peatedly carried out for increasing times on specimens at a given temperature. The

nucleation rate is thus obtained by taking the slope of plot of number of particles per

unit unreacted grain boundary area as a function of reaction time. A further simpli-

fication of this analysis is done by assuming that particles are spherical, randomly

distributed and are of the same size, which yields [22]:

NV = NA/2rmax (2.8)

where NV is the number of particles per unit volume, NA is the number of particles

of unit area on the plane of polish and rmax is the radius of the largest particle on

the plane of polish. Another approach separates the particles into discrete diameter

ranges measured on the polishing plane followed by a calculation of the distribution

of true particle diameters. The equation can be described as:

Nj = Σl
i=1p

i
jn

i (2.9)

where l is the number of size ranges, Nj is the number of particles per unit volume of

true diameter j, p
i
j is the probability of finding a particle of apparent diameter range

i on the plane of polish from a particle of true diameter range j, n
i is the number

of measured (apparent) diameters in the i
th category. Summing up the number of

particles in all diameter ranges gives the particle number density NV:

NV = ΣNj (2.10)
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2.4 Influence of Grain Boundary Sites on Nucleation

The methods described above prove to be inaccurate when small particles cannot be

resolved.

2.3.2 Based on transformed volume fractions

The simplest method for the calculation of nucleation rates using experimental data

is based on the Johnson-Mehl approach. For specific assumptions outlined below it

is expressed as:

f(t) = 1− exp(−πJV v
3
t
4
/3) (2.11)

where f(t) is the fraction transformed at time t, JV is the nucleation rate per unit

volume of the untransformed matrix and v is the growth rate. This method assumes

that both the nucleation and growth rates are independent of time, the nuclei are

randomly distributed spheres and the rate of transformation is proportional to the

fraction of untransformed matrix. The average nucleation rate can be calculated by

measuring f(t) and v.

However, Cahn and Hagel have pointed out that for the pearlite reaction, nucle-

ation and growth rates are usually not constant, the pearlite nodules are not normally

spherical, nucleation sites are not random (preferably at grain boundaries) and all

the sites are usually consumed at relatively low values of fraction transformed [27].

According to them, pearlite nucleation increases with time and in most steels it is

fast enough to give site saturation at fairly high temperatures. While in the initial

stages, pearlite reaction is sensitive to nucleation rate, JV, drastic changes in JV in

the middle and later stages have little effect on the overall rate of transformation.

2.4 Influence of Grain Boundary Sites on Nucle-

ation

Clemm and Fisher have derived the critical free energy for the formation of a nucleus

at the two, three or four grain junctions, based on the knowledge of volume, surface

12



2.4 Influence of Grain Boundary Sites on Nucleation

area and the matrix grain boundary area where the nucleus initiates [23]. Using the

theory described earlier, the critical energy required for the formation of a nucleus

of a new phase B in a homogeneous matrix of phase A can be rewritten as:

G
∗ =

16π(σAB)3

3∆G
2
V

(2.12)

In a polycrystalline material, nucleation is more likely to take place at the grain

boundaries or at junctions between several grains. This is because the energy required

for the formation of a critical nucleus is provided partly by the grain boundary area

which is destroyed by the formation of new nucleus, thereby reducing the activation

barrier. Assuming that the grain boundary area of matrix A-A eliminated during

the formation of a nucleus of B at a grain junction of A is AAA = ar
2, where r is the

radius of curvature of surface bounding the new phase, the new grain boundary area

formed between A and B, be AAB = br
2. Let the volume of the new phase formed be

V = cr
3. The coefficients a, b and c are functions of grain boundary energies A-A

and A-B. The work done in forming the nucleus is:

W = σABbr
2 − σAAar

2 + ∆GVcr
3 (2.13)

The work done for the formation of critical nucleus corresponds to dW/dr = 0

G
∗ = 4

(bσAB − aσAA)3

27c2∆G
2
V

(2.14)

Nucleation at grain junctions can be evaluated by determining the values of a,b and

c corresponding to 2, 3 or 4-grain junctions. The activation energies of nucleation of

ferrite in austenite at the 2-grain, 3-grain and 4-grain junctions are shown in Fig. 2.3.

It is concluded that G
∗ is the least for a 4-grain junction which means it is the most

favoured site for ferrite nucleation, followed by 3-grain and 2-grain junctions. When

the nucleus forms at the 4-grain junction, the energy supplied by the elimination

of the boundary at these junctions is higher than in case of 2 or 3-grain junctions.

Thus the requirement for net energy of critical nucleus formation is reduced in case
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2.5 Active Nucleus for Pearlite Formation

of 4-grain junctions.

Figure 2.3: Energy for ferrite nucleus formation (adopted from Clemm and Fisher
[23]). The calculations are based on σ

γγ = 0.85 J m−2 and σ
γα = 0.6 J m−2.

2.5 Active Nucleus for Pearlite Formation

Mehl and Dubé suggested that the orientation relationship observed between the fer-

rite in pearlite and the parent austenite is not that observed when the ferrite forms

directly from austenite [28]. Hence the active nucleus must be cementite. Subse-

quently Smith and Mehl reinforced this view by arguing that when the orientation

of ferrite in bainite with respect to austenite was crystallographically identical to

that of Widmanstätten ferrite, then ferrite was the active nucleus for bainite [29].

Conversely, the orientation of ferrite in pearlite was not the same as that for Wid-
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2.5 Active Nucleus for Pearlite Formation

manstätten ferrite, cementite must be the active nucleus for pearlite formation. The

authors did not recognise the fact that pearlitic ferrite could be unrelated to the

austenite grain in which it was growing.

Smith suggested that the crystal of proeutectoid ferrite, formed at the boundary

between the two austenite grains would have a definite orientation relationship to

one of them, resulting in a partially coherent interface. As a consequence of this,

it will form an incoherent interface with the adjacent austenite grain. At lower

undercoolings, the ferrite with an incoherent interface will grow into the grain with

which it has no orientation relationship. In a similar way, the ferrite component of

a pearlite colony formed at the austenite grain boundary should also be related to

one of the austenite grains, irrespective of whether it is nucleated before or after the

cementite. Consequently, the pearlite colony will be able to grow by the movement

of an incoherent ferrite-austenite interface i.e. into the austenite grain to which

the ferrite is unrelated. The pearlitic ferrite should then bear a specific orientation

relationship to the neighbouring austenite grain. This hypothesis was thus able

to refute the observations made by Mehl and Dubé regarding different orientation

relationships for pearlitic and Widmanstätten ferrite with respect to the austenite

grain [30]. Thus ferrite may also serve as an active nucleus for pearlite formation.

Hillert suggested that the misinterpretation of X-ray results of Mehl et al. may

be attributed to the fact that they had used a single crystal of austenite in their

study of pearlite and observed that the pearlitic ferrite did not have an orientation

relationship with the parent austenite [31]. Such a conclusion had no bearing on a

polycrystalline specimen.

Nicholson used the phase diagram to show that both ferrite and cementite can be

active nuclei depending on composition and temperature, which affect the nucleation

rates of these two phases [32]. Below the eutectoid temperature, the austenite is su-

persaturated with both ferrite and cementite and for whichever phase it is greatest,

that phase will nucleate first. These considerations are based entirely on the concen-

tration and hence not strictly valid.
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2.6 Orientation Gradients in Pearlite

However, Russell, using free energy diagrams, put forward the following theory

[33]. Below the eutectoid temperature ferrite and cementite are the stable phases

and the equilibrium concentrations are given by drawing a common tangent, AB

to the pairs of free energy curves shown in Fig. 2.4. For an alloy of composition

c1, the driving force for nucleation is given by drawing a tangent to the austenite

curve at c1 and the intersection of these tangents with the iso-concentration lines of

ferrite and cementite at the equilibrium concentrations of these two phases, c
α and

c
θ. For austenite of composition c1, the chemical free energy change for nucleation of

cementite is ∆GV a which is negative and for ferrite it is ∆GV b which is positive. As

a result, the nucleation of cementite is thermodynamically feasible, whereas that of

ferrite is not. When the composition of austenite is c2, the situation is reversed and

ferrite nucleation becomes feasible with the driving force as ∆GV d and the cementite

nucleation is not possible (∆GV c > 0). In this case, ferrite will nucleate first and the

cementite will not nucleate until the local composition of austenite near the ferrite

is readjusted such that cementite nucleation becomes thermodynamically feasible.

At composition c0, the free energy change for ferrite and cementite becomes equal

(∆GV < 0) and hence there is an equal probability of ferrite and cementite nucle-

ation. Based on this discussion, Russell concluded that ferrite would be the active

nucleus in case of hypoeutectoid steels and cementite for hypereutectoid steels.

2.6 Orientation Gradients in Pearlite

The strength of a ferrite-pearlite steel is generally attributed to the interlamellar

spacing of ferrite and cementite in the pearlite colonies and it follows a Hall-Petch

type relationship [35]. Apart from the contribution of interlamellar spacing, the

strength is often attributed to the prior austenite grain size, size of the pearlite colony,

amount of elements in solid solution and dislocation density in ferrite, etc. Ray and

Mondal have shown that the strength of steel may not be dictated by a Hall-Petch

type relationship and there is a considerable variation in the strength levels even with

constant interlamellar spacing in pearlite colonies in case of hypoeutectoid steels [36].

They attributed the strength variation to the hydrostatic stresses exerted by the
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2.6 Orientation Gradients in Pearlite

Figure 2.4: Free energy composition diagram for pearlite nucleation (adapted from
P. R. Engel [34]).

17



2.6 Orientation Gradients in Pearlite

presence of proeutectoid ferrite in the microstructure. It is a common observation

that the lamellar structure of pearlite is not always homogeneous and consists of

various substructures even in the annealed condition.

Bramfit and Marder have shown that these substructural faults may be due to

higher dislocation densities and extended dislocation substructures in the pearlitic

ferrite and were associated with the discontinuities in the growth of that pearlite

colony [37]. They also cited other substructural features such as dislocations at

the cementite-ferrite interface and discontinuities in cementite lamellae containing a

high density of dislocations. The substructural faults may originate as a combination

of factors such as stresses due to phase transformation, due to inherent difference

in crystallographic structures of ferrite and cementite and stresses resulting from

external factors such as cooling from the transformation temperature. Reviewing

these observations, Bramfit and Marder suggested that the effect of these factors on

the strength of pearlite has been grossly underestimated. The contribution of these

influencing factors have only been restricted to explain the deviations in the strength

of pearlite during statistical analyses.

Takahashi et al. have dealt with the influence of substructure and the crystallo-

graphic texture of pearlite in their review [38]. They used a high resolution electron

backscattered diffraction technique for the analysis of pearlitic ferrite and found

that large misorientation gradients were observed, in contrast to the proeutectoid

ferrite surrounding the pearlite colony, where no such gradients were observed. They

also observed the orientation relationship between the ferrite and cementite in the

pearlitic colonies was closer to Pitsch-Petch. The pearlite colonies showed a large

number of geometrically necessary dislocations and it was suggested that these were

formed during the course of pearlite growth. They attributed the large scatter ob-

served in the strength of pearlite to the density of these dislocations.
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2.7 Mechanism of Diffusion in Metals

2.7 Mechanism of Diffusion in Metals

Substitutional diffusion in metals is controlled by a vacancy mechanism. The diffu-

sion coefficient can be expressed in classical form as:

D = ga
2
ν exp

�
∆Sform + ∆Sm

k

�
exp

�
−∆Hform + ∆Hm

kT

�
(2.15)

where g is a geometric factor, a is the lattice constant, ν is an attempt frequency

and T is the absolute temperature. ∆Sform and ∆Sm are the changes in vibrational

entropy of the crystal associated with the formation and migration of the vacancy

respectively and ∆Hform and ∆Hm are the corresponding changes in enthalpy of

vibration.

The term ga
2
ν exp

�
∆Sform+∆Sm

k

�
is often summed up as the pre-exponential factor

D0 and the activation energy is the sum of ∆Hform and ∆Hm. Bokshtein stated that

the evaluation of pre-exponential factor using the theory of transition state projects

the values of D0 in the range of 10−2 and 1 cm2 s−1 and that values lower than these

are incompatible [39]. He further included a factor f which accounts for the fact that

the atomic jumps in case of self and impurity diffusion are not random. For cubic

crystals, in case of self-diffusion by vacancy mechanism f = 1 − 2
z , where z is the

coordination number; hence for a face-centred cubic (FCC) lattice, f would be 0.78.

The vacancy concentration in the material increases exponentially with tempera-

ture, although its absolute value is not large. Even at temperatures close to melting

point it does not exceed 0.01-0.1 vol.%.
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2.7.1 Volume diffusion coefficient of carbon in austenite

Ågren formulated an equation for the volume diffusion coefficient of carbon in austen-

ite, D
γ
C, based on the temperature and average carbon concentration [40]:

D
γ
C = 4.53×10−7

�
1 + YC(1− YC)

8339.9

T

�
exp

�
−

�
1

T
− 2.221× 10−4(17767− 26436YC)

��

(2.16)

where D
γ
C is in m2 s−1 and temperature, T in K. The site fraction YC of carbon in

the interstitial sub-lattice is given by :

YC =
xC

1− xC
(2.17)

where xC is the mole fraction of carbon in the steel. Since the diffusivity of carbon

is strongly dependent on concentration, it becomes imperative to account for this in

the diffusion controlled growth reactions where there are gradients in concentration.

Trivedi and Pound have demonstrated that a weighted average diffusion coefficient

can adequately represent the effective diffusivity of carbon in austenite [41]:

D̄ =

� cγα
e

cγθ
e

D11{cγ
, T}

c
γα
e − c

γθ
e

dc
γ (2.18)

where c
γα
e is the concentration expressed as mole fractions of carbon in austenite

which is in equilibrium with ferrite. c
γ is the concentration of carbon in austenite

and is expressed as a mole fraction. A theoretical expression for D11{cγ
, T} given

by Siller and McLellan considers both the thermodynamic and kinetic behaviour of

carbon in austenite [42]. This model takes into account the concentration depen-

dence of the activity of carbon in austenite and the existence of a finite repulsive

interaction between nearest neighbouring carbon atoms situated in octahedral sites.

The diffusivity is represented by:

D11{cγ
, T} =

kT

h
exp

�
−∆G

a

kT

� �
λ

2
d

3Γm

�
η(θ) (2.19)
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η(θ) = a
γ

�
(1 +

z(1 + θ)

1− (0.5z + 1)θ + [0.25z2 + 0.5z][1− φ]θ2
+ (1 + θ)

∂a1
γ

∂θ

�
(2.20)

where z is the number of octahedral interstices around a single interstice (z=12 for

austenite), ∆G
a is the activation free energy, Γm is the activity coefficient of the

activated complex, λd is the distance between two austenite planes, and a
γ is the

activity of carbon in austenite. The term φ is given by:

φ = 1− exp

�
−ωγ

kT

�
(2.21)

where ωγ is the nearest neighbour carbon-carbon interaction energy. Bhadeshia found

∆G
a
/k = 21230 K and ln(Γm/λ

2
d)=31.84 [43].

2.7.2 Grain boundary diffusivity

Grain boundary diffusion plays a vital role in many processes such as discontinuous

precipitation, recrystallisation, grain growth etc. It is also a well-established fact

that a grain boundary provides an easy diffusion path for solutes due to its more

open structure than the otherwise perfect lattice. In the case of self diffusion, the

grain boundary diffusivity is usually expressed in terms of two parameters namely

the thickness δ and the diffusion coefficient DB due to the difficulty in measuring

the thickness of the grain boundary. In case of impurities, however the coefficient is

expressed as sDBδ, where s is the boundary segregation coefficient (ratio of solute

in the interface to that in the bulk). In spite of the importance of grain boundary

diffusion, not many experimental data exist and one has to rely on approximations.

Fridberg et al. compared the diffusion coefficients of alloy elements with the self-

diffusion of iron in the same phase. They measured the grain boundary diffusivities

of some substitutional elements like Cr, Mn, Ni and Mo in austenite and found them

to be nearly the same as grain boundary diffusivity of iron in austenite. This may not

be surprising since these are some of the nearest neighbours of iron in the periodic
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table [44]. Thus the term DB δ was taken as :

DB δ = 5.4× 10−14 exp

�
−155000 J mol−1

RT

�
m3s−1 (2.22)

where DB is the boundary diffusion coefficient of the solute.

2.7.3 Diffusion along phase boundaries

A phase boundary has lots of similarities to that between grains of identical struc-

ture with respect to the crystallographic discontinuity, accumulation of dislocations

and chemical segregation etc. The diffusivity at these boundaries may differ con-

siderably from that in the lattice. Most commercial alloys exist as heterogeneous

structures and have two or more phases. In the case of the pearlite transformation in

steels, diffusion along the transformation front becomes significant for substitutional

solutes. The diffusivity depends on the state of coherency of the interface, with

diffusivities becoming faster as the structure becomes less coherent. In this context

Bokshtein et al. [39] reported a fundamental difference between a grain boundary

and a phase boundary. The second phase serves as an inclusion in the matrix and

hence the phase boundary may not exist as a branched network as opposed to a grain

boundary network, in which case the material transport through the phase boundary

is slower than the network of grain boundaries (During isothermal holding at high

temperature, the state of the grain boundary does not change appreciably) but there

is a significant alteration in the case of a phase boundary. Such changes are observed

during ageing treatments, wherein there is a transition in the second phase from

coherence to the state of separation leading to changes in structure, surface energy

and other properties. In a quantitative evaluation of diffusion of Ni in cast iron us-

ing autoradiography and sectioning technique, the activation energy of Ni diffusion

along the ferrite-graphite interphase boundary was reported as 121 kJ mol−1 [45].

This value is close to the activation energy of self diffusion in iron, 128 kJ mol−1.

The high diffusivity here is attributed to the weak interaction between the ferrite

graphite-phases at the boundary. The kinetics of diffusion are also believed to be
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a function of shape of the second phase particles apart from the size reflecting the

differences in the structure and energy of the phase boundary. It has been shown

that for diffusion of Ni in steel for a structure containing globular cementite, the ac-

tivation energy energy (163.8 kJ mol−1) is higher than for a lamellar cementite (134.4

kJ mol−1) in a temperature range 500◦C to 650◦C [45]. This may be attributed to the

larger defect density at the lamellar interface as compared to the globular interface.

2.8 Mechanisms of Pearlite Growth

There are two principal mechanisms cited in the literature to explain the kinetics

of pearlite growth, one involves the volume diffusion of carbon ahead of the trans-

formation front, while the other relies on interfacial diffusion as the rate-controlling

step.

2.8.1 Volume diffusion

Zener-Hillert theory: During the growth of pearlite, carbon must be transported

from the edges of the ferrite lamellae to neighbouring cementite lamellae [7]. Here

the diffusion is assumed to occur through the parent austenite phase. If the interfaces

of ferrite-austenite and cementite-austenite are assumed to be planar, the concen-

tration difference which drives the diffusion would be (cγα
e -cγθ

e ), where c
γα
e and c

γθ
e

are the concentrations in austenite which is in equilibrium with ferrite and cementite

respectively. These terms can be obtained from the extrapolated phase boundaries

of the Fe−Fe3C phase diagram. However, because of curvature, the (γ/α+γ) phase

boundaries cannot simply be extrapolated linearly but should be extended based on

thermodynamic considerations. It was suggested by Zener that the real concentration

difference would be represented approximately by (1-Sc/S)(cγα
e -cγθ

e ) because of the

α/θ interfaces. Sc is the critical spacing at which the pearlite growth rate becomes

zero and S is the interlamellar spacing. The term (1− Sc/S) in equation, accounts

for the decrease in free energy available for diffusion and can be derived using Hillert’

s theory [16]. Out of the total free energy available for pearlite transformation, a
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part of it goes into the creation of interfaces between ferrite and cementite and is

given by

∆G
surface
m =

2σαθ
Vm

S
(2.23)

where σ
αθ is the interfacial energy per unit area and Vm is the molar volume of

austenite. As the interlamellar spacing decreases, more and more of the available

free energy is converted into interfacial energy until a critical spacing Sc, is reached

where all the available free energy is consumed in the creation of interfaces. Thus,

∆G
total
m =

2σαθ
Vm

Sc
(2.24)

The free energy is thus reduced by a factor of
�
∆G

total
m −∆G

surface
m

�
/∆G

total
m =

�
1− Sc

S

�
.

The diffusion of carbon from the tip of ferrite up to a cementite lamella can be rep-

resented as [16]:

J =
−A

α

Vm
D

γ
C

dc

dx
=

D
γ
C b S

α

Vm

(cγα − c
γθ)

Sα/2
(2.25)

Vm is the molar volume and is considered same for all the phases involved, and A
α

is the cross sectional area of the the interface, which is equal to S
α
b, where b is an

arbitrary distance perpendicular to the growth direction. The diffusion distance can

be approximated to S
α
/2 for the growth of ferrite lamellae. This diffusion causes the

edgewise growth of α lamellae in γ with a velocity v and can be written as:

J =
vbS

α

Vm
(c̄− c

αγ) (2.26)

where c̄ is the initial composition of austenite. The ratio between the thickness

of two kinds of lamellae is determined by the original composition of austenite, c̄,

which exists far away from the reaction front and the transformation temperature.

Neglecting the volume change which accompanies the reaction, the material balance

at the tip of each lamellae is given by:

v b S
α

Vm
(c̄− c

αγ) =
v b S

θ

Vm
(cθγ − c̄) =

v b S
α
S

θ

S Vm
(cθγ − c

αγ) (2.27)
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2.8 Mechanisms of Pearlite Growth

where S
α and S

θ represent the thickness of ferrite and cementite lamellae. Equating

equation 2.26 and equation 2.27 and combining it with equation 2.25 leads to:

v =
2Dγ

C S

SαSθ

�
c
γα − c

γθ

cθγ − cαγ

�
(2.28)

The maximum growth rate vmax, as suggested by Zener was found at S = 2Sc, the

details of which have been described in chapter 3 [6].

Ridley suggested that the equation for pearlite growth gives a relation between

velocity, spacings, concentration gradient and diffusivity [46]. The concentration

difference is proportional to the undercooling, which in turn is proportional to the

reciprocal spacing, hence the equation for volume diffusion-controlled growth can be

written as:

v S
2 = k1 D (2.29)

The Zener-Hillert theory has often been used to determine the rate controlling pro-

cess for pearlite growth. The usual method is to incorporate the measured values

of interlamellar spacings, calculated interfacial compositions and the diffusion coef-

ficient into the growth equation and then compare the calculated growth rates with

those determined experimentally. This approach led many of the researchers to be-

lieve that the data are reasonably consistent with the volume diffusion of carbon in

austenite as the rate controlling step, though there was a discrepancy of up to 50

times or more. Puls and Kirkaldy [47] and Cheetham and Ridley [48] evaluated the

diffusion coefficient of carbon in austenite based on an average carbon content and

calculated growth rates bringing down the discrepancy with measurements to 2-3

times.

Forced velocity growth provides another way of studying the pearlite formation.

In this technique, a specimen, usually a rod, is translated at a constant velocity rel-

ative to the temperature gradient which establishes a single transformation interface

which is sufficiently steep to prevent nucleation ahead of the growing front. This

technique is essentially different from the isothermal growth rate measurements with
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2.8 Mechanisms of Pearlite Growth

respect to the fact that here the growth rate is fixed as imposed by the translation

velocity and the transformation temperature is a free variable. This was first applied

to Fe-C alloys by Bramfitt and Marder [49]. This technique was alternately used

by Bolling and Richman [50] who examined the relationship of interlamellar spacing

and velocity and obtained the relation vS
n = constant, where n = 2.3 ± 0.1. For a

forced velocity growth 100 to 1 µm s−1, Verhoeven and Pearson [51] obtained an ex-

ponent of S equal to 2.07. Over the range of forced velocities studied all the spacing

and velocity data showed a good agreement and gave the relationship vS
2=constant

and hence provided a strong support for volume diffusion being the rate controlling

process.

In spite of these attempts to justify the volume diffusion of carbon as the rate-

controlling mechanism in Fe-C steels, there still exist discrepancies with the exper-

imentally observed pearlite growth rates. These discrepancies are sufficiently large

to render the microstructural calculations associated with steel development to be

doubtful.

2.8.2 Interface diffusion

The principal reason behind the attempt to introduce boundary diffusion is the

inability of the volume diffusion to account for experimentally observed growth rates

in Fe-C and other non-ferrous alloys, rates which are usually higher than expected.

This led many researchers to believe that there must be an alternate mechanism

for the transport of solute and the interface diffusion theory seemed to be the most

plausible explanation [27, 52]. Sundquist assumed the interface diffusion of carbon to

be a dominant mechanism driving the edgewise growth of pearlite [15]. The growth

rate was calculated using the assumption of local equilibrium and included the effect

of capillarity. Using the experimental data for pearlite growth velocity for Fe-C

steels, the activation energy for interface diffusion was calculated as 191 kJ mol−1

which was far too high. Although, it was attributed to the presence of impurity

atoms present in the steel, the justification seems to be unrealistic.
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2.8 Mechanisms of Pearlite Growth

As an approximate treatment, Hillert modified Zener’s volume diffusion theory

for the interface diffusion controlled growth [16]. He suggested that the cross section

of the grain boundary through which the diffusion takes place is equal to 2bδ, where

δ is the thickness of the boundary layer. The factor of 2 accounts for the diffusion

on both sides of α lamellae. The effective diffusion distance was taken proportional

to S to make the result independent of ferrite and cementite and was approximated

by S/4 for the case of symmetric eutectoid.

The diffusion flux through the boundary can be written as:

J =
−A

α

Vm
DB

dc

dx
=

2sDB bδ (cγα
e − c

γθ
e )

Vm S/4

�
1− Sc

S

�
(2.30)

where s is the boundary segregation coefficient between the boundary and the austen-

ite phase. The mass flow causes both the phases to grow and their growth rates must

be equal. Neglecting the volume change that accompanies the reaction and consid-

ering the material balance at the edges of α and θ lamellae, the Lever rule can be

used to relate the lamellar thickness with the growth rate as in equation 2.27.

Combining the equation 2.27 and 2.30 results in:

vB =
8sDBδ

SαSθ

�
c
γα
e − c

γθ
e

cθ − cα

��
1− Sc

S

�
(2.31)

Turnbull in his theory of cellular precipitation described interface diffusion as the

rate controlling step for precipitate growth [53]. He suggested that the cell boundary

(or the interface) provides a diffusion short circuit for the solute elements. This cell

boundary is incoherent and sweeps the solutes as the cell grows. For the precipitation

of tin from lead, the observed rates were many orders of magnitude greater than those

calculated from the diffusion data of Seith and Laird [54] assuming volume diffusion

mechanism. Assuming that the solute is drained only by diffusion along the cell
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boundary, the growth rate given by Zener can be modified as

vB =

�
c
γα
e − c

γ
∞

c
γα
e

� �
δ

τ1

�
(2.32)

where τ1 is the time required to drain the solute from the grain boundary region and

is given by

τ1 =
S

2

DB
. (2.33)

Therefore,

vB =

�
c
γα
e − c

γ
∞

c
γα
e

� �
δDB

S2

�
(2.34)

Accounting for the observed growth rates, the DB would have to be 10−6 to 10−7 cm2

s−1. This magnitude of DB corresponds to an activation energy, QB, for boundary

diffusion equal to 37.68 kJ mol−1, compared with the activation energy of volume

diffusion, QV which is 108.7 kJ mol−1. The ratio QB/QV is 0.35 and agrees fairly

well with QB/QV = 0.44 for self diffusion in silver. This was thought to be reasonably

sound evidence to justify that the diffusion of tin atoms along the cell boundary was

the rate controlling step since it was entirely consistent with experimental evidence.

For many alloy systems, when the partitioning of the substitutional element, X, is

significant during the growth of pearlite, it is likely that interfacial diffusion of alloy-

ing elements may control the growth of pearlite. The bulk diffusivity of substitutional

alloying element is much smaller than that of carbon. As a result, the substitutional

elements diffuse through the boundary which provides a faster diffusion path and

partition into the product phases [7]. The interface diffusion-controlled growth rate,

vB would be

vB =
12sDBδS

2

SαSθ

�
c
γα
X − c

γθ
X

c̄X

�
1

S2

�
1− Sc

S

�
(2.35)

where s, the boundary segregation coefficient, is the ratio between alloying element

concentration in austenite near the boundary and at the boundary, c
γα
X and c

γθ
X are

the concentrations of X in austenite which is equilibrium with ferrite and cementite

and c̄X is the bulk concentration of the alloying element in steel.
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2.8 Mechanisms of Pearlite Growth

2.8.3 Other proposed mechanisms for pearlite

Cahn’s theory: Cahn and Hagel considered the diffusion process by which in-

terstitial and substitutional elements get redistributed and how growth is affected

during their diffusion in austenite, ferrite and along the austenite-pearlite interface

[27]. Since there is a considerable difference of opinion about the exact growth mech-

anism, rather than calculating the growth rates based on any of these mechanisms,

they took a different approach and tried to check the consistency between the mea-

sured growth rate, interlamellar spacing and the diffusivities.

A kinetic parameter βi was considered, which gave a measure of resistance to

segregation. It was suggested that there exists one such parameter for each element

and each phase [27].

βi =
vS

2πDi
(2.36)

Another term β
�
i can be written in terms of a thermodynamic parameter as:

β
�

i =
1

2

c
γα
i − c

γθ
i

c
θγ
i − c

αγ
i

(2.37)

where c
γα
i , c

γθ
i , c

θγ
i , c

αγ
i are the concentrations which can be obtained from the phase

diagram and i represents the solute. If βi is large (i.e. low Di and high v and S ) and

since there is an upper limit to (cγα
i − c

γθ
i ), (cθγ

i − c
αγ
i ) will be small and hence little

partitioning of the solute element, i will occur. When βi is small (i.e. high Di or

low v and S ), because there in an upper limit to (cθγ
i − c

αγ
i ); (cγα

i − c
γθ
i ) will be small

and hence the concentration gradient driving the diffusion at the pearlite-austenite

interface would be small. βi can be established from the observed values of v, S and

Di based on the equation 2.36 and β
�
i can be estimated from the phase diagram.

For a 2-component system, thermodynamic reasons necessitate an upper limit on

(cγα
i − c

γθ
i ) and a lower limit on (cθγ

i − c
αγ
i ), since the carbon segregation to cementite

cannot be zero, and hence an upper limit on β
�
i which as per equation 2.37 is half

their ratio and this is termed as β0. In order to compare βi with β0, the authors
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calculated β0 and based on the experimental values of v and S. They argued what

value of Di will make βi=β0 or what apparent diffusivity Dapp would be necessary

to give the required segregation of solute elements.

If the value of βi is equal to β0, this can be considered as an evidence that the

growth rate of pearlite is controlled by the volume diffusion of solute through the

austenite. If the observed value of βi is less than β0, then some process other than

the diffusion in austenite is controlling the rate. If βi exceeds β0, this can point to

the existence of a faster diffusion path.

In the case of non ferrous pearlite, Cahn and Hagel showed that the apparent

diffusivities Dapp are higher than the Di (or the experimental diffusivity) by orders

of magnitude. Hence βi exceeds β0 and that was taken as strong indication that an

alternate diffusion path or a diffusion short circuit exists. Regarding pearlite in steel,

there was a reasonable agreement between Dapp and the D
γ
C in plain carbon steels

for which the v, S and β0 are known and hence led to the conclusion that carbon

diffusion in austenite controls the pearlite growth in these steels. However, the v

and S that they used in their calculations were not measured for the same steel.

Moreover, pearlite growth in plain carbon steels is as fast as permitted by carbon

diffusion in austenite, but in high purity steels it grows almost 50 times faster. This

could well be attributed to the spacings in high purity steels, but the measurements

showed that the spacings were almost comparable to those in plain carbon steels.

This further strengthens the fact that another mechanism is operative for carbon

diffusion.

Diffusion through ferrite: Nakajima et al. considered the effect of diffusion in

ferrite along with that in austenite using a phase field approach [55]. They reported

that since the diffusion in ferrite is much faster than in austenite and when this was

coupled with the latter, the difference in calculated and the experimental growth rate

of pearlite was narrowed down. It was argued that the higher velocity (compared

to that in austenite alone) resulting from their model, apart from faster diffusivity

in ferrite, was due to a large ratio of ferrite-cementite interfacial area as compared
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2.8 Mechanisms of Pearlite Growth

to that in case of cementite-austenite interfaces. The phase field calculations show

the thickening of cementite behind the transformation front when the diffusion oc-

curs in ferrite. Cahn and Hagel considered the effect of diffusion in ferrite but did

not observe any tapering of cementite at the transformation front [27]. Since the

calculated velocities were still not able to explain the observed growth rates, they

attributed the same to the influence of transformation strain or diffusion through

the boundary. Steinbach and Apel [56] modelled the pearlite using the phase field

calculations and studied the influence of transformation strains present due to the

concentration gradients in austenite whilst considering the diffusion in ferrite. Ac-

cording to their theory, the transformation strains inhibit the co-operative growth of

ferrite and cementite resulting in solitary growth of wedge-shaped cementite ahead

of the ferrite which they termed as ‘staggered growth’. Again the effect of interface

diffusion control was ignored apparently due to the lack of interface diffusivity data.

But in the Fe-C alloys studied to date, wedge shaped cementite has never been ob-

served experimentally. Although this theory could further bridge the gap between

the calculated and the observed growth rate in Fe-C system compared with those of

Nakajima et al., this was fundamentally weak due to the fact that in a reconstruc-

tive transformation, the transformation strains are mitigated during the course of

the reaction.

Combined volume and phase boundary diffusion: Hashiguchi and Kirkaldy,

for the first time made an elegant attempt to simultaneously deal with interface and

volume diffusion in Fe-C alloys [57]. They assumed a parallel mass flow through the

volume of austenite and the advancing pearlite-austenite interface, with a mechanical

equilibrium at the interface junctions and the effects of capillarity. The distribution

coefficient describing the ratio of composition in austenite in contact with ferrite and

cementite and in the transformation front was assumed to be constant even though

the interfacial energies σ
γα and σ

γθ are not expected to be the same. They used

the growth and spacing data of Brown and Ridley [58] in their model in order to

arrive at the activation energy for the boundary diffusion of carbon, which was in

the range of 159-169 kJ mol−1. This clearly did not make sense as the value obtained
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2.9 Pearlite in Multicomponent Steels

was greater than activation energy for volume diffusion of both ferrite and austenite.

The interfacial energy values σαθ obtained were also rather too large. The theory

thus developed was too complex to be implemented, requiring approximations which

rendered the details unimportant.

2.9 Pearlite in Multicomponent Steels

Most of the commercially produced steels contain either one or many alloying addi-

tions. The presence of the substitutional elements and their interaction with carbon

makes the calculation of diffusion controlled growth in such systems quite compli-

cated. The growth of proeutectoid ferrite from austenite in Fe-C-X system, where X

is the substitutional alloying element has been studied in considerable details owing

to the relative simplicity of the influence of a ternary addition on the growth rate

[59–62]. However in case of pearlite growth, the situation is more complex owing

to the partitioning of the substitutional element between the two product phases

namely ferrite and cementite. For a ternary system involving carbon and a substi-

tutional element, different diffusion paths can exist. The pearlite growth rate can

be controlled by diffusion of carbon or substitutional solute through the volume of

austenite or the pearlite-austenite interface, or simultaneous diffusion of both these

species.

2.9.1 Thermodynamics of ternary systems

In a binary alloy system, the common tangent construction using a free energy-

composition diagram can easily give the composition of the growing phase (or phases)

in equilibrium with the parent phase. However in a ternary steel (Fe-C-X) containing

a substitutional alloying element, X, the situation is more complex. The free energy

curves for the parent and product phases become three dimensional surfaces and an

infinite set of tangent planes can be constructed. In order to choose a unique set of

γ +α/α and γ +θ/θ tie-lines, the two fluxes of carbon and X must be simultaneously
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2.9 Pearlite in Multicomponent Steels

satisfied.

(cγα
C − c

γθ
C ) v = −DC � cC (2.38)

(cγα
X − c

γθ
X ) v = −DX � cX (2.39)

where the�cC and�cX are the concentration gradients for carbon and X respectively

at the interface. Since DC >> DX (by an order of 6), the two equations cannot

in general be simultaneously satisfied using the tie-line passing through the alloy

composition. In order to deal with this problem, Kirkaldy [63] and Purdy et al. [61]

suggested that either the fast diffuser (C) has to slow down and keep pace with the

slow diffusing species (X) in which case the driving force for C has to be negligible

or the slow diffusing species has to have a large driving force. This is termed as

partitioning local equilibrium (PLE) in which the alloying element partitions between

the austenite and the product phases and hence slows down the reaction owing to

the slow diffusivity of the substitutional element. The second reaction, termed as

negligible partitioning local equilibrium (NP-LE) involves only a short range diffusion

of the substitutional element (a sharp spike at the interface) and the reaction proceeds

by diffusion of carbon through a combination of austenite and the interface as has

been shown recently for the pearlite growth in a binary Fe-C system [64]. In this

case the alloying element affects the reaction kinetics only through its thermodynamic

influence on the driving force for carbon diffusion. It is generally believed that the

partitioning reaction takes place at low supersaturation whereas the no-partitioning

reaction happens at high supersaturations [65]. A schematic profile of both these

scenerios is shown in Fig. 2.5

2.9.2 Partitioning during the growth of pearlite

Partitioning of solutes from parent to the product phase and between the product

phases in case of pearlite is likely for a diffusional transformation. In case of steels

containing alloying additions, partitioning of these elements may occur at or behind

the transformation front. Carbide forming elements such as Mn, Cr, Mo would
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(a) (b)

Figure 2.5: Schematic representations of (a) PLE and (b) NP-LE conditions.

partition to the pearlitic cementite whereas Si, Ni and Co would tend to segregate

to the ferrite. Most of the partitioning studies have been carried out using analytical

electron microscopy of thin foils or carbide extraction replicas and the results are

expressed as partition coefficient, which is defined as the ratio of concentration of

alloying element in cementite to that in ferrite. Atom probe microanalysis is another

technique which is used routinely for partitioning studies where the spatial resolution

is of the order of 2-5 nm. Most of these alloying additions retard the growth rate of

pearlite through their effect on the carbon concentration gradient, which in turn is

proportional to the driving force at the transformation front.

Picklesimer et al. measured the growth rate of pearlite based on the modified

absolute rate theory of the form:

r = b ∆T ∆G exp

�
−Q

RT

�
(2.40)

where r is the growth rate in mm s−1, b is a constant, ∆G is the free energy difference

of austenite to pearlite transformation and Q is the activation energy. They argued

that the rate of pearlite growth is neither controlled by diffusion of Mn and probably

not by carbon. According to them the presence of Mn decreases the growth rate
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of pearlite by increasing the activation energy for those atomic movements at the

moving interface which are required because of the differences in crystal structure of

austenite and ferrite and cementite in contact with it. They observed partitioning

of Mn to cementite based on the chemical analysis of the extracted carbides for a

1.0Mn wt% eutectoid steel above 640◦C. These data involved a contribution of Mn

partitioning from ferrite to cementite behind the growth front (the steel was held

at the transformation temperature for 24 h) and hence it was difficult to exactly

determine the no-partitioning temperature.

Razik et al. suggested that the electron probe micro-analyser was not an effective

tool for partitioning studies owing to its poor resolution (2 µm) as it could not

measure the composition of cementite lamella only, the thickness of which was far

less than 2 µm. They used analytical electron microscopy to study the partitioning

behaviour of manganese between cementite and ferrite during austenite to pearlite

transformation in 1.08 and 1.8Mn wt% steel [17]. It was observed that the manganese

partitions preferentially to cementite at the transformation interface above a certain

temperature which was described as the no-partition temperature, which depends on

the composition. Partitioning of Mn to cementite was not observed at temperatures

below 683◦C and 645◦C for 1.08 and 1.8Mn wt% respectively. The values obtained

were in good agreement with those determined from thermodynamic data for the

two steels. It is worth noting that the compositions used in plotting the γ/γ +α and

γ/γ + θ phase boundaries for these two steels were based on a binary phase diagram.

This was clearly an incorrect procedure since the effect of ternary addition, i .e. Mn

should have been considered using isothermal sections of a ternary phase diagram

for calculating the interfacial compositions by choosing a correct tie-line. Further

they assumed that below this characteristic no-partition temperature, the growth of

pearlite is controlled by either the volume or interface diffusion of carbon and that

the both the mechanisms are equally probable. The pearlite growth rate calculated

using this assumption deviated from those observed experimentally by a factor of

1-3 for both these mechanisms.
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In a separate study, Razik et al. used Fe-1.29Cr-0.8C wt% and reported the no-

partitioning temperature as 703◦C, below which there was no chromium partitioning

observed at the transformation front [18]. The pearlite growth rate below the no-

partition temperature calculated using the assumption of volume diffusion of carbon

was lower than the experimentally observed rate by a factor of 2 to 4. The same

when calculated using the assumption of interfacial diffusion of carbon was found to

be higher than the experimentally determined rate by a factor of 12-17.

Sharma et al. studied the pearlite growth kinetics of Fe-Cr-C alloys by experi-

mentally measuring the growth rate and interlamellar spacing for 0.4, 0.9 and 1.8Cr

wt% and then compared the same with those calculated using the thermodynamic

and kinetic models. According to them at high temperature, the reaction is con-

trolled by phase boundary (interface) diffusion of Cr and that the volume diffusion

of the same is too small. They calculated the driving force for Cr boundary diffusion

controlled growth by assuming a uniform carbon activity in austenite ahead of the

pearlite-austenite interface. The growth rate was calculated based on the equation

given by Hillert and by taking S
θ
/S =1/8 and S

α
/S =7/8 and assuming maximum

rate of entropy production criterion:

v = 54sDBδ

�
c
γα
Cr − c

γθ
Cr

c̄Cr

�
(2.41)

The experimental data for the growth velocity of pearlite along with spacing was used

to determine the activation energy for the boundary diffusion of Cr. The value of

168.6 kJ mol−1 obtained was close to that suggested by Fridberg [44] for the boundary

diffusion of substitutional solutes. Similar to their predecessors, they believed that at

lower temperatures (high supersaturation), the growth rate of pearlite is controlled

by carbon volume diffusion. The diffusion coefficient of carbon in austenite was

obtained by extrapolating the data of Wells et al. to the weighted average carbon

concentration at the interface using the relation:

cC =

�
S

α

S
c
γα
C +

S
θ

S
c
γθ
C

�
(2.42)
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A comparison of experimental and calculated growth rates by Sharma et al. for

various Cr contents is shown in Fig. 2.6.

Al-Salman et al. studied the partitioning behaviour in a Fe-1.0Mn-1.0Cr-0.8C

wt% eutectoid steel and observed simultaneous segregation of Cr and Mn to the

cementite at the transformation front down to 600◦C, but they were unable to identify

a no-partition temperature [66]. It was argued that the resolution of the analytical

technique used by Razik et al. was insufficient causing the overlap of the beam on

the adjacent ferrite lamella. Another reason might be the extrapolation technique

used by these researchers might have led to an overestimation of the partitioning

temperature. Ricks studied the partitioning behaviour of 13Mn wt.% eutectoid steel

and a Fe-10Cr-0.2C wt.% steel and observed full partitioning of Mn and Cr to the

cementite and suggested that the diffusion path of these solutes was the interface,

since there was no gradient of these solutes observed in austenite [67].

Tiwari and Sharma [68] calculated the pearlite growth rate in alloys containing

a range of elements (Mn, Cr, Ni, Si) using a model developed by Sharma [69] and

Sharma et al . [70]. They considered the thermodynamic effect of the ternary solute

in determining the phase boundaries of the austenite in equilibrium with ferrite and

cementite. The calculations were based on the fact that at low supersaturations, the

pearlite growth rate is governed by the interface diffusion of the substitutional solute

and at high supersaturations, carbon volume diffusion controls the growth rate. It

was suggested that the partitioning-no partitioning temperature was a function of the

alloy composition and it decreases with the increase in substitutional solute content.

They also calculated the growth rates based on para-equilibrium conditions, but such

a condition clearly cannot be justified given the reconstructive nature of the pearlite

transformation.

Hutchinson et al. measured the composition profile of Mn across the austenite-

pearlite interface as a function of time in steel containing manganese using the analyt-

ical transmission electron microscopy [71]. The results were compared with those cal-
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(a)

(b)

(c)

Figure 2.6: Pearlite growth rates calculated by Sharma et al. for (a) 0.4, (b) 0.9 and
(c) 1.8Cr wt%.
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culated using local equilibrium (LE) assumption. The alloy (Fe-3.51Mn-0.54C wt%)

treated at 625◦C for 2.5, 5 and 10 h in the two phase (α + θ) region revealed that

the composition of Mn in both the ferrite and cementite remained constant during

the steady state growth and can be well approximated by the LE condition.

2.10 Divergent Pearlite

In certain alloys, pearlite can form above the lower Ae1 temperature when the steel

is isothermally held in the 3 phase region (austenite+ferrite+cementite) for a pro-

longed length of time. This phenomenon was first observed in pearlite by Cahn and

Hagel in Fe-5.2Mn-0.6C wt% steel in the temperature range of 500-650◦C wherein

at a given reaction temperature, the growth rate decreased as a function of time and

the interlamellar spacing increased [72]. This results from the continuously changing

carbon concentration in the austenite, until it reaches a composition in equilibrium

with ferrite and cementite and the reaction stops at this point. Hillert explained the

divergency of pearlite based on the thermodynamics of the ternary Fe-Mn-C phase

diagram [73]. In an alloy steel containing Mn, it is reasonable to assume that the

growth rate of pearlite is so slow that there is sufficient time for carbon to establish

a uniform carbon activity along the pearlite-austenite interface. He suggested that

the conditions at the interface can be examined by choosing a carbon activity cor-

responding to the average alloy composition and by plotting an iso-activity line. In

Fig. 2.7, the point of intersection of this iso-activity line with the γ + α and γ + θ

phase boundaries (marked with an open circle) represent the composition of austen-

ite at the ferrite and cementite interfaces. The end of these tie lines would give

the corresponding composition of the growing ferrite and cementite (solid circles).

Since the average alloy content cannot change, the growing pearlite must lie on the

line joining the compositions of growing ferrite and cementite (represented as a solid

diamond). The growing pearlite has a carbon content which is much higher than the

alloy and hence it draws carbon from the parent austenite leaving a zone depleted

with carbon. This leads to a reduction in the activity of carbon in austenite in the

vicinity of the interface over a period of time. As the transformation progresses, the
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conditions prevailing at the interface can be described by the carbon isoactivity line

corresponding to lower carbon activities moving to the left (in the direction of arrow).

This would mean that the ∆c
γ
Mn, ( 2.7), which is the driving force for partitioning

of Mn decreases continuously, thereby slowing the growth rate and leading to a con-

comitant increase in the interlamellar spacing. As the carbon activity in austenite

falls to a value where the isoactivity line approaches the one passing through the

stable austenite corner (marked E), the growth rate will cease before the transfor-

mation is complete. Hutchinson et al. analysed a Fe-0.55C-5.42Mn wt% steel and

observed a similar divergency in the pearlitic structure when held at 625◦C for 168

and 384h [71]. Using analyical transmission electron microscopy technique, it was

observed that during the course of formation of such pearlite, the Mn composition

of ferrite and cementite increased continuously with time.
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2.10 Divergent Pearlite

Figure 2.7: Schematic isothermal section of the Fe-C-X phase diagram showing the
formation of divergent pearlite. The cross represents the average alloy composition
in the 3-phase region.
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Chapter 3

Pearlite Growth in Fe-C alloys

3.1 Introduction

Cementite is rich in carbon whereas ferrite accommodates very little when it is in

equilibrium with either cementite or austenite. It is therefore necessary for carbon to

be redistributed at the transformation front. This can happen either by diffusion in

the austenite in a direction parallel to the transformation front, or by the migration

of solute atoms within the α/γ and θ/γ interfaces. When the mobility of the interface

is large, both of these mechanisms are said to be diffusion–controlled, i.e., most of the

available free energy is dissipated in driving diffusion [74]. This chapter discusses

the conventional pearlite growth theories in Fe-C alloys and a new theory is for-

mulated for simultaneous diffusion through the austenite and the pearlite-austenite

transformation front. It is pertinent to begin the discussion with a brief account of

the interlamellar spacing criteria.

3.2 Interlamellar Spacing Criteria

The equation for the velocity of pearlite for volume or boundary diffusion-controlled

growth described in chapter 2 does not give a unique solution for the growth rate, but

rather a range of velocities and spacings which would satisfy the equation. Hence in
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3.2 Interlamellar Spacing Criteria

order to obtain a unique solution, there is a need to impose a further condition by us-

ing an optimisation principle. There are 3 different solutions reported for optimising

the interlamellar spacing.

3.2.1 Maximum growth rate

Zener suggested that during the growth of pearlite, the ferrite-austenite and the

cementite-austenite interfaces are not flat, but are actually convex and bulging to-

wards the parent austenite phase. This curvature effectively reduces the concentra-

tion difference driving the diffusion, owing to the effect of capillarity. Zener proposed

that the concentration difference would be reduced by a factor of (1− Sc/S) where

S is the interlamellar spacing and Sc is the critical spacing at which the growth rate

becomes zero. A generic form of equation formulated by Zener can be written as :

v =
c
γα
e − c

γθ
e

(cθγ
e − c

αγ
e )

D

L

�
1− Sc

S

�
(3.1)

where L is the effective diffusion distance which can be related to the interlamellar

spacing. In order to maximise the growth rate, differentiation with respect to S, and

equating to zero gives the relation S = 2 Sc.

3.2.2 Maximum rate of entropy production

This criterion has its origin in the thermodynamics of irreversible processes which

deals with systems which are not in equilibrium but at steady state. An irreversible

process dissipates energy and entropy is created continuously. One of the examples

of dissipation of free energy is diffusion ahead of the moving interface. The rate at

which energy is dissipated is the product of temperature and the rate of entropy

production (Ṡ), i.e. T Ṡ which is given as:

T Ṡ = J X (3.2)
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3.2 Interlamellar Spacing Criteria

where J and X are the generalised flux and force respectively, the flux always being

a function of the force. For an isothermal, isobaric and a unidirectional system,

Ṡ = v
∆GV

T
(3.3)

where v is the transformation velocity and ∆GV is the average Gibb’s free energy

per unit volume dissipated in the reaction. ∆GV can be described as the differ-

ence between the maximum chemical free energy available and the surface energy

accumulated.

∆GV = ∆G
0
V −

2σ

S
(3.4)

∆G
0
V can be estimated as:

∆G
0
V =

∆H∆T

T
(3.5)

where ∆H is the latent heat evolved per unit volume and ∆T is the undercooling.

∆GV =
∆H∆T

Te

�
1− 2σTe

∆H∆T

1

S

�
=

∆H∆T

Te

�
1− Sc

S

�
(3.6)

Incorporating the velocity of pearlite growth from equation 2.28 into equation 3.3,

the rate of entropy production for the case of volume diffusion is given as:

Ṡ = β

�
2 DV

S

�
∆H ∆T

TE

1

T

�
1− Sc

S

�2

(3.7)

where β contains the concentration terms. The maximum in Ṡ is obtained on differ-

entiating equation 3.7 with respect to spacing and equating it to zero, which gives

S = 3 Sc and S = 2 Sc for volume and boundary diffusion–controlled growth respec-

tively.

3.2.3 Interface instability

The velocity of edgewise growth of pearlite can be calculated once the diffusivity,

interfacial compositions and interlamellar spacing are known. Based on the available
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3.2 Interlamellar Spacing Criteria

data, a curve of velocity versus spacing can be plotted. But it is important to

understand which point on this plot would correspond to the actual velocity and

spacing observed experimentally. Sundquist in his theory of optimal spacing has

considered two mechanisms which can lead to the changes in interlamellar spacings

[15].

In the first mechanism, U, (which is the velocity of pearlite growth normalised by

the boundary diffusivity of carbon and the thickness of the interface) as a function of

pearlite interlamellar spacing for a particular set of conditions is shown Fig. 3.1. It

was suggested that the interface may be unstable with respect to some infinitesimal

perturbation under certain conditions. For a situation where the spacing is very

small, the driving free energy is less than that required to maintain ferrite-cementite

interface and hence the velocity is negative. Consider a range of spacings where the

∂U/∂S is positive, and those less than the spacing pertaining to maximum velocity.

Jackson and Hunt [75] suggested that the interface with such spacings is unstable with

respect to a small perturbation. As a result, those with smaller interlamellar spacings

will have a growth velocity less than its immediate neighbour and hence the bigger

lamella will begin to outgrow the smaller one leading to its elimination. This leads

to a situation where any spacing with a velocity smaller than that corresponding to

the maximum is inherently unstable and will change quickly to that of the maximum

velocity. This was referred to as the lower catastrophic limit.

Using an argument similar to the one above, it has been shown that any spacing

with a negative ∂U/∂S will be stable with respect to a small perturbation and

the perturbations in spacing will die out leading to a perfectly uniform spacing

throughout the growing pearlite colony. Thus, this treatment based on the stability

of interface could theoretically predict the transition zone beyond which the spacings

would be stable.

In the second mechanism consider a case where the interlamellar spacing is large.

From calculations by Sundquist, it is clear that the interface shapes are dependent

largely on the interlamellar spacings. At smaller spacings, the interfaces are convex
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3.2 Interlamellar Spacing Criteria

Figure 3.1: Velocity of pearlite as a function of interlamellar spacing, adopted from
Sundquist [15]
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3.3 Pearlite Growth Based on Conventional Theories

towards austenite and at the intermediate spacings they are more or less flat, being

slightly convex or concave depending on the exact value of the spacing. At large

spacing, there is no real steady-state shape. The interface may double back to

expose a new cementite-austenite interface. This may lead to the branching of a

new cementite lamella and a concurrent decrease in the interlamellar spacing. This

imposes an upper limit on the spacing that pearlite can maintain under a steady-

state. Pearlite growing with a larger spacing than this would be subjected to a sudden

introduction of a new cementite lamella. This in effect would lead to a reduction in

spacing and hence the upper catastrophic limit.

3.3 Pearlite Growth Based on Conventional The-

ories

The existing theories of pearlite growth are based on either the volume diffusion-

control [6–11] or the interface diffusion-control [15, 16]. There have been reports

that the rates calculated using the volume diffusion mechanism significantly under-

estimate those measured [12, 14, 58] and that the latter is a dominant mode of solute

transport. The interface diffusion mechanism has also been considered in the context

of cellular precipitation where the cell boundary provides an easy diffusion path, with

an activation energy for the boundary diffusion coefficient which was less than half

that for volume diffusion [53].

Both these approaches to determine the growth rate of pearlite in a Fe-0.8C wt%

steel are now examined. The first one is based on the volume diffusion–control using

the Zener-Hillert theory. This theory assumes that pearlite grows by the redistribu-

tion of carbon through the volume of austenite and the transformation rate is given

by:

v =
2 D

γ
C S

SαSθ

�
c
γα
e − c

γθ
e

c
θγ
e − c

αγ
e

� �
1− Sc

S

�
(3.8)

47



3.3 Pearlite Growth Based on Conventional Theories

where c
γα
e is the concentration of carbon in austenite in equilibrium with ferrite and

the other concentration terms are interpreted in the same way. These terms were

determined using MTDATA (TCFE database) [76]. D
γ
C has been determined using

Ågren’s equation [40]. The critical spacing, Sc was calculated from the experimental

interlamellar spacing using both the maximum growth rate and maximum entropy

production rate criteria discussed in section 3.2:

Sc =
2 σ

αθ
Te

∆T ∆H
(3.9)

The σ
αθ, Te and ∆H corresponds to the energy per unit area of ferrite-cementite

interfaces, eutectoid temperature and the enthalpy change respectively. The inter-

facial energy, σ
αθ was assumed to be 0.7 J m−2 based on the data due to Kramer

[77]. The growth rates determined using the volume diffusion theory are shown in

Fig. 3.2 and is clearly much slower than those experimentally measured by Brown

and Ridley [13].

In order to overcome the discrepancies observed in the growth rate calculated using

the volume diffusion approach and those measured experimentally, the growth rate of

pearlite was calculated wherein the mass transfer occurs through the phase boundary

which provides a much faster path for the diffusion of the solute. The growth rate

for diffusion through the pearlite-austenite interface was calculated as proposed by

Hillert [16] :

v =
12 s DB δS

2

SαSθ

�
c
γα
e − c

γθ
e

c
θγ
e − c

αγ
e

� �
1

S2

��
1− Sc

S

�
(3.10)

where s is the boundary segregation coefficient and is defined as the ratio of solute

in the phase boundary to that in the parent austenite. In case of pearlite, there

should be two such coefficients, one for the γ/α and γ/θ boundary. DB is the

boundary diffusion coefficient. Since there exists no measured value of the boundary

diffusion coefficient of carbon, an approximate value for the activation energy is

chosen which is half of that for volume diffusion [78]. The growth rates obtained using

boundary diffusion as the rate controlling step was calculated and compared with
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3.3 Pearlite Growth Based on Conventional Theories

Figure 3.2: Comparison of pearlite growth rate calculated assuming volume diffusion
in austenite and boundary diffusion (solid lines) with those determined by Brown
and Ridley (points).
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3.3 Pearlite Growth Based on Conventional Theories

the available experimental data (Fig. 3.2). It is observed that the calculated growth

rate overestimates observations by a factor of 2 at low temperatures. However,

there seems to be no sound justification for ignoring the flux through the volume

of austenite. The assumption regarding the magnitude of the activation energy for

boundary diffusion of carbon may also be crude.

Apart from the theories discussed above, Pearson and Verhoeven [14] proposed that

transformation strain enhances diffusion, but this neglects the fact that pearlite forms

by reconstructive transformation in which case transformation strains should not be

significant; furthermore, it has not been necessary to invoke such an argument in the

case of other reconstructive transformations where the closure between experiment

and theory is satisfactory [74].

Most of the comparisons between experiment and theory have been based on as-

sumptions of either volume or interface–diffusion control; in other words, mechanisms

in isolation. Fluxes through both of these processes must in practice contribute to

diffusion and the relative contributions from each of these mechanisms will vary with

circumstances.

3.3.1 Collector plate model

Aaron and Aaronson devised a way to combine the effect of volume and boundary

diffusion using a collector plate model [79]. They analysed the lengthening and thick-

ening of θ precipitates in Al-4Cu wt% which nucleate on the grain boundaries and

preferentially grow along them as allotriomorphs. The experimentally determined

lengthening and thickening rates were far too rapid to be described by the volume

diffusion of Cu towards the growing allotriomorphs. The mechanism suggests that

for lengthening of θ precipitates, Cu diffuses to the α/α grain boundaries by volume

diffusion, followed by grain boundary diffusion to the tip of growing allotriomorph.

The analysis led to the relation of the form R = k2t
1/4 where k2 is a constant. The

thickening of precipitates is controlled by the rate of diffusion of Cu along the α/θ

boundary through the broad faces of the allotriomorphs and the rate is given as
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3.3 Pearlite Growth Based on Conventional Theories

R = k2t
1/2. This mechanism assumes that the ratio of α/α grain boundary diffusiv-

ity to that of volume diffusivity is almost infinitely higher and is restricted to low

temperatures. Subsequently this model was refined by Goldman et al. to account

for the growth mechanism of Al-4Cu wt% at higher temperature, T/Tsolidus ≈ 0.91

where volume diffusion becomes significant [80].

In the case of pearlite growth in steels, there is no long-range transport of solute

since that of carbon is from the tips of adjacent ferrite lamellae. This model also

assumes that volume and boundary diffusion occur in series, which may not be a

valid argument for pearlite, where they are simultaneous. Hence it was assumed

that the collector plate model may not be applicable to pearlite growth in steels,

thus necessitating an alternative approach to consider combined fluxes.

3.3.2 Combined volume and phase boundary diffusion

Hashiguchi and Kirkaldy [57] made a first attempt by assuming parallel mass transfer

in the volume ahead of the interface and through the interface, allowing for the

Gibbs–Thomson effect at both the γ/θ and γ/α boundaries, and for mechanical

equilibrium at the various interfacial junctions. The result was a rather complex

theory which could not be implemented without making important approximations:

• in spite of the requirement of mechanical equilibrium, the interfaces with

austenite were approximated as being flat except in the close proximity of

the three–phase junctions;

• the segregation coefficient describing the ratio of the composition in the austen-

ite in contact with ferrite or cementite, and in the transformation front was

assumed to be constant, even though the interfacial energies σ
γα and σ

γθ are

not expected to be identical;

• a simplification was made that σ
γα ∝ σ

αθ and σ
γθ ∝ σ

αθ.

Whilst these approximations are entirely understandable, some clearly are inconsis-

tent with the detailed theory and the whole problem might be simplified by abandon-
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

ing the need for mechanical equilibrium. Indeed, it is not strictly necessary during

growth when the rate of free energy dissipation is large, for equilibrium configurations

to be respected as long as the process leads to a net reduction in free energy. This

can be seen during two–dimensional grain growth simulations assuming orientation–

independent boundary energies, where the triple junctions do not maintain 120◦

angles during the process of growth, as might be required by mechanical equilibrium

[81]. Another analogy is phase transformation where the chemical potential of a

particular solute can increase with the passage of the interface as long as the overall

free energy is reduced.

The goal of the present work was to derive a simplified theory which still deals

with diffusion simultaneously through the boundary and volume and to compare the

data against experiments.

3.4 Model Formulation: Mixed Diffusion-Controlled

Growth

3.4.1 Assumptions

(i) To be consistent with diffusion–controlled growth, local equilibrium is assumed

to exist at the interfaces so that the chemical potentials µ of all elements are

uniform there:

µ
γ
Fe = µ

α
Fe and µ

γ
C = µ

α
C

It follows that the compositions where the different phases are in contact are

given by tie–lines of the equilibrium Fe–C phase diagram, which were calculated

using MTDATA [76] and the TCFE database, Fig. 3.3.

(ii) Since the kinetic theory gives the growth rate as a function of interlamellar

spacing rather than a unique velocity, it is assumed that the actual spacing

adopted is that which leads to a maximum in the rate of entropy production

[57] although the maximum growth rate criterion [6] is also considered for the

sake of completeness.
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

(iii) The model is created for conditions in which fluxes from diffusion within the

austenite ahead of the transformation front, and that via transport through

the transformation front both contribute to growth.

Figure 3.3: The extrapolated phase boundaries for equilibrium between austenite
and cementite, and austenite and ferrite, in the Fe–C system.

3.4.2 Weighted average diffusion coefficient

The diffusion coefficient D
γ
C of carbon in austenite is strongly dependent on concen-

tration [82, 83]. A model which takes into account the thermodynamics of carbon–

carbon interactions [42, 43] has been used in determining the diffusion coefficient,
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

Table 3.1: Parameters used in the calculation of D

Temperature a
γ ∂a1

γ

∂θ η θ D

K m2 s−1

840 14.87 329.22 871.85 8.49×10−2 2.52×10−13

880 7.56 176.66 399.29 7.15×10−2 4.13×10−13

920 3.88 99.75 195.80 5.85×10−2 6.42×10−13

940 2.78 76.41 140.25 5.23×10−2 7.86×10−13

960 1.98 59.33 101.97 4.64×10−2 9.53×10−13

970 1.67 52.56 87.45 4.35×10−2 1.04×10−12

980 1.41 46.73 75.31 4.07×10−2 1.14×10−12

D
γ
C, the details of which were discussed in the previous chapter. The weighted aver-

age diffusion coefficient accounting for the variation of carbon in austenite upto the

pearlite-austenite interface has been calculated based on the equation 3.11 derived

by Trivedi [41].

D =

� cγα
e

cγθ
e

D{cγ
, T}

c
γα
e − c

γθ
e

dc
γ (3.11)

This equation is solved numerically using the trapezoidal rule and the composition

limits have been determined using MTDATA and TCFE database [76]. All the pa-

rameters used in the calculation of weighted average diffusivity of carbon in austenite

are listed in Table 3.1, the details of which were discussed in chapter 2.

3.4.3 Combined fluxes during pearlite growth

A model is developed here which accounts for fluxes through both the austenite and

within the transformation front, on average parallel to the front [64]. For reasons

stated earlier, the notion of interfacial tensions being balanced at three–phase junc-

tions is abandoned. As in previous work, it is assumed that diffusion within the

interface can be described by a single distribution coefficient, rather than two sep-
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

arate values corresponding to the α/γ and θ/γ interfaces. Fig. 3.4 illustrates the

geometry of the pearlite colony.

Figure 3.4: Geometry of pearlite colony. The dashed arrows indicate the volume and
boundary diffusion processes. The thickness of the boundary is written δ.

The flux JV away from the ferrite (equal to that towards the cementite), through

the volume of the austenite is given by:

JV = −A
α

Vm
D

dc

dx
=

D b S
α

Vm

(cγα − c
γθ)

Sα/2
(3.12)

where Vm is the molar volume of austenite (7.1×10−6 m3 mol−1) and to a good

approximation assumed to be the same for all the phases involved, and A
α is the
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

cross sectional area of the interface, which for a unit depth into the diagram (Fig. 3.4)

is equal to S
α, and the diffusion distance parallel to the interface, from the ferrite

to the cementite is on average S
α
/2. An equation similar to the one above can be

written for the boundary–diffusion flux JB of carbon through the interface between

austenite and ferrite towards the cementite [8]:

JB = −A
α

Vm
DB

dc

dx
=

12DBδ(cγα − c
γθ)

Vm S
(3.13)

Interfaces are created between cementite and ferrite during the growth of pearlite,

thus consuming some of the free energy ∆G of transformation. All of the available

free energy is consumed in this way when the spacing between lamellae reaches a

critical value Sc = 2 σ
αθ

Vm/∆G, where σ
αθ is the α/θ interfacial energy per unit

area. The growth rate then becomes zero but for S > Sc the free energy change

is reduced by a factor (1 − Sc/S) and the concentration difference driving diffusion

becomes (cγα
e − c

γθ
e ) (1− Sc/S) [6].

The total flux arriving at the θ/γ interface is a combination from transport

through the volume of austenite and via the boundary. It follows that for a growth

velocity v, the material balance at the transformation front is given by equation 2.27.

Combining equations 3.12, 3.13 and 2.27 yields:

v S
α
S

θ

S
(cθγ − c

αγ) = 2 D (cγα − c
γθ) +

12 DB δ(cγα − c
γθ)

S
(3.14)

where c is the average concentration in the austenite. The growth velocity is now

isolated as follows:

v =

�
c
γα
e − c

γθ
e

cθγ − cαγ

� �
2 D +

12DB δ

S

�
S

Sα Sθ

�
1− Sc

S

�
(3.15)

The problems associated with using a correct boundary diffusion coefficient have

already been emphasised. It was decided therefore to deduce this using measured

data on growth rate and interlamellar spacing, due to Brown and Ridley [13], based

on the more reliable method of size distributions rather than the observation of what
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might be the largest colony. Given that D is well established, the only unknown

then becomes DB (Fig. 3.5), from which an activation energy for boundary diffusion

during the pearlite reaction was derived to be QB ≈ 97 kJ mol−1, with

DB = 8.51× 10−5 exp

�
−96851 J mol−1

RT

�
m2 s−1 (3.16)

It is interesting that unlike previous work [21, 57] where the activation energy

for boundary diffusion was found to be greater than for volume diffusion in both

austenite and ferrite, here QB is bracketed between Q
α
V = 70 kJ mol−1 and Q

γ
V =

135 kJ mol−1 [84].

Figure 3.5: Arrhenius plot of DB versus inverse of temperature in Fe-0.8C wt% steel
for mixed mode diffusion–controlled pearlite growth.

The ratio of boundary to volume diffusion flux is shown as a function of temper-
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

ature in Fig. 3.6; as might be expected, boundary diffusion dominates except at the

highest of transformation temperatures.

Figure 3.6: Relative contributions of volume and boundary diffusion fluxes during
the formation of pearlite in Fe-0.8C wt% steel.

3.4.4 Evaluation of spacing criteria

In order to determine the growth rate of pearlite for the new mixed–diffusion theory,

it is imperative to determine the relation between S and Sc. How these numbers are

modified for the mixed volume and boundary–diffusion modes is discussed here.

Maximum growth rate: The velocity can be plotted as a function of S/Sc over

a range of temperatures. The concentration gradient is constant for a particular
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

temperature and hence would not affect the relative position of the curve with respect

to S/Sc. Approximate value of interlamellar spacing is assumed and the critical

spacing is evaluated assuming σ
αθ = 0.7 J m−2, since the S/Sc is independent of the

interfacial energy:

Sc =
2 σ

αθ

∆G
(3.17)

The term, ∆G is the total free energy available during the transformation and is

calculated using MTDATA and TCFE database [76]. The interlamellar spacing is

then gradually increased to generate a set of S/Sc data. From the plot of velocity

versus spacing, the S/Sc at which the velocity is maximum is determined. Fig. 3.7

shows the pearlite growth velocity versus spacing plots for a range of temperatures.

The values of S/Sc vary from 1.36 to 1.53 over the range of temperatures studied.

Maximum rate of entropy production: The rate of entropy production Ṡ based

on the equation 3.7 has been calculated using an approach similar to the one discussed

for the maximum growth rate. The maximum in Ṡ is obtained when S/Sc is between

2.01 to 2.17 depending on the temperature of transformation, but independent of

the interfacial energy σ
αθ. The variation of Ṡ as a function of spacing is shown in

Fig. 3.8 for the range of temperatures under consideration.

3.4.5 Interfacial energy

The interfacial energy per unit area of the ferrite-cementite interfaces, (σαθ) plays

a vital role during the pearlite transformation. In the absence of experimental data

for interlamellar spacing, it becomes imperative to know the interfacial energy in

order to predict the growth rate of pearlite. Zener [6] has shown that the pearlite

growth is maximum when the interfacial energy of ferrite-cementite interfaces is half

of the total free energy available for transformation assuming diffusion–controlled

growth. Kramer et al. deduced the σ
αθ using Zener’s free energy and spacing data

to be 2.8 J m−2. They calculated the energy of ferrite-cementite interfaces using a

calorimetric method [77]. Interfacial enthalpy of pearlite-austenite was measured as
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(a) (b)

(c) (d)

(e)

Figure 3.7: (a) Variation in the growth rate as a function of the normalised inter-
lamellar spacing.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: (a) Variation in the entropy production rate as a function of the nor-
malised interlamellar spacing. Comparison of maximum growth rate and entropy
production rate at 900 K is shown in Fig. 3.8 (f).
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Table 3.2: Published values of the ferrite–cementite interfacial energy per unit area.

Reference Temperature Method σ

K J m−2

[87] 861 coarsening rate and data fitting 0.56
[88] 903-963 coarsening rate and data fitting 0.248-0.417
[77] 1000 interfacial enthalpy measurement 0.7±0.3
[89] 973 dihedral angle 0.52 ±0.13
[90] - atomistic simulation 0.615
[91] - interfacial enthalpy measurement 0.5 ± 0.36

a function of spacings and the entropy value for the interface was assumed as (6.6×
10−4 J m−2 K−1) in order to compute the interfacial energy. The value of interfacial

entropy for ferrite-cementite interfaces was assumed based on those measured for gold

(0.5×10−3 J m−2 K−1) [85] and silver 1×10−3 J m−2 K−1 [86] determined from surface

tension measurements. The corresponding interfacial free energy was estimated to

be 0.7 ± 0.3 J m−2 at 727 ◦C.

Das et al. [87] and Deb et al. [88] calculated the ferrite-cementite interfacial en-

ergy for coarsening of cementite particles in ferrite matrix in steel. The σ
αθ is ob-

tained from the coarsening rate constant, which is determined by fitting experimental

growth rate data. It is worth noting here that these data are for a different morphol-

ogy (spherical) of ferrite-cementite interface which is lesser than in case of lamellar

pearlite. Martin and Sellars calculated the interfacial energy for lenticular cementite

precipitates on the ferrite grain boundaries based on dihedral angle measurements

and reported a value of 0.52 ±0.13 Jm−2. Ruda et al. computed the ferrite-cementite

interfacial energy in Fe-C alloy using atomistic simulations and reported the same

to be 0.615 J m−2. Although there was no mention about the temperature at which

this value was reported, it can be assumed to be the same at 0 K as is normally the

case in all the first principle calculations. Independent, published measurements of

σ
αθ are listed in Table 3.2.
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In the absence of any reliable data on the interfacial energy, it is possible to derive

from the kinetic data on pearlite growth, the interfacial energy relating cementite

and ferrite [57].

σ
αθ =

1

2
Sc ∆G ≈ Sc ∆T ∆H

2 Te
(3.18)

where the approximation on the right hand side is based on the assumption that

the entropy of transformation in independent of temperature [25, 46, 78]. This ap-

proximation has been avoided by calculating both the enthalpy and entropy changes

(Table 3.3) using MTDATA [76], Fig. 3.9. Values of Sc can be calculated using mea-

sured spacings from Brown [13] and the entropy production calculations illustrated

in Fig. 3.8. The interfacial energy derived in this way is illustrated as a function

of temperature in Fig. 3.10. The interfacial energy values calculated here vary from

those of Hashiguchi and Kirkaldy [57], though the spacing and velocity data are in

both cases from the same experimental measurements [58]. This difference may be

attributed to two factors:

(i) The σ calculated [57] is based on the assumption that the entropy change during

the pearlite transformation is independent of temperature, whereas it is shown

to be a function of temperature in the present work.

(ii) The computation of S/Sc based on the maximum entropy production rate was

the range 2.18–2.4 [57], whereas in the present work it has been shown graphi-

cally that this ratio lies in the range of 2.03–2.17 for the temperatures studied.

This is attributed to the different growth equations used in the two studies.

Fig. 3.10 compares the values of interfacial energy derived from pearlite growth

rate measurements with the independently measured values. The discrepancies are

large for the lower transformation temperatures, relative to the data based on coars-

ening reactions and dihedral angle measurements. These are both techniques which

are kinetically slow; it is possible therefore that the measured values are influenced

by the segregation of solutes to the interface, which would lead to a reduction in

energy. In contrast, the cementite–ferrite interfaces in pearlite are created fresh as
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

Figure 3.9: Free energy, enthalpy and entropy change as a function of temperature
for a Fe-0.8C wt% steel.

a consequence of transformation. Entropy requires that the extent of segregation

should be reduced at high temperatures. One further difficulty is that the diffusivity

DB is likely to increase with interfacial energy since a high value of the latter implies

a less coherent interface. We are not able to account for this effect given the absence

of relevant grain boundary diffusion data.

The growth rate determined using the mixed–diffusion controlled growth of pearlite

described here gives a reasonable match with those predicted experimentally. Al-

though the growth rate is calculated based on fitting the experimental data, the

value of activation energy obtained is realistic, since it lies between the activation

energy for volume diffusion in both ferrite and austenite. This approach proves to be

a useful one, especially due to the lack of boundary diffusion data of carbon and also

the segregation coefficient of the solute at the γ/α and γ/θ phase boundary. The

match with experimental data is better when compared with prior work, (Fig. 3.11)

of Puls and Kirkaldy [47] who had assumed the flux only through the austenite alone.

Their predicted growth rates were lower than those measured experimentally by a
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Figure 3.10: Comparison of calculated ferrite-cementite interfacial energy values and
those reported in previous work by Hashiguchi and Kirkaldy [57].

Table 3.3: Calculated values of the ferrite–cementite interfacial energy per unit area
based on MTDATA (TCFE database)

Temperature G
γ

G
α+θ ∆G S Sc σ

αθ

K J J J m−3 m m J m−2

920 -6.56×107 -6.64×107 -5.61×107 7.8×10−8 3.83×10−8 1.07
928 -6.66×107 -6.73×107 -4.98×107 8.3×10−8 4.07×10−8 1.01
940 -6.81×107 -6.87×107 -4.07×107 9.7×10−8 4.75×10−8 0.97
948 -6.91×107 -6.96×107 -3.48×107 1.19×10−7 5.83×10−8 1.01
958 -7.04×107 -7.08×107 -2.76×107 1.54×10−7 7.52×10−8 1.04
976 -7.26×107 -7.28×107 -1.59×107 2.61×10−7 1.25×10−7 0.99
985 -7.39×107 -7.40×107 -9.30×106 3.84×10−7 1.80×10−7 0.84
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3.4 Model Formulation: Mixed Diffusion-Controlled Growth

factor of 2-4. It was suggested that the effective volume diffusion coefficient (which

is the weighted average diffusion coefficient) of carbon in austenite is independent

of temperature and hence trying to extract the activation energy from Fe-C pearlite

data would be fruitless. However, our calculation shows that the weighted average

diffusion coefficient, D does vary quite substantially with temperature and the same

has been shown in Table 3.1.

The results were compared with those of Hashiguchi and Kirkaldy [57] who also

assumed mass transport through the volume and pearlite-austenite phase boundary.

It appears that they used the experimental data of Brown and Ridley [58] and Frye

et al. [12] which were determined using a maximum nodule radius method, which

has a limitation that it measures the maximum rather than an average growth rate.

Hence it is difficult to apply it to rapidly transforming specimens and cannot be

used once there is a significant impingement of the pearlite colonies. When the

approximated model [57] was fitted to experimental data, rather large σ
αθ interfacial

energies were obtained, and the activation energy for the boundary diffusion of carbon

was deduced to be in the range of 159920–169925 J mol−1, which surprisingly was

greater than for volume diffusion in both ferrite and austenite. It is noteworthy that

Sundquist [15] reported an even larger activation energy for the boundary diffusion of

carbon, commenting that the expected value should be much smaller; he attributed

the discrepancy to a possible role of substitutional solute impurities.

Fig. 3.12 compares the experimental growth rates of pearlite obtained by various

researchers for nearly eutectoid Fe-C alloys. However there is an important distinc-

tion with respect to the methods used by them. Frye et al. [12], Hull [92] and Brown

and Ridley [58] measured the growth rates of pearlite using the maximum size of the

pearlite colony. However Brown and Ridley also measured the same using two other

methods namely, the Cahn-Hagel method [27] and another based on the size distri-

bution of pearlite nodules. The latter seems to be a more comprehensive method

since it is based on the size distribution rather than on the size of the largest colony.

In order to calculate the pearlite growth rate for Fe-C alloy in the absence of

interlamellar spacing data, one must have a knowledge of the interfacial energy per
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Figure 3.11: Temperature versus pearlite growth rate plot for Fe-0.8C wt% steel.
Solid lines are calculated. The data from [58] based on particle size analysis are
regarded as the most reliable for reasons discussed in the text.

67



3.4 Model Formulation: Mixed Diffusion-Controlled Growth

Figure 3.12: Comparison of experimental pearlite growth rate measured by various
researchers [12, 58, 92].
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unit area between ferrite and cementite, σ
αθ. Since this is shown to be a variable

quantity with respect to temperature (Fig. 3.10), it is appropriate to calculate the

growth rate for the minimum (0.84 J m−2), maximum (1.07 J m−2) and average value

(0.99 J m−2) of σ
αθ and determine the sensitivity of growth rate to these changes.

Fig. 3.13 shows the effect of σ
αθ on the growth rate for Fe-0.8C wt% steel. The

average value of σ
αθ gives a good match with the experimental data of Brown and

Ridley based on the particle size method. The difference between the growth rates

calculated using the maximum σ
αθ do not vary significantly as compared to the

average value, however it tends to give a better match with the experimental data

at higher temperatures.

Figure 3.13: Sensitivity of the growth rate calculations to the α/θ interfacial energy.
The points represent the experimental data and the red dash-dot line represents the
change in growth rate as a function of temperature dependant interfacial energy.
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3.5 Conclusions

A simplified theory has been proposed which combines the contributions from volume

and boundary diffusivities, to represent the pearlite growth mechanism in Fe–C steels.

The match with experimental data is better when compared with prior work, in

spite of the fact that considerations of equilibrium at junctions between interfaces

are abandoned. As might be expected, the flux through the boundary between

pearlite and austenite dominates the transport of carbon at all but the highest of

transformation temperatures. The theory for the first time leads to a realistic value

for the activation energy for the grain boundary diffusion of carbon, less than that

for volume diffusion in austenite and greater than for volume diffusion in ferrite.

The maximum entropy and growth rate criteria have been derived in the context

of this mixed-mode diffusion theory, with the result that S/Sc is not constant but

becomes a function of the transformation temperature. The ferrite–cementite inter-

facial energy has been deduced assuming that the pearlite interlamellar spacing is

determined by the need to maximise the entropy production rate. The energy is lower

than determined in previous work, but still much higher than reported in independent

experiments, possibly because the interfaces created during pearlite transformation

are fresh. It has been shown that in the absence of interlamellar spacing data, it is

possible to calculate the critical and the nominal spacing based on the average energy

of ferrite-cementite interfaces over a range of temperatures, although at higher tem-

peratures, the maximum energy value would give a better prediction of the pearlite

growth rate.

In is argued that this simplified theory avoids many of the approximations re-

quired to implement a more complex model in which the shape of the transformation

front is determined by equilibrium at interfacial junctions.
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Chapter 4

Influence of Diffusion in Ferrite on

Pearlite Growth

4.1 Introduction

The theories discussed in the previous chapter for the mechanism of growth of

pearlite, deal with either the diffusion of the solute through the austenite or the

pearlite–austenite phase boundary in isolation or simultaneously through both of

these. The mixed diffusion–controlled growth of pearlite has been shown to be a

reliable theory to explain the experimentally measured growth rates [64]. Nakajima

et al. [55] used a phase field model to treat the possibility that a flux in the ferrite,

behind the pearlite–austenite transformation front, also contributes to the growth

rate of pearlite. However they neglected the flux within the transformation front

itself. This chapter describes the analytical treatment of growth of pearlite which

considers the contribution of all three of the fluxes, that through the austenite, the

transformation front and within the ferrite.
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4.2 Diffusion in Ferrite

The diffusivity of carbon in ferrite is about two orders of magnitude higher than that

in the austenite and hence one may be tempted to consider it to be a dominant factor

to explain the growth rates observed experimentally. Cahn and Hagel examined the

diffusion in ferrite alongside that in austenite, but they showed that the flux through

the ferrite would still be lower on account of the smaller concentration gradient in

ferrite despite the higher diffusivity [27]. It was suggested that the evidence of carbon

diffusion through the ferrite can be verified experimentally depending on whether or

not the carbide lamellae taper behind the transformation front. But they did not

observe such behaviour and hence rejected the idea.

Nakajima et al. assumed that the flux through ferrite plays a key role in determin-

ing the pearlite transformation along with that in the austenite [55]. They developed

a multi-phase field model which accounted for simultaneous diffusion through the fer-

rite and austenite. Since the diffusivity of carbon in ferrite is higher than that in

austenite, it was argued that this would lead to a better agreement with the ex-

perimental growth rates. The interfacial energy of all the interfaces involved was

assumed to be 1.0 J m−2, but the basis for selection was not clearly stated. The

mobility of α/θ interface was assumed to be three orders of magnitude lower than

the two other interfaces due to the instabilites arising out of the large composition

differences involved; this is an artefact of the phase field model. The diffusion coef-

ficients of carbon in austenite and ferrite were taken from the handbook [93]. The

results of the phase field calculations show that the pearlite growth velocities for

diffusion simultaneously through ferrite and austenite are higher than that through

the austenite alone by about 4 times. It was suggested that the coupled diffusion

through the ferrite and austenite gave a better agreement with the experimental data,

although it did not fully explain them. Their model also showed a tapered profile

of cementite with gradual increase in the thickness behind the transformation front,

Fig. 4.1, an outcome of the diffusion in ferrite. The figure also shows the difference

in concentration profile of carbon at the transformation front in both the cases. For
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the case of diffusion through austenite and ferrite, the concentration of carbon at the

transformation interface is lower than in case of its diffusion in austenite, attributed

to some of the carbon being lost via diffusion in ferrite.

Figure 4.1: Comparison of carbon concentration profile during pearlite growth for
different diffusion paths. ∆T = 30 K and S = 0.3 µm. Reproduced from Nakajima
et al. [55] with permission from the journal.

4.3 Model Formulation

In order to account for the simultaneous diffusion in ferrite, austenite and the trans-

formation front, an analytical treatment is presented here which combines the fluxes

through all of these. For the growth velocity, v, the material balance at the trans-

formation front is given by:

v S
α

Vm
(c̄− c

αγ) =
v S

θ

Vm
(cθγ − c̄) =

v S
α
S

θ

S Vm
(cθγ − c

αγ) (4.1)
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where c̄ is the average concentration of carbon in austenite. The flux through the

volume of austenite as described in the chapter 3 can be written as:

JV = −A
α

Vm
D

dc

dx
=

D b S
α

Vm

(cγα − c
γθ)

Sα/2
(4.2)

where Vm is the molar volume of austenite (7.1×10−6 m3 mol−1) and to a good

approximation assumed to be the same for all the phases involved. A
α is the cross

sectional area of the interface, which for a unit depth into the diagram (Fig. 4.2)

is equal to S
α, and the diffusion distance parallel to the interface, from the ferrite

to the cementite is on average S
α
/2. Similar equations can be written for the flux

through the boundary and the ferrite. Hence the total flux of solute arriving at the

transformation front is a combination of all of these. Combining equation 4.1 along

with other diffusion fluxes leads to:

Figure 4.2: Geometry of pearlite colony. The arrows indicate the diffusion flux
through austenite, ferrite and the phase boundary.
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v S
α
S

θ

S
(cθγ − c

αγ) = 2 D (cγα − c
γθ) +

12 DB δ(cγα − c
γθ)

S
− 2 Dα(cαγ − c

αθ)

x
(4.3)

where the term on the extreme right represents the flux within the ferrite, towards the

cementite, behind the transformation front. c
αγ and c

αθ represent the concentrations

at the respective interfaces, which may not be necessarily given by equilibrium, since

as will be discussed latter, the thickening of cementite is interface–controlled and

not controlled by diffusion. Dα is the diffusivity of carbon in ferrite. The average

diffusion distance from the ferrite–austenite, to its interface with the cementite is

written 0.5 x S
α, where x is some factor, the calculation of which will be discussed

at a latter stage. S
α and S

θ have been determined by applying Lever rule and the

interlamellar spacings, S are calculated using regression equation obtained from the

measured data of Brown and Ridley [13].

The sign of this flux is different from the other two terms because it occurs in

the product phase leading to a net reduction in the other two fluxes. As a result of

flux through the ferrite, the effective concentration of carbon at the transformation

front is reduced and hence the thickness of cementite at or near the transformation

front will be lower than that far away from it. In order to work out the modified

thicknesses of cementite and hence the ferrite lamellae as a result of diffusion flux

in ferrite, a new factor f (f = ∆c ×D) is evaluated for ferrite as well as austenite.

The ∆c and D represents the concentration difference and diffusivity in ferrite and

austenite. Since f
α is greater than f

γ, the thickness of cementite is reduced by a

proportionate amount.

For the diffusion–controlled growth of cementite, the rate at which carbon is

incorporated in the growing cementite must equal the diffusion flux in ferrite:

v
θ
D(cθα

e − c
αθ
e ) = Dα∇C

α (4.4)

v
θ
D is the growth rate of cementite for diffusion–controlled transformation and ∇C

α is

the concentration gradient in ferrite. Dα is determined based on a model by McLellan

et al. [94] and calculated using the MAP subroutine [95]. Fig. 4.3 represents a
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schematic Fe-C phase diagram and depicts the various concentration terms under

discussion.

Figure 4.3: Schematic of Fe-C phase diagram.

It is possible that the carbon flux in ferrite calculated in this manner may or may

not be commensurate to what the growing cementite can absorb. In order to evaluate

the thickening rate of cementite, we calculate the migration rate of ferrite-cementite

interface using the interface–controlled theory. The amount of free energy dissipated

at the interface is proportional to the velocity of the interface and is given by:

∆G
αθ
I

Vm
=

v
θ
I

Mαθ
(4.5)

where G
αθ
I is driving force for cementite growth and is calculated using the MTDATA
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and TCFE database. M
αθ is the mobility of the ferrite-cementite interface, and is

taken from the work of Nakajima et al. and although the mobility should change

with temperature, in the present calculation, due to absence of an accurate data, it is

taken as constant (5×10−15 m4 J s−1). The velocity of the ferrite-cementite interface

is shown in Fig. 4.4 and it appears to be about three orders of magnitude lower

than if it were to be calculated based on diffusion–controlled growth. This leads

to the conclusion that the rate of thickening of cementite is an interface and not

a diffusion–controlled process. Using the mobility equation 4.5, the actual gradient

Figure 4.4: Comparison of thickening rates of cementite using interface and diffusion–
controlled growth mechanisms.

within the ferrite is given by a mass balance, that the flux must equal the rate at

which the cementite absorbs carbon as it grows:

Dα (cαγ − c
αθ)

0.5xSα
= v

θ
D(cθα

e − c
αθ
e ) (4.6)
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The concentration gradient in ferrite obtained here seems to be lower than that based

on the equilibrium concentrations used in diffusion–controlled growth of cementite.

From the knowledge of respective carbon diffusion fluxes, the growth rate of pearlite

can be determined for the transport of solute through the ferrite, austenite and the

phase boundary using the equation :

v = S

�
�
2 D (cγα

e − c
γθ
e ) + 12 DB δ(cγα

e − c
γθ
e )/S

��
1− Sc/S

�
− 2Dα(cαγ − c

αθ)/x

SαSθ(cθγ
e − c

αγ
e )

�

(4.7)

The term x in the average diffusion distance in ferrite, mentioned previously is

given by the ratio of v/v
θ
I , where v is the experimental growth rate of pearlite [13].

This is because a relatively large pearlite growth rate would lead to greater diffusion

distances within the ferrite. The maximum rate of entropy production criterion has

been used to determine the critical spacing, Sc.

Fig. 4.5 shows the pearlite growth velocity determined by Nakajima et al. for the

diffusion flux in γ and γ + α using multi–phase field calculations along with the

analytical solution using diffusion only in the austenite phase. Although, the flux

through γ + α gave a better match as compared to the diffusion in austenite, it still

did not fully explain the measured growth rates [13]. This may be attributed to

the following two factors: (i) the flux through the pearlite-austenite interface was

neglected and (ii) the underlying uncertainty in the choice of interface mobilities.

Their results for simultaneous flux through austenite and ferrite are lower than those

calculated by us for a similar situation and the difference may be attributed to the

diffusivities used by them for both ferrite and austenite which were lower than those

in our calculations by 2-5 times.

Although it was shown in the previous chapter that the diffusion through austenite

and the phase boundary adequately explains the measured rates of pearlite growth in

Fe-C alloys, the same was calculated analytically using the equation 4.7 incorporat-
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ing the fluxes through ferrite, austenite and the phase boundary. Fig. 4.6 compares

the growth rates of the three flux model against that involving only boundary and

volume diffusion in the austenite. The results indicate that inclusion of the flux

through the ferrite would indeed lead to an increase in the growth rate, but the

model (including the austenite and phase boundary) without the flux within the

ferrite actually represents the experimental data rather well.

Figure 4.5: Comparison of pearlite growth rates. The points represent the phase field
calculations (Nakajima et al.) and the lines are calculated. Red line indicates the
growth rate based on analytical model [55] and black line indicates those calculated
in the present work.

4.4 Conclusions

The pearlite growth rates have been calculated in a Fe-0.8C wt% steel assuming the

diffusion flux through the austenite, ferrite and the phase boundary. Inclusion of

flux through the ferrite does lead to an increase in the growth rate as compared to
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Figure 4.6: Calculated growth rates of pearlite based on phase field calculations with
those in the present work assuming the 2 (boundary and austenite) and 3 (austenite,
boundary and ferrite) fluxes. The points represent the experimental data.

80



4.4 Conclusions

that through austenite alone, although the agreement with the experimental data is

still not good. Rather the match between the model based on the diffusion through

the austenite and the phase boundary is much better when compared with the mea-

sured growth rates. The greatest uncertainty in the three–flux model arises in the

mobility of the cementite–ferrite interface for which there are no experimental data.

It was also pointed out earlier that evidence for the thickening of cementite behind

the transformation front is weak. To summarise, it does not at the moment seem

necessary or justified to include any flux within the ferrite to explain pearlite growth

data.
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Chapter 5

Pearlite Growth in Ternary alloys

5.1 Introduction

In the previous chapters, a method for calculating the growth rate of pearlite in

a binary Fe–C system was established [64], without making a priori assumptions

about whether the process should be controlled by the diffusion of carbon in the

bulk of the parent phase, or short–circuited by diffusion in the transformation front,

or whether diffusion through the ferrite behind the transformation front plays a

role. The method permits all processes to occur simultaneously within an analytical

framework with the extent of contribution from a particular mechanism depending

naturally on circumstances such as the supercooling below the equilibrium temper-

ature and the pertinent diffusion coefficients.

The purpose of this chapter is to extend this treatment to ternary steels desig-

nated Fe–C–X, where ‘X’ stands for a substitutional solute such as manganese. The

complication here is that the diffusivity of a substitutional solute is far smaller than

that of interstitial carbon. It then becomes difficult to discover conditions in which

all solutes can maintain local equilibrium at the transformation front. The problem

was elegantly solved some time ago in the case of the growth of allotriomorphic ferrite

from austenite [59–62]. In essence, there is an additional degree of freedom afforded

by the presence of the second solute which permits equilibrium between two phases
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to exist for a range of compositions, rather than being defined uniquely for a binary

alloy. This means that it is possible to pick interface compositions which maintain

local equilibrium and yet allow the fluxes of the fast and slow diffusing species to

keep pace.

The situation for pearlite is further complicated by the fact that two phases, fer-

rite and cementite, grow in a coupled manner at a common front with the austenite.

It is even possible that local equilibrium, although a comforting and well–defined

concept, is not in fact maintained during growth. It is relevant therefore to begin

with a short assessment of the experimental data that exist on the partitioning of

solutes as growth occurs.

5.2 Partitioning of Substitutional Solutes

Partitioning describes the redistribution of solute between the phases participating

in the transformation process. Early studies in the context of pearlite in Fe–C–Mn

and Fe–C–Cr indicated a so–called no–partition temperature below which the sub-

stitutional solute does not redistribute and pearlite growth is limited by the diffusion

of carbon [17, 18]. It was argued that above this temperature, it is the diffusion of X

through the transformation interface that determined the growth rate. Fig. 5.1 shows

the partitioning data obtained by Razik and co-workers for Mn and Cr containing

steels which depicts a transition from partitioning to zero–partitioning of these ele-

ments. Sharma et al. [70] calculated the pearlite growth rates for Cr containing steels

using a similar argument, but they too could not justify the experimentally observed

growth rates. However, neither of these scenarios was able to correctly estimate the

growth rate at low temperatures. The equilibrium partition coefficients were cal-

culated for steels containing Mn and Cr using MTDATA and TCFE database and

compared with those obtained by Razik et al. for steel containing Mn (Fig. 5.2). The

coefficient for Cr was much larger than that for Mn owing to its higher tendency to

segregate to cementite.

Picklesimer [19] observed partitioning of Mn to cementite based on the chemi-

cal analysis of the extracted carbides for a 1.0Mn wt% eutectoid steel above 640◦C.
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(a)

(b)

Figure 5.1: Partition coefficient of Mn and Cr in (a) Fe-C-Mn [17] and (b) Fe-C-
1.29Cr wt% [18] steels as a function of reciprocal temperature.
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Figure 5.2: Equilibrium partition coefficient calculated using MTDATA as a function
of inverse of temperature.

These data involved a contribution of Mn partitioning from ferrite to cementite be-

hind the growth front (the steel was held at the transformation temperature for 24

hours) and hence it was difficult to exactly determine the no-partitioning tempera-

ture.

Al-Salman et al. [66] found that both chromium and manganese partitioned into

cementite at the growth front in a Fe–Cr–Mn–C alloy down to a transformation

temperature of 600◦C, but were unable to identify a no–partition temperature. Ex-

periments conducted with better resolution on Fe–C–Cr revealed that chromium in

fact continues to partition in this manner to temperatures as low as 550◦C [96], with

the extent of partitioning increasing with temperature; once again, a no–partitioning

temperature could not be identified. It was demonstrated that the rate of growth

at low temperatures could be explained equally well by carbon volume diffusion or

interfacial diffusion of chromium; there is of course, no logical reason to assume that

the flux of carbon should be confined to the volume without a contribution through

the interface. Hutchinson et al. studied the partitioning behaviour of steels contain-

ing 3.5Mn wt% and observed that it partitioned significantly during transformation
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at 625◦C, but the measurements were on samples heat treated for 2.5 h in which case

it is not established whether the redistribution of solute occurred during growth or

as a consequence of the extended heat treatment following the cessation of growth

[71].

The experimental observations to date can lead to one firm conclusion, that

substitutional solutes do partition at all temperatures where pearlite is known to

grow; this might be expected since the transformation is reconstructive. It may

reasonably be assumed that when a temperature is reached where the mobilities

of the substitutional atoms are sufficiently small, pearlite simply ceases to form and

austenite transforms instead by a displacive mechanism. The development of a model

for the growth process for pearlite in ternary steels is discussed and assessed in the

following sections.

5.3 Local Equilibrium in Ternary Systems

One well–known difficulty in dealing with ternary steels is that the interstitial carbon

typically diffuses many orders of magnitude faster than substitutional solutes. To

maintain local equilibrium at the interface, the rate at which solute is absorbed (or

rejected) by the growing phase must equal that at which it arrives by diffusion (or

diffuses away) from the interface. This requires the following two equations, one for

each solute, to be satisfied simultaneously:

(cγα
C − c

γθ
C )v = −DC∇cC (5.1)

(cγα
Mn − c

γθ
Mn)v = −DMn∇cMn (5.2)

where v is the velocity of the transformation front and D represents the diffusivity

of the solute identified by the subscript. Any interactions between the solutes, as-

sociated with cross-diffusion coefficients are neglected here. Given that DC � DMn,

there are two ways of choosing a tie–line which can satisfy these equations [62, 97],

involving either the maximisation of ∇cMn or the minimisation of ∇cC; in the former
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case the sluggish diffusion of Mn is compensated for by selecting a tie–line which

maximises its gradient, and in the latter case the tie–line is such that the gradient

of carbon is minimised, thus allowing the two solutes to keep pace with the single

moving interface.

For simplicity, the scenarios for the growth of a single phase, ferrite, from austen-

ite is illustrated and as will be seen later, even this simple presentation can clarify the

mechanism of pearlite growth. The case where the gradient of carbon is diminished

is illustrated in Fig. 5.3a, where the austenite is supercooled into the two–phase field

near the α + γ/γ boundary. This necessitates the partitioning and hence long range

diffusion of manganese, so the mode is designated as ‘partitioning local equilibrium’

(P–LE). In contrast, a large supersaturation, whence the austenite is supercooled to

a location in the two–phase field close to the α + γ/α boundary leads to the case

where the Mn concentration in α is similar to that in the alloy, or the ‘negligible par-

titioning local equilibrium’ (NP–LE) mode (Fig. 5.3b). Note that both cases involve

local equilibrium at the interface and are exclusive; Fig. 5.3c shows the domains of

the two–phase field within which each of the mode operates. A simple examina-

tion of the location of the alloy within the α + γ phase field therefore can establish

whether or not Mn will partition during ferrite growth or whether growth will oc-

cur with negligible partitioning of the substitutional solute. The important point to

recognise is that if partitioning must occur during ferrite growth then it necessarily

means that pearlite growth must also involve partitioning since the ferrite is one of

the components of pearlite.

This discussion of the growth of ferrite is well–established [62, 97] but it can be

applied immediately to reach conclusions about pearlite, where two phases grow from

austenite. It is necessary then to consider both the α + γ and θ + γ phase fields, and

two separate tie–lines must be chosen to fix the compositions at the α/γ and θ/γ

interfaces, as illustrated in Fig. 5.3d. The case illustrated is for NP–LE and it is only

possible for the alloy marked ‘A’ to transform in this manner because the situation

illustrated corresponds to a high–supersaturation. It has been observed that growth

with NP–LE is thermodynamically not possible for any of the experimental data

[17, 18] reported for the growth of pearlite.
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(a) (b)

(c) (d)

Figure 5.3: (a–c) Growth of ferrite with local equilibrium at the interface. The tie–
lines are illustrated in red. When the alloy (indicated by dot) in its austenitic state is
quenched into the α+γ phase field, the supersaturation is small if the alloy falls close
to the α + γ/γ phase boundary. (a) P–LE mode involving the long–range diffusion
of manganese. (b) NP–LE mode with negligible partitioning of Mn. (c) Division of
the two–phase α + γ phase field into NP–LE and P–LE domains. For more details
see [74]. (d) Schematic ternary isothermal section for the NP–LE condition satisfied
for both cementite and ferrite during the growth of pearlite, because the point ‘A’
falls under the red line which separates the NP–LE and P–LE domains for ferrite.
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5.3.1 Partitioning local–equilibrium in Fe-C-Mn

The partitioning local–equilibrium case corresponds to one in which the activity of

carbon in the austenite ahead of the interface is almost uniform, thus allowing the

flux of the slow diffusing manganese to keep pace. The activity of carbon in austenite

for the alloy composition was calculated using MTDATA. The point of intersection

of carbon iso-activity line with the phase boundaries of γ/γ+θ and γ/γ+α gives the

interfacial compositions of Mn in austenite in equilibrium with ferrite and cementite.

The tie-line corresponding to these points should then give the quantities c
αγ
Mn, c

γα
Mn,

c
θγ
Mn and c

γθ
Mn.

It is found that the iso-activity line passing through the point Fe-0.8C-1.0Mn wt %

never intersects the γ/γ + θ phase boundary, as has been observed in previous work

(Fig. 5.4) for Fe–C–Mn hypo–eutectoid steels [71]. The strict P–LE condition is

therefore impossible to achieve. The best that can be done in order to set c
γθ
Mn whilst

at the same time ensuring that c
γθ
Mn < cMn < c

θγ
Mn, where c is the average composition

of the alloy, is to assume that the tie-line connecting cementite and austenite passes

through the alloy composition as illustrated for a range of temperatures Fig. 5.5(a-

d). Fig. 5.5(e) depicts the P-LE condition at 945 K with schematic concentration

profiles at the interfaces under consideration.

5.4 Grain Boundary Diffusion

Grain boundary diffusion plays a vital role in many processes such as discontinuous

precipitation, recrystallisation, grain growth etc. It is also a well established fact that

grain boundary provides easy diffusion path to solutes due to its more open structure

than the otherwise perfect lattice structure. The influence of grain boundary diffu-

sivity on the growth rates of pearlite in Fe-C alloys has already been discussed in

the previous chapter. In case of a ternary system, Fe-C-X, this assumes greater sig-

nificance as the substitutional solute partitions into the product phase/s preferably

through the advancing phase boundary since the volume diffusivity associated with

these is much lower. However there is a difficulty in dealing with the grain boundary
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Figure 5.4: Fe-C-Mn phase diagram at 625 ◦C with the alloy ‘A ’lying in the two
phase region. Adapted from Huchinson et al. [71]
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(a) (b)

(c) (d)

(e)

Figure 5.5: The case for partitioning local equilibrium transformation of Fe–0.8C–
1Mnwt%, noting that strict P–LE is not possible since the carbon iso–activity line
does not intersect the γ + θ/γ phase boundary. The alloy is indicated by the red dot
and the red line divides the α + γ phase fields into the P–LE and NP–LE domains.
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5.4 Grain Boundary Diffusion

Table 5.1: Grain boundary diffusivities in Fe from literature. Tm is the melting
temperature.

System δ D0 QB Ref.
m3 s−1 kJ mole−1

Fe in γ-iron 0.77 ×10−13 159 [101]
Fe in γ or α-iron 5.4 ×10−14 155 [44]

Fe in γ-iron 9.7 ×10−15 75.4Tm / K [102]
Fe in γ-iron 9.44 ×10−15 83.0Tm / K [99]
Fe in γ-iron 1.5 ×10−14 74.5Tm / K [100]

diffusivity of the substitutional solutes due to the lack of experimental data associ-

ated with them. Fridberg et al. [44] suggested that the grain boundary diffusivity

of substitutional solutes like Mn, Cr, Ni etc. can be reasonably approximated to

the boundary self–diffusivity of iron as their atomic size is closer to Fe. Kaur et al.

[98] have shown that the diffusivities in case of volume self–diffusion of metals with

same crystal structure at the melting temperature are identical, irrespective of the

melting temperature difference between these. Brown and Ashby [99] and Gjostein

[100] showed that these correlations hold good in case of grain boundary self-diffusion

also. They further evaluated that the grain boundary diffusion coefficient DB, for

all the metals would approach a value of about 1-3×10−9 m2 s−1 at the melting

temperature. James and Leak [101] experimentally determined the grain boundary

diffusivity of Fe in γ-iron with a radioactive tracer and using sectioning and residual

activity technique. Table 5.1 summarises the activation energies calculated based on

the data of various researchers and they were in the range of 134-159 kJ mol−1 with

the pre-exponential terms being of the order of 10−14 − 10−15 m3 s−1.
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5.5 Pearlite Growth Rate in Fe-C-Mn Steels

5.5.1 Assumptions

It is assumed that when the transfer of atoms across the growth front is not rate

limiting; for a diffusion–controlled reaction, the compositions at the interfaces can be

estimated from the existence of local equilibrium. In such a case, the compositions

are given by tie–lines of the equilibrium ternary phase diagram so that the chemical

potentials (µ) of the species are locally uniform:

µ
γ
Fe = µ

α
Fe and µ

γ
C = µ

α
C and µ

γ
Mn = µ

α
Mn

µ
γ
Fe = µ

θ
Fe and µ

γ
C = µ

θ
C and µ

γ
Mn = µ

θ
Mn

Since the kinetic theory for pearlite gives the growth rate as a function of inter-

lamellar spacing rather than a unique velocity, it is assumed that the actual spacing

adopted is the one which leads to maximisation of the entropy production rate [60].

The preceding discussion based on experimental observations indicates that substi-

tutional solutes partition during the growth of pearlite even at the lowest of temper-

atures studied. Furthermore, none of the data are consistent with growth involving

local equilibrium with negligible partitioning. In addition, only an approximation

to the P–LE mode can apply if local equilibrium is to be maintained, since the iso–

activity line for carbon does not in general intersect the γ/γ+θ phase boundary; it is

necessary, therefore, to assume that the tie-line connecting cementite and austenite

passes through the alloy composition.

The growth rate of pearlite is then calculated based on the above set of assump-

tions bearing in mind that substitutional solutes must diffuse, and that the easiest

diffusion path for such solutes is through the interface. The substitutional solute flux

through the volume of austenite has been shown to be negligibly small in comparison.

93



5.5 Pearlite Growth Rate in Fe-C-Mn Steels

5.5.2 Activation energy for boundary diffusion

Whereas data for volume diffusion are readily available, those for boundary diffusion

are not. Use was therefore made of experimental data on pearlite growth where

interlamellar spacing have also been measured and reported. Such data are available

for 1.0Mn wt% [46] and 1.08–1.8Mn wt% eutectoid steels [17]. The data from Ridley

[46] were used to derive interfacial diffusion coefficients by fitting to the theory for

boundary diffusion–controlled growth of pearlite [7]:

v = 12sDB δ

�
c
γα
Mn − c

γθ
Mn

c
θγ
Mn − c

αγ
Mn

�
1

Sα Sθ

�
1− Sc

S

�
(5.3)

where v is the growth rate of pearlite, s is the boundary segregation coefficient for the

γ/α and γ/θ interfaces, the values of which are difficult to determine experimentally

and hence are not available. The thickness of the transformation interface, δ, is

assumed to be of the order of 2.5 Å[78]. S
α and S

θ are the thicknesses of the ferrite

and cementite platelets. In order to avoid any assumptions regarding the segregation

coefficient, a lumped value of sDB is evaluated from the experimental data of Ridley

[46]. The critical interlamellar spacing Sc at which v = 0 was calculated from

S/Sc = 2 based on the a growth rate which leads to the maximum rate of entropy

production [60, 64]. Phase equilibria were, throughout this work, calculated using

MTDATA and the TCFE database [76] and the compositions are listed in Table 5.2.

Table 5.2: P-LE compositions of manganese at the interface. (The compositions are
reported in wt%.)

Temperature c
γα
Mn c

γθ
Mn c

θγ
Mn c

αγ
Mn

K
856 10.84 0.87 3.02 1.52
898 7.0 0.97 3.08 1.45
914 5.78 0.92 2.84 1.05
934 4.36 0.94 2.84 0.86
945 3.29 0.95 2.76 0.67
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Fig. 5.6 shows a plot of ln sDB vs. 1000/T , the slope and intercept of which

yields the boundary diffusion coefficient for manganese:

sDB = 2.81× 10−3 exp

�
−164434 J mol−1

RT

�
m2 s−1 (5.4)

The activation energy determined using the above procedure corresponds to the

pearlite–austenite interface and is slightly higher than those reported by the other

researchers for the grain boundary self–diffusion. This is in line with the argument

Bokshtein et al. [39] had cited for the diffusion along the phase boundaries, which

suggests that the phase boundary does not exist as a branched network as opposed to

a grain boundary which is continuous, resulting in lesser material transport through

the former.

5.5.3 Interfacial energy

The interfacial energy per unit area σ for the ferrite-cementite interface can also

be derived from the kinetic data available for pearlite growth. The critical spacing

at which growth ceases because all of the driving force is used up in creating the

interfaces is given by equation 3.18 discussed in chapter 3. In order to avoid the as-

sumption that entropy of transformation is independent of temperature as discussed

previously, the enthalpy and entropy changes as a function of temperature have been

calculated using MTDATA [76] and the same has been shown in Fig. 5.7. The critical

spacing Sc is calculated from the experimentally measured interlamellar spacings S

[46] and the graphical relation of S/Sc shown in Fig. 5.8. The ratio S/Sc is calculated

assuming the maximum entropy production rate and is equal to 2 for the range of

temperatures studied. This is unlike the previous study on Fe–C alloy [64], simply

because with the substitutional solute it is only the flux through the interface which

is relevant, whereas in the case of carbon, the proportions contributed by volume

and interface diffusion vary significantly with temperature. The interfacial energy

estimated in this way is shown in Fig. 5.9. For reasons which are not clear, the

values thus calculated are somewhat higher than those reported for Fe–C but not
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dramatically different.

It is important to note that in all of the analysis of experimental data (v, S) that

follows, the interfacial energy does not appear explicitly since equation 5.3 requires

only the ratio Sc/S. Given measured values of S and the fact that S/Sc = 2 means

that Sc is defined. However, in order to make predictions of the growth rate in the

absence of experimental data, it clearly is necessary to know the interfacial energy.

Figure 5.6: Arrhenius plot of sDB versus inverse of temperature in Fe-1.0Mn-0.8C
wt% steel for interface diffusion controlled pearlite growth. Error bars indicate the
standard error of mean.
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Figure 5.7: Free energy, enthalpy and entropy change as a function of temperature.
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Figure 5.8: Variation in the entropy production rate as a function of the interlamellar
spacing.
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Figure 5.9: Ferrite-cementite interfacial energy compared with those from previous
study for Fe-C steels [64].
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5.5.4 Calculation of growth rate

The pearlite growth rate calculated assuming the partitioning local–equilibrium is

shown in Fig. 5.10. There is a reasonably good match with the measured growth rate

for 1.0Mn wt% steel [46]; that in itself is not surprising since the boundary diffu-

sion coefficients and interfacial energies were derived using those data. The pearlite

growth rate was also calculated for a steel containing 1.8Mn wt% and there seems

to be a good fit with the experimental rates determined by [17] at low temperatures,

although at higher temperatures the difference increases.

Figure 5.10: Pearlite growth rate as a function of temperature for Fe-1.0Mn-0.8C
wt% and Fe-1.8Mn-0.69C wt%. Solid lines are calculated.

Assuming that partitioning local equilibrium governs the conditions at the trans-

formation front, that the interfacial diffusivity derived here is generally applicable,
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and that the maximum entropy production principle applies, the significant uncer-

tainty in making predictions of the growth rate lies in the value of interfacial energy

that must be used to determine interlamellar spacings. The extent of uncertainty

may be assessed by using the maximum and minimum values determined from the

Fe–1Mn–0.8C wt% system where the range is 1.28–1.39 Jm−2 with a mean value of

1.32 Jm−2. Fig. 5.11 illustrates the difference these limits make to the growth rate

of pearlite. It is suggested that in the absence of reliable data, it may be appropriate

to use the mean value reported here accompanied by an error bar which is based on

the range of σ
αθ.

Figure 5.11: Sensitivity of the growth rate calculations to the α/θ interfacial energy.
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5.6 Pearlite Growth Rate in Fe-C-Cr System

In order to extend the applicability of the theory discussed in this paper for steels

containing Mn, the pearlite growth rate was calculated for Fe-0.82C-1.29Cr wt%

based on the work of Razik et al. [18]. There is one complication when the data

corresponding to 993 K and 1003 K are considered. Because the alloy has a carbon

concentration which is hypereutectoid, the supercoolings at these particular trans-

formation temperatures are not sufficient to permit ferrite to form until the carbon

concentration of the austenite is reduced by the precipitation of cementite. Since

both ferrite and cementite must be able to grow from austenite in order to form

pearlite, it is assumed that this condition is satisfied when the austenite composition

is reduced by the precipitation of cementite to the point where the α+γ/γ and θ+γ/γ

phase boundaries intersect, as illustrated by the point ‘A’ in Fig. 6.6. The point ‘A’,

which extrapolates to ‘B’ at the transformation temperature, is the composition of

austenite assumed to decompose into pearlite when the supercooling is insufficient

for the hypereutectoid alloy to permit the simultaneous precipitation. The average

composition of the alloy is marked ‘C’ and has a carbon concentration which falls

to the right of the extrapolated γ + α/γ phase boundary, making it impossible to

simultaneously precipitate ferrite and cementite.

It was verified that none of the reported data are consistent with the negligible

partitioning local equilibrium mode; all of the experiments involve transformation at

low supersaturations so that the analysis again is based on partitioning local equi-

librium. The boundary diffusivity of chromium, is, in the absence of data, assumed

to be identical that of manganese; this is considered to be a good approximation

[44]. The interfacial compositions are determined using MTDATA (TCFE database)

[76] and the method described earlier for the steel containing Mn. The isothermal

sections of Fe-C-Cr steel is shown in Fig. 5.13 along with the suitable tie-lines cho-

sen. The interfacial compositions used for the calculation of pearlite growth rate are

summarised in Table 5.3.

The interfacial energy has been determined for the steel containing Cr and it lies

in the range of 0.52-0.89 J m−2 for the temperature range of 1003-933 K (Fig. 5.14).
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Figure 5.12: Isopleth section of Fe-Cr-C steel with the extrapolated phase boundaries.

The lower values of σ
αθ obtained can be explained by the greater tendency of Cr to

segregate.

It is observed that the growth rate estimated assuming the partitioning local

equilibrium theory match measured values rather well as shown in Fig. 5.15. Razik

et al. [18] in assessing their experimental data also calculated growth rates but not

for the exact composition of the material studied, rather for an Fe–0.7C–1Crwt%

steel. Their calculations assume that chromium does not partition at all below the

dashed horizontal line, so that pearlite growth is controlled by carbon diffusion alone.

It is evident that such an analysis either greatly overestimates the growth rate when

carbon is taken to diffuse through the interface, and under–predicts when carbon

is taken to diffuse through the volume of the austenite ahead of the transformation

front.
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(a) (b)

(c) (d)

Figure 5.13: Isothermal section of ternary phase boundaries at various temperatures
for Fe-C-Cr steel.
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Figure 5.14: Comparison of ferrite-cementite interfacial energy for Fe-C-Cr and Fe-
C-Mn steels.
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Figure 5.15: Comparison of calculated and experimental pearlite growth rate as a
function of temperature for Fe-0.82C-1.29Cr wt%. The original calculations from
[18] are included for comparison; the two values of S/Sc = 2, 3 for volume diffusion
controlled growth correspond to the maximum growth rate and maximum entropy
production criteria respectively. The dashed line represents their no–partition tem-
perature.
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Table 5.3: P-LE compositions of chromium at the interface. (The compositions are
reported in wt%)

Temperature c
γα
Cr c

γθ
Cr c

θγ
Cr c

αγ
Cr

K
933 7.57 0.62 12.27 2.15
973 3.29 0.76 12.35 1.35
984 2.06 0.80 12.37 0.89
993 2.24 0.88 13.04 1.05
1003 2.11 0.93 13.05 1.06

For both the 1.8Mn (Fig. 5.10) and 1.29 Cr (Fig. 5.15) alloys, the calculated

growth rates at the highest of transformation temperatures is greater than those

measured. It is possible in ternary steels for the transformation at high temperatures

to occur where the three–phases γ + α + θ exist in equilibrium, which would require

the volume diffusion of substitutional solutes as the composition of the austenite

changes during the course of transformation. This would result in a reduction in

growth rate and an increase in interlamellar spacing [72, 103]. However, this is

not the explanation for the observed discrepancy since in all cases the reported

transformations occur in a phase field where only α+θ are ultimately in equilibrium.

The reasons for the discrepancy are therefore not clear.

5.7 Conclusions

It has been demonstrated that in circumstances where an analytical calculation of

the growth rate of pearlite in ternary steels is useful, all of the published data are

inconsistent with transformation in which the solute does not partition between the

phases during transformation. Furthermore, even when partitioning is considered,

none of the experimental data fall into the category of ‘negligible–partitioning local

equilibrium’. If local equilibrium is to be maintained then there is only one option

possible, that in which the substitutional solute must diffuse over distances compa-
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rable with the interlamellar scale of the pearlite structure. Since the diffusivity of

substitutional solutes is much lower than that of carbon, the flux through the inter-

face is by far the dominant mechanism for redistribution of atoms such as manganese

or chromium. It is possible that the results can be extrapolated to other such substi-

tutional solutes if pragmatic assumptions regarding interfacial energy and diffusivity

are justified.

The method adopted here is capable of providing reasonable estimates of pearlite

growth using an analytical equation due to Hillert, in combination with thermody-

namic data and the assumption that the interlamellar spacing adopted is consistent

with the maximum entropy production rate.

A number of difficulties have also been identified, for example, the fact that with

hypereutectoid alloys there are circumstances when the simultaneous precipitation

of ferrite and cementite is not possible when transforming at low supersaturations,

so that it becomes necessary to allow the precipitation of cementite alone prior to

the onset of pearlite. The growth rate is dependent on the α/θ interfacial energy

and it is currently necessary when making predictions to assume approximate values

derived from specific alloy systems. The dependence of interfacial energy on the

chemical compositions at the transformation front is a rich and difficult area for

future research.
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Chapter 6

Divorced Eutectoid

Transformation in Steels

6.1 Introduction

The theory discussed so far has been aimed specifically at the growth of lamellar

pearlite in binary and ternary steels. However under a certain set of conditions, the

pearlite may form as a mixture of spheroidised cementite surrounded by ferrite, also

termed “a divorced eutectoid”structure. The name recognises the fact that there is

no co-operation during growth, between the cementite and ferrite, as in the case of

lamellar pearlite. Spheroidising annealing is a heat treatment which is used to achieve

this structure, the primary objective being, the reduction in hardness to enable

fabrication prior to the final hardening. The spheroidisation can be accomplished

using two annealing treatments, namely, subcritical and intercritical with the latter

used in the bearings industry for hypereutectoid steels. The subcritical treatment

comprises heating in the region below the eutectoid temperature and holding for a

prolonged duration in order to spheroidise the pearlitic structure, whereas in the case

of intercritical annealing, the steel is heated in the region of austenite and cementite

followed by slow cooling. The divorced eutectoid transformation (DET) relies on the

presence of pre-existing fine cementite particles distributed in the austenite matrix
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[104–106]. There is initially a competition between lamellar and divorced structure,

while the steel is being cooled from the intercritical temperature. The formation of

the divorced form is favoured when the spacing between the cementite particles is

small (a function of low austenising temperature and time) and when the cooling

rate is low.

This work described in this chapter discusses the theory of the divorced eutectoid

transformation (DET) during the spheroidising annealing of bearing steels with spe-

cial emphasis on predicting the transition region between pearlite and its divorced

form in a rigorous manner for a binary and a multicomponent steel containing Cr,

accounting for multiple flux paths and multicomponent diffusion.

6.2 Background

A typical spheroidising annealing cycle (Fig. 6.1) for producing a divorced eutectoid

structure for a bearings steel usually consists of heating in the intercritical range of

1070-1100 K, holding there for 1-2 h, cooling at the rate of 15-25 K h−1 to 1025-1020

K, further slow cooling to about 950-965 K at cooling rates less than 10 K h−1 and

finally air cooling to room temperature. As a result, the austenite with fine cementite

particles transforms into ferrite and spheroidised cementite by the divorced eutectoid

transformation (DET).

Honda and Saito [107] were the first to report the spheroidised structure. They

heated various steels ranging from low to high carbon contents at temperatures above

A1, held there for 20 minutes followed by slow cooling to room temperature. They

observed the microstructure to vary from a lamellar to a completely spheroidised form

as a function of the austenising temperature, but the latter was found to persist at

higher austenising temperatures in case of the hypereutectoid steels.

Oyama [104] gave a detailed account of events leading to the formation of the

divorced eutectoid. The initial microstructure for the steel 1 consisted of a mix-
1Composition (wt%) C: 1.5, Mn: 0.5, Cr: 1.5, Si: 0.5
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Figure 6.1: Schematic heat treatment for producing a divorced eutectoid structure
in hypereutectoid steels. A1 is the eutectoid temperature.

ture of pearlite and proeutectoid cementite. When this steel is heated within the

inter-critical region, austenite forms in the regions of ferrite with much of the carbon

coming from the dissolution of pearlitic cementite and the proeutectoid cementite.

On holding at this temperature for a sufficient length of time, the ferrite disappears

completely although some of the cementite from the pearlite still remains because

the proeutectoid cementite also serves as a source of carbon. At this instance the

distribution of carbon in austenite is non-uniform and away from equilibrium. The

structure is ideal for the generation of divorced eutectoid, since there are a large

number of closely-spaced cementite particles which simply grow during cooling and

hence suppress the development of lamellar pearlite during cooling. When the soak-

ing times are large enough, this might homogenise the distribution of carbon and

coarsen the proeutectoid cementite, resulting in an increase in interparticle spac-

ing. The divorced eutectoid will not form in such circumstances, and thus will be

substituted by lamellar pearlite.
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Verhoeven and Gibson [108] proposed a model for the divorced eutectoid formation

wherein, the carbon partitioned as ferrite grows, is incorporated into the existing

proeutectoid cementite as the ferrite-austenite boundary moves and the mechanism

is illustrated in Fig. 6.2(a). During the course of transformation when the mixture of

austenite and cementite is cooled below the eutectoid temperature, fluxes are created

towards the cementite particles in both the austenite and ferrite, Fig. 6.2(b). If the

γ/α interface advances with a velocity v, then the amount of carbon partitioned

must equal that absorbed by cementite if the conditions of equilibrium were to be

maintained at the interface:

(cγα − c
αγ) v = Dγ

c
γα − c

γθ

λγ
+ Dα

c
αγ − c

αθ

λα
(6.1)

where λγ and λα represent the spacing of cementite particles on either side away from

the interface. Verhoeven [109] studied the heat treatment conditions promoting the

DET formation for SAE 52100 1 steel. It was reported that the addition of Cr was

the most effective way of reducing the final carbide particle size. This was attributed

to the carbide formation/dissolution rate at the inter–critical holding temperature

which is reduced by Cr addition.

Luzginova et al. [111] studied divorced pearlite formation in a hypereutectoid steel

as a function of chromium concentration (0.5, 1.5, 2.5 and 3.5 wt %). The DET

reaction was found to occur at smaller undercoolings (∆T ) as compared with the

lamellar structure. It was observed that chromium promoted the divorced form at

low austenitising temperature and when the cooling rate was reduced. Based on the

theory proposed by Verhoeven [108], the transition line separating the DET from the

lamellar pearlite as a function of undercooling and cementite particle spacing was

calculated. It is unfortunate that the calculations of lamellar pearlite growth were

for a binary Fe-C steel, which rather invalidates the analysis of the chromium effect.

1Composition (wt%) C: 1.03, Mn: 0.3, Cr: 1.28, Si: 0.23, P: 0.019, S: 0.014
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6.2 Background

Figure 6.2: Schematic of (a) interface movement during the formation of divorced
eutectoid and (b) concentration profile of carbon adjacent to the interface. c

γα stands
for concentration in austenite that is in equilibrium with ferrite and the other terms
are interpreted similarly. Reproduced from Bhadeshia [110].
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6.3 Divorced Eutectoid Transformation in Fe-C System

The objective of the current work was to revisit the theory for the binary as well

as ternary systems taking into account the new theory proposed in the present work

for the growth of lamellar pearlite [64, 112].

6.3 Divorced Eutectoid Transformation in Fe-C

System

Verhoeven’s approach [51] was used in order to calculate the velocity of the divorced

eutectoid transformation front. For an undercooling ∆T at which ferrite first forms,

the concentration differences in equation 6.1 can be determined from the Fe-C phase

diagram 1 in order to obtain an approximate equation for the velocity:

v ≈ 2Dα

λγ + λα

∆T
27

�
0.28

Dα/Dγ
+ 0.009

�

0.75 + ∆T
27 × 0.225

(6.2)

where Dα and Dγ represent the diffusion coefficient of carbon in ferrite and austen-

ite respectively. The diffusion coefficient of carbon in ferrite is based on the data

of Smith [30]. The velocity, v was calculated as a function of carbide spacing. The

corresponding growth in lamellar pearlite was estimated using the simultaneous vol-

ume and interface diffusion–controlled growth theory described in chapter 3. This

calculation accounts for the concentration dependence of the diffusivity of carbon

in austenite and assuming the maximum rate of entropy production criterion. The

plot of rate of DET as a function of undercooling ∆T is shown in Fig. 6.3 for a

variety of carbide spacings. Superimposing the growth rate of lamellar pearlite for

an Fe-C alloy on this plot, shows that for each spacing, there is a unique under-

cooling where the transition from a divorced to a lamellar mode of growth occurs.

This effectively means that lamellar growth is dominant above this undercooling.

Figure 6.4 compares the boundary separating the divorced and lamellar structures

1The terms are evaluated from the phase diagram at 700◦C. cγα − cγθ ≈ ∆T (0.28/0.27), cαγ −
cαθ ≈ ∆T (0.009/27), cγα − cαγ ≈ 0.75 + ∆T (0.225/27)
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6.3 Divorced Eutectoid Transformation in Fe-C System

Figure 6.3: Plot of growth rate of pearlite (dotted line) superimposed on that of
divorced eutectoid transformation (solid lines). The dots show the critical under-
cooling at a particular spacing above which the transition occurs from divorced to
lamellar form.
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6.3 Divorced Eutectoid Transformation in Fe-C System

for a Fe-C alloy, based on the simultaneous solution of the equations for divorced and

lamellar modes of growth (graphically shown as the point of intersection of velocity

of lamellar pearlite with the DET for appropriate spacing in the figure 6.3). It is

observed that using the mixed diffusion–controlled growth of pearlite the curve shifts

upwards, thereby expanding the domain of existence of the divorced form.

Figure 6.4: Transition line separating the divorced from the lamellar mode for a
Fe-C alloy. The spacing refers to the distance between the carbide particles at the
intercritical temperature and ∆T is the undercooling below the A1 temperature.
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6.4 Divorced Eutectoid Transformation in Bearing Steels

Table 6.1: Chemical composition of the 1.5 wt% Cr steel used by Luzginova et al.

[111]. All the compositions are in wt %.

C Mn Si Cr
1.05 0.34 0.25 1.44

6.4 Divorced Eutectoid Transformation in Bear-

ing Steels

The steels supplied to the bearings manufacturer are usually spheroidised in order

to render them machinable and make them suitable for warm and cold-forming op-

erations. The microstructure consists of relatively coarse cementite particles in the

matrix of ferrite called the divorced eutectoid. The kinetics of spheroidisation de-

pends on the carbon and chromium concentrations, higher carbon promoting the

reaction by providing a greater density of nucleation sites, whereas chromium helps

in reducing the interlamellar spacing of pearlite which is the starting microstructure.

Once again for the calculation of velocity of the divorced eutectoid transformation

front, the equation proposed by Verhoeven was used, the details of which have been

discussed in the previous section. The composition of the steel used in the calcula-

tions is listed in Table 6.1.

The growth rate of pearlite was calculated based on Hillert’s theory [7] and as-

suming partitioning local equilibrium:

v = 12kDB δ

�
c
γα
Cr − c

γθ
Cr

c
θγ
Cr − c

αγ
Cr

�
1

Sα Sθ

�
1− Sc

S

�
(6.3)

The partitioning local–equilibrium case corresponds to one in which the activity of

carbon in the austenite ahead of the interface is almost uniform, thus allowing the

flux of the slow diffusing chromium to keep pace. The activity of carbon in austenite

for the alloy composition was calculated using MTDATA. The point of intersection

of the carbon iso-activity line with the phase boundaries of γ/γ + θ and γ/γ + α
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6.4 Divorced Eutectoid Transformation in Bearing Steels

gives the interfacial compositions of Cr in austenite in equilibrium with ferrite and

cementite Fig. 6.5. Although the alloy under consideration is a multicomponent

steel, it is reasonable to assume that diffusion of Cr through the phase boundary

controls the growth of pearlite given the small concentrations of Mn and Si. In line

with the work presented in chapter 5, for a Cr based steel, none of the data here are

consistent with the negligible partitioning local equilibrium mode. The boundary

diffusion coefficient for Cr was taken based on its applicability for ternary steels in

chapter 5:

DB = 2.81× 10−3 exp

�
−164434 J mol−1

RT

�
m2 s−1 (6.4)

The interlamellar spacing was derived from the regression analysis of experimental

data of Razik and co-workers [18] for steels containing Cr and the critical spacing was

calculated assuming the maximum rate of entropy production criterion S/Sc = 2.

For the hypereutectoid steel under discussion, at temperatures 995 K and above,

the supercoolings are not sufficient for the simultaneous precipitation of ferrite and

cementite. In such a case ferrite does not form until the carbon concentration of

austenite is reduced by the precipitation of cementite. It is assumed that this con-

dition is satisfied when the austenite composition is reduced by the precipitation of

cementite to the point where the α + γ/γ and θ + γ/γ phase boundaries intersect,

as illustrated by the point ‘A’ in Fig. 6.6. The point ‘A’, which extrapolates to

‘B’ at the transformation temperature, is the composition of austenite assumed to

decompose into pearlite when the supercooling is insufficient for the hypereutectoid

alloy to permit the simultaneous precipitation of α + θ. The average composition of

the alloy is marked ‘C’ and has a carbon concentration which falls to the right of

the extrapolated γ + α/γ phase boundary, making it impossible to simultaneously

precipitate ferrite and cementite.

In case of a Cr based steel, the pearlite growth rate obtained was about an

order of magnitude lower than that calculated by Luzginova et al. The difference

arises because their calculations of lamellar growth are based on an equation derived

originally for Fe-C alloy [51]. The effect of the Cr addition is only accounted for

through the change in ∆T and the interfacial compositions. Hence the diffusion
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6.4 Divorced Eutectoid Transformation in Bearing Steels

Figure 6.5: Isothermal section of a ternary Fe-C-Cr-Mn-Si system at 995 K.
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6.4 Divorced Eutectoid Transformation in Bearing Steels

Figure 6.6: Isopleth section of Fe-C-Cr-Mn-Si steel with the extrapolated phase
boundaries.

120



6.5 Determination of Carbide Particle Spacing

of the substitutional solute is entirely unaccounted for in their calculations, i.e., a

thermodynamic consequence of Cr. For a ternary system, the choice of tie-lines

for determining the interfacial compositions should be based on both the α + γ

and θ+γ phase fields using either the negligible partitioning local equilibrium or the

partitioning local equilibrium approach discussed in chapter 5. Given that Luzginova

et al. did not incorporate a kinetic effect for Cr, the interface compositions chosen

from the phase diagrams will not satisfy the simultaneous flux equations similar to

5.1 and 5.2.

6.5 Determination of Carbide Particle Spacing

In order to evaluate the spacing between carbide particles as a function of the in-

tercritical heat treatment temperature, the coarsening of spherical particles was first

calculated using a procedure based on the work of Venugopalan and Kirkaldy [113].

The initial carbide particle size was assumed to be 0.4 µm consistent with Luzginova

et al. [111].

dr

dt
=

8 Deff σ Vm

81 R T

1

r∗2
(6.5)

where r
∗ is the average cementite particle size after a certain time interval. The

equation for the effective diffusivity in a multicomponent system is derived using the

electrical analogy of resistances in parallel. This approach proves to be a useful one,

especially since the system involves the simultaneous diffusion of the substitutional

solutes:

1

Deff
= Σ

(1− ki)2
u
∗
i

Di
(6.6)

DV = 0.7× 10−4 exp

�
−286000 J mol−1

RT

�
m2 s−1 (6.7)
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6.5 Determination of Carbide Particle Spacing

Table 6.2: Parameters used in the calculation of spacing

Temperature f u
∗
Cr u

∗
Mn k

∗
Cr k

∗
Mn Deff r

∗ Spacing
K m2 s−1 m m

1093 0.0374 0.012 0.0033 9.25 2.01 1.52×10−17 0.46×10−6 2.47×10−6

DV represents the volume diffusivity of the substitutional solutes in austenite and it

can be taken to be identical for the elements under discussion.

u
∗
i =

ui

(1 + (ki − 1) f)
(6.8)

The subscript i refers to the solute element, f is the equilibrium volume fraction of

cementite, ui is defined as u = x/(1−xc). The terms x and xC are the mole fractions

of the substitutional solute and carbon respectively. ki is the partition coefficient

between austenite and cementite calculated using MTDATA (TCFE database) [76].

The expression for u
∗
i , the average alloy composition in austenite at the interface is

determined based on the law of mixtures:

u
∗
γ (1− fθ) + uθ fθ = ui (6.9)

Table 6.2 shows the parameters used in the calculation of coarsening of the car-

bide particles. The effective diffusivity can be calculated using equation 6.6 and

the parameters listed in Table 6.2. For practical purpose the volume diffusivities

of substitutional solutes can be considered comparable to self-diffusion of Fe in the

austenite [44]. The spacing between the carbide particles was calculated using an ap-

proximate approach for spherical particles deduced from quantitative metallography:

[114].

λ = d

�
π

6f
− 1 (6.10)
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6.6 Experimental Evaluation

The transition curve defined by plotting the calculated carbide particle spacings

against the undercooling is shown in Fig. 6.7. It is observed that the curve shifts

upwards as a result, which in effect would allow the divorced eutectoid structure to

persist at much higher undercoolings for a given intercritical holding temperature as

compared to those calculated by Luzginova et al.

Figure 6.7: Comparison of calculated transition curve with the data of Luzginova
et al. [111]. Points A and B correspond to the microstructure observed in Fig. 6.9(a)
and Fig. 6.8(a) respectively.

6.6 Experimental Evaluation

The experimental data plotted by Luzginova et al. based on intercritical annealing

treatment for the transition between DET and pearlite transformation may not be

strictly valid since the calculated curve is based on isothermal transformation whereas
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6.6 Experimental Evaluation

Table 6.3: Chemical composition of the steel used in the study. All the compositions
are in wt %.

C Mn Si Cr Ni
0.98 0.30 0.25 1.50 0.18

their structures were generated by continuous cooling transformation. In order to

confirm the validity of the calculations, a series of experiments was designed using

a thermo-mechanical simulator. Cylindrical 8×12 mm samples were heated to a

certain temperature in the intercritical region, undercooled below the A1 line and

allowed to transform isothermally. The actual composition of the steel used in the

study is stated in Table 6.3. The temperatures were chosen so as to allow a varying

degree of dissolution of cementite in the intercritical region and to assess the effect

of different undercoolings. The samples were observed under the scanning electron

microscope. A divorced eutectoid structure is favoured for specimens intercritically

austenitised at 1073 K and 1050 K and isothermally held at 983 K and 933 K

respectively. The relatively low intercritical temperatures ensure the presence of

closely spaced fine cementite particles which on isothermal transformation just grow

bigger on account of the net carbon transport as the ferrite-austenite transformation

front progresses. The extent of formation of divorced (spheroidised) structure for the

specimen transformed at 933 K is slightly lower as compared to that at 983 K, on

account of higher undercooling, and is confirmed from the microstructure presented

in Fig. 6.8(a and b).

In order to analyse the effect of higher intercritical temperatures (1123 K and

1103 K) on austenite decomposition, another set of experiments was performed

where the specimens were transformed isothermally at 958 K and 933 K respectively.

The higher austenitising temperature results in partial dissolution or coarsening of

the pre-existing cementite particles, leading to increased spacings between them,

and thus promoting the conditions for predominantly lamellar pearlitic structure,
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6.7 Conclusions

Fig. 6.9(a and b). It is worth noting here that the higher spacing, λ, necessitates

larger diffusion distances thereby making DET formation more difficult. The DET

reaction dominates the lamellar pearlite at low undercoolings provided the austenis-

ing conditions are same. One common feature observed though, is the bimodal

distribution of carbide particles owing to the presence of pro-eutectoid cementite on

the grain boundaries and also the carbides growing intragranularly. The dilatation

curves are shown in Figs. 6.10(a and b) for specimens austenitised at 1073 K and 1123

K respectively and both show the increase in strain as a result of expansion when

the mixture of austenite and cementite transforms to either ferrite and spheroidised

cementite or lamellar pearlite. In order to confirm the extent of spheroidisation in

specimens treated at different temperatures, Vickers hardness measurements were

done under a load of 10 kg and using a diamond pyramid indentor. The hardness

data are presented in Table 6.4 and clearly show high values for the lamellar structure

when compared to the divorced form.

The observed microstructures based on the isothermal treatment discussed above

can be superimposed on the transition curve delineating the DET from the lamellar

pearlite structure. According to the calculations done by Luzginova et al., for the

steel austenised at 1073 K and treated at 983 K, their predictions would suggest

that the structure would lie in the lamellar pearlitic region. However the microstruc-

ture of this steel Fig. 6.8(a), consists of spheroidised carbides. The new transition

curve based on the current work rightly predicts the microstructure to be that of

divorced eutectoid. Similarly, the steel with a larger carbide spacing as a result of

austenitising at 1123 K and holding at 958 K falls above the transition line owing

to the lamellar structure. The experimental observations suggests that the divorced

eutectoid structure exists over a larger domain than predicted by Luzginova et al.

thus confirming the calculated transition line in Fig. 6.7.

6.7 Conclusions

It has been possible to redefine the transition boundaries separating the divorced eu-

tectoid from the lamellar structure in case of Fe-C and a multicomponent steel con-
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6.7 Conclusions

(a)

(b)

Figure 6.8: Microstructure showing divorced eutectoid structure obtained by (a)
austenising at 1073 K and holding at 983 K. (b) austenised at 1050 K and held at
933 K.
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6.7 Conclusions

(a)

(b)

Figure 6.9: Microstructure showing predominently a lamellar structure, (a)
austenised at 1123 K and held at 958 K and (b) austenised at 1103 K and 933
K.
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6.7 Conclusions

(a)

(b)

Figure 6.10: Dilatation curves for (a) Fig. 6.8(a) and Fig. 6.9(a).
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6.7 Conclusions

Table 6.4: Vickers hardness data (10 kg load) for various heat treatments

Austenitising temperature Holding temperature Hardness
K K HV

1073 983 198
1050 933 217
1103 933 280
1123 958 278

taining Cr. The method adopted here for the calculation of growth rate of lamellar

pearlite in a multicomponent steel is based on the analytical treatment due to Hillert

and modified for the interfacial compositions assuming partitioning local equilibrium

and the maximum rate of entropy production criterion. The difficulties encountered

during transformation at lower undercoolings where the simultaneous precipitation

of ferrite and cementite is not possible, have been overcome in case of chromium

containing steel using a new approach outlined. The calculations suggest that the

transition line shifts significantly upwards in case of both the steels when compared

with the work of previous researchers, thereby expanding the domain of the sper-

oidised (DET) structure as a function of carbide spacing and undercooling and the

same has been validated through the experimental data. This in turn has a potential

to develop a more energy efficient spheroidising annealing process for steels requiring

good machinability. The calculations also show that the presence of Cr enhances

the process of spheroidisation by increasing the domain of existence of a divorced

eutectoid structure, when compared with plain carbon steels.
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Chapter 7

Conclusions and Scope for Future

Work

General Conclusions

The work presented in the thesis describes the theory of pearlite growth and the di-

vorced eutectoid transformation in binary and ternary steels. A simplified model has

been proposed which combines the flux contributions from diffusion in the volume of

austenite and the phase boundary to represent the mechanism of pearlite growth in

Fe-C steels. It has been shown that the flux of carbon through the boundary between

pearlite and austenite dominates at all but the highest of transformation tempera-

tures. The maximum growth rate and entropy production criteria have been derived

rigorously in the context of combined flux diffusion theory for the determination of

critical interlamellar spacing, and it has been shown for the first time that the ratio

of the nominal to critical spacing (S/Sc) is not constant but a variable quantity with

respect to temperature. The ferrite-cementite interfacial energy has been deduced

based on the calculated free energy values and assuming the maximum rate of en-

tropy production as the optimum criterion. The theory leads also to a realistic value

of the activation energy for interfacial diffusion of carbon which is less than that for

volume diffusion in austenite and greater than for volume diffusion in ferrite. As
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a consequence of this new theory, the match with the experimental data is better

when compared with the previous work in spite of the fact that the considerations

of equilibrium at junctions between interfaces are abandoned.

A third diffusion flux through the ferrite trailing behind the transformation front

has also been incorporated in the mixed diffusion–controlled growth theory. The

inclusion of flux through the ferrite indeed leads to an increase in the growth rate as

compared to that in austenite alone. It has, however, been shown that combination

of fluxes through austenite and the transformation front represent the experimental

data rather well and given the lack of evidence of cementite thickening behind the

transformation front, the third flux may be neglected in practice.

A more complex theory of pearlite growth in ternary steels containing either Mn

or Cr has been discussed and it has been demonstrated that all of the published data

are inconsistent with transformation in which the substitutional solute does not par-

tition between the product phases. Furthermore, none of the experimental data fall

in the category of ‘negligible-partitioning local equilibrium’. It has been shown that

these solutes must diffuse over distances comparable with the interlamellar spacing

in pearlite. Although the diffusion coefficient of Mn or Cr is much smaller as com-

pared with that of carbon, it has been demonstrated that the flux of these solutes

along the interface is the rate controlling mechanism to allow for their redistribution

between the product phases. A modified approach has been proposed to determine

the interfacial compositions at the γ/γ +θ phase boundary, since the iso-activity line

of carbon, in general does not intersect this boundary and it is therefore reasonable

to assume that the tie-line connecting cementite and austenite passes through the

alloy composition. The difficulty with respect to the simultaneous precipitation of

ferrite and cementite has been highlighted for the hypereutectoid alloys at low super-

saturations and the means to overcome this has been suggested. The importance of

the α/θ interfacial energy as a function of composition in the accurate determination

of interlamellar spacing and hence the growth has been emphasised.
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The theories developed for the binary and ternary steels would be academic in

nature unless they could be applied to an industrial scenario. The case of the divorced

eutectoid transformation during the spheroidising annealing of bearing steels has

been analysed quantitatively. Using a rigorous treatment it has been shown that

there exists a wider window (than previously thought) for processing of these steels

that would lead to an energy efficient process.

Scope for Future Work

The theory for pearlite growth in ternary steels could be applied to a multicomponent

steel assuming that the diffusivities of substitutional solutes (like Cr, Ni, Mn etc.) are

similar. But some work needs to be done in order to arrive at an effective diffusion

coefficient which would account for the partitioning of various solutes during the

growth of pearlite.

The theory for the pearlite growth rate discussed in this work assumes a constant

interlamellar spacing and growth rate. However there are instances for eg. formation

of divergent pearlite, where the spacing increases continuously leading to a decrease

in growth rate as the transformation progresses. There is a potential for future work

to account for this non-steady state behaviour in order to develop a unified theory.

The case of pearlite dissolution has been discussed briefly (Appendix A) and it

has been shown that the dissolution kinetics are much faster as compared to that of

pearlite formation owing to the higher temperatures involved in the former. It is still

not clear whether it is the cementite in pearlite or the ferrite that dissolves first and

whether the kinetics is governed by the diffusion of substitutional solute through the

interface or the carbon. Some more work needs to be done in order to establish the

exact mechanism, but it has been demonstrated that once this clear, the necessary

theory should be readily deduced from the pearlite growth modes.
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It has been thought that the theory for pearlite growth developed in this work

can be integrated into the simultaneous transformation model that includes other

phases and which would lead to the quantification of the microstructure for a range

of steels.
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Appendix A

Dissolution of Pearlite

Reaustenisation of steels is a common treatment employed during the processing of

steels. This involves dissolution of the previously formed structure which may either

be ferritic, pearlitic, bainitic or martensitic or a combination of these. It is expected

that the pearlite dissolution kinetics should be much faster than growth owing to

the higher temperatures involved in reaustenisation. Essentially the same equation

employed for the growth of pearlite from austenite may be used for the dissolution,

with appropriate adjustments of the local equilibrium conditions at the interfaces and

of the diffusivity. The rates at which the ferrite and cementite lamellae are consumed

by the austenite are assumed to be the same. The distance over which the diffusion

occurs is the interlamellar spacing, which is determined during the original growth

of pearlite. The concentration profiles for the austenite formation from pearlite are

shown in Fig. 1.1. When the austenite is growing into ferrite, the carbon in the

austenite becomes diluted at the γ/α interface. At the same time the carbon rich

cementite rejects the carbon into the austenite.

In a Fe-4.77Mn-0.72C wt% steel it is observed that the dissolution rates are much

faster as compared to the growth rate of pearlite, and the dissolution kinetics may

either be governed by the C mixed-mode diffusion (through the volume of austenite

and the austenite-pearlite interface) or the boundary diffusion of Mn, although the

former mechanism seems to be much faster than the latter as shown in the Fig. 1.2.

In order to experimentally validate the pearlite dissolution kinetics, the 5.0 Mn wt%

steel was austenised at 1000◦C, cooled to and isothermally held at 590◦C for 1 h
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Dissolution of Pearlite

(a) (b)

Figure 1.1: Schematic concentration profile for austenite growing into (a) ferrite and
(b) cementite.

for complete transformation to pearlite. It was then reaustenitised at 800◦C for 30

s and quenched to room temperature. The microstructure shows the presence of

platelets of martensite, meaning that the pearlite dissolution was over in less than

30 s at 800◦C leading to a completely austenitic structure which then transformed

into martensite on quenching (Fig. 1.3).
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Dissolution of Pearlite

Figure 1.2: Comparison of calculated growth and dissolution rates of pearlite in a
Fe-4.77Mn-0.72C wt % steel.

Figure 1.3: Microstructure showing martensite formed after quenching the
reaustenised structure from 800◦C (30 s hold) in a Fe-4.77Mn-0.72C wt% steel. Vick-
ers hardness - 430 HV at 10 kg load.
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Appendix B

Divergent Pearlite

In case of a Fe-4.77Mn-0.72C wt% steel, held at 625◦C for 90 min., the pearlite

transformation is incomplete and the microstructure shows colonies of pearlite, with

the lamellae growing in a divergent manner, wherein the interlamellar spacing in-

creases with time resulting in decrease in growth rate, Fig. 1.1. The formation of a

divergent structure is a consequence of the alloy composition falling in the 3-phase

(α + θ + γ) region. The transformation in this region (Fig. 1.2) progresses wherein

the the composition of austenite changes continuously in the region ahead of the

growing pearlite thus necessitating volume diffusion of Mn and resulting in reduced

growth rate.
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Divergent Pearlite

Figure 1.1: Micrograph showing divergent pearlite formation in a Fe-4.77Mn-0.72C
wt% steel.
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Divergent Pearlite

Figure 1.2: Isopleth section of Fe-C-Mn steel.
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Appendix C

Program for Pearlite Growth in Binary Steels

1.1 Provenance of Source Code

Ashwin S. Pandit, Phase Transformations Group, Department of Materials Science

and Metallurgy, University of Cambridge, Cambridge, UK.

1.2 Purpose

The program calculates the isothermal growth rate of pearlite in Fe-C steels.

1.3 Specification

Self-contained program written in fortran.

1.4 Description

The program calculates the isothermal growth rate of pearlite in Fe-C steel. The

growth rate is calculated using a mixed diffusion of carbon through the austenite as

well as the pearlite-austenite interface, thereby eliminating any assumptions regard-

ing the diffusion paths taken by the solute.
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1.6 Parameters

Input parameters

argument in parentheses corresponds to the data type

carbon / wt%, (real)

Temperature / K, (real)
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1.6.1 Input files

Input files :

fa a c.txt composition of carbon (column-3), iron (column-2) in austenite which is

in equilibrium with ferrite at the interface as a function of temperature (column-1)

fa f c.txt composition of carbon (column-3), iron (column-2) in ferrite which is in

equilibrium with austenite at the interface as a function of temperature (column-1)

ca a c.txt composition of carbon (column-3), iron (column-2) in austenite which is

in equilibrium with cementite at the interface as a function of temperature (column-

1)

ca c c.txt - composition of carbon (column-3), iron (column-2) in cementite which is

in equilibrium with austenite at the interface as a function of temperature (column-

1)

All the compositions in the files above are in mass fraction and the temperature is in

K. The interfacial compositions are calculated using MTDATA (TCFE database).

1.6.2 Output parameters

Interlamellar spacing, lamda2 / m, (real)

Thickness of ferrite lamella, lamfe2 / m, (real)

Thickness of cementite lamella, lamce2 / m, (real)

Grain boundary diffusivity of carbon, dcgb4 / m2 s−1, (real)

Weighted average diffusivity of carbon, davg/m
2 s−1, (real)

Pearlite growth rate, velo / m s−1, (real)

1.6.3 Output files

output.txt - gives the Temperature (in degree centigrade) and the growth rate in m

s−1
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1.7 Program Listing

program p e a r l i t e

i n t e g e r loop , i , j ,m, p , option , cho ice ,w, p1 , p2 , p3 , p4 , r , s , t

r e a l carbon , c cem , c f e r

r e a l coe f , coe f1 , coe f2 , coe f3 , coe f4 , coe , coe f5 , coe f7 , d co e f

r e a l a f ac , a f mn , c f mn

r e a l tempf (1000) , a f f e (1000) , af mn (1000) , a f c (1000)

r e a l tempf1 (1000) , a c f e (1000) , ac mn (1000) , ac c (1000)

r e a l tempf2 (1000) , f a f e (1000) , fa mn (1000) , f a c (1000)

r e a l tempf3 (1000) , c a f e (1000) , ca mn (1000) , ca c (1000)

r e a l d f c f , ddash1 , ddash2 , d e l f , k , h , ddash , de l e , v1 , v2

r e a l v , v gb , s tor , s tor1 , st mn , st mn1 , st mn2 , st mn3

r e a l k gb , v3 , v4 , v5 , s t c , s t c 1

r e a l c f c , c f e (1000) , c c (1000) , a c t i c

r e a l del T , temp , teqm , teqm1 , s i f c , s lope , z1 , d f av

r e a l del hm , del vm , velo , de l ta , f a c to r , lamda , lamfer , lamcem

r e a l Mn, Cr , Si , f f e (1000) , f c (1000) ,D(1000)

r e a l eta , molfra , ans , d avg , part c , vcgb , dcgb , d e f f

r e a l temp 1 (1000) , a f e (1000) , a c (1000) , temp 2 (1000)

r e a l temp 3 (1000) , a 1 f e (1000) , a1 c (1000) , temp 4 (1000)

r e a l var1 , var2 , var3 , var4 , res1 , res2 , act ,R1 ,CG,CG1

r e a l var1 m , var3 m

d e l f =21230

h=6.63E−34

z1=12

c cem=6.67

c f e r =0.025

teqm=1000

open ( un i t = 22 , f i l e = ’ f a a c . txt ’ , s t a tu s =’old ’ )
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open ( un i t = 42 , f i l e = ’ f a f c . txt ’ , s t a tu s =’old ’ )

open ( un i t = 32 , f i l e = ’ c a a c . txt ’ , s t a tu s =’old ’ )

open ( un i t = 72 , f i l e = ’ c a c c . txt ’ , s t a tu s =’old ’ )

open ( un i t = 1 , f i l e = ’ output . txt ’ , a c c e s s =’append ’ )

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

pr in t ∗ , ’ Enter the chemica l compos it ion : ’

p r i n t ∗ , ’ Carbon ’

read ∗ , carbon

wr i t e (1 , 31 )

31 FORMAT(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

wr i t e ( 1 , 34 ) , ’ Temperature ’ , ’ Growth rate ’

34 FORMAT(X,A,7X,A)

wr i t e ( 1 , 3 7 ) , ’ (C) ’ , ’ (m s−1) ’

37 FORMAT(4X,A,15X,A)

wr i t e (1 , 38 )

38 FORMAT(’−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−’)

do 61 loop =1,9

p r i n t ∗ , ’ en te r the temperature : ’

read ∗ , temp

I f ( temp .GE. teqm) then

p r i n t ∗ , ’ P lease ente r temp l e s s e r than teqm : ’

end i f

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
do 200 r =1 ,600

read (22 ,∗ , end=201) temp 1 ( r ) , a f e ( r ) , a c ( r )

i f ( temp 1 ( r ) .EQ. temp) then
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var1=a c ( r )∗100

c a c ( r ) i s mu l t i p l i e d by 100 to convert mass f r a c t i o n

& in to mass

end i f

200 enddo

201 e n d f i l e 22

rewind 22

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
do 300 s =1 ,600

read (42 ,∗ , end=301) temp 2 ( s ) , f f e ( s ) , f c ( s )

i f ( temp 2 ( s ) .EQ. temp) then

var2=f c ( s )∗100

c f c ( p2 ) i s mu l t i p l i e d by 100 to convert mass f r a c t i o n

& in to mass

end i f

300 enddo

301 e n d f i l e 42

rewind 42

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
do 400 t =1 ,600

read (32 ,∗ , end=401) temp 3 ( t ) , a 1 f e ( t ) , a1 c ( t )

i f ( temp 3 ( t ) .EQ. temp) then

var3=a1 c ( t )∗100

c a1 c ( p3 ) i s mu l t i p l i e d by 100 to convert mass f r a c t i o n

& in to mass

end i f
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400 enddo

401 e n d f i l e 32

rewind 32

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

do 500 p4=1 ,600

read (72 ,∗ , end=501) temp 4 (p4 ) , c f e ( p4 ) , c c ( p4 )

i f ( temp 4 (p4 ) .EQ. temp) then

var4=c c ( p4 )∗100

c c c ( p4 ) i s mu l t i p l i e d by 100 to convert mass f r a c t i o n

& in to mass

end i f

500 enddo

501 e n d f i l e 72

rewind 72

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c r e s1 and re s2 c a l c u l a t e s the d i f f . in i n t e r f a c i a l

c compos i t ions in Fe−C a l l o y

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
r e s1=var1−var3

r e s2=var4−var2

c a l l mo l f r a c c ( var1 , var3 , var1 m , var3 m )

c c a l c u l a t e s the mo l f r a c t i on o f carbon in au s t en i t e

c var1 i s the carbon in au s t en i t e in wt%
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c a l l d i f f c a l c ( var1 m , var3 m , carbon , res1 , res2 , temp , d avg )

c c a l c u l a t e s the p e a r l i t e growth ra t e us ing volume

c d i f f u s i v i t y o f C in au s t en i t e

c c a l l bounda ry d i f f c ( d avg , temp , part c , res1 , res2 , vcgb )

c c a l c u l a t e s the p e a r l i t e growth ra t e us ing boundary

c d i f f u s i v i t y o f C in au s t en i t e

c a l l mixed growth ( temp , carbon , d avg , res1 , res2 , ve lo )

p r i n t ∗ , ’ the p e a r l i t e growth ra t e in m s−1 i s : ’ , v e l o

wr i t e ( 1 , 33 ) , temp−273 , ve lo

33 format ( f 6 . 1 , e22 . 3 )

61 enddo

c l o s e (22)

c l o s e (42)

c l o s e (32)

c l o s e (72)

c l o s e (1 )

c c l o s e (113)

stop

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine d i f f c a l c ( var1 m , var3 m , carbon , res1 , res2 ,

& temp , d avg )

r e a l v1 , v2 , v , lamda , lamcem , lamfer , phi
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r e a l d e f f , d e l t a

de l t a =2.5e−10

del vm=7.1E−6

d e l e =8352

k=1.38E−23

c a l l ph i c ( de l e , k , temp , phi )

c c a l c u l a t e s the value o f sigma : s i t e ex c l u s i on p robab i l i t y ,

c used in c a l c u l a t i o n o f eta

c a l l a c t c ( var1 m , temp , de l e , a c t i c )

c c a l c u l a t e s the a c t i v i t y o f carbon in au s t en i t e us ing a

c quas i chemica l model :MAP

c a l l DCG( var1 m , de l e , temp ,R, s l ope )

c c a l c u l a t e s the d i f f e r e n t i a l o f a c t i v i t y o f carbon in

& au s t en i t e

c a l l DIFF( temp , var1 m , var3 m , de l e , a c t i c , s lope , phi , d avg )

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine mo l f r a c c ( var1 , var3 , var1 m , var3 m )

r e a l wt fe , fe mol , c mol , wt fe1 , fe mol1 , c mol1

wt f e=100−var1

f e mol=wt f e /55 .8

c mol=var1 /12 .01

var1 m=c mol /( f e mol+c mol )

wt f e1=100−var3

fe mol1=wt fe1 /55 .8
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c mol1=var3 /12 .01

var3 m=c mol1 /( f e mol1+c mol1 )

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine l amda c r i t spa ( teqm , temp , spac )

r e a l spac , del T , del hm , teqm , del vm , del HV , del G , lamda2

del HV=(−2E6∗temp)+2E9

del T=teqm−temp

del G =(8.09554 e5∗temp)−8.03332 e08

lamda2=1e−6/((−0.1627∗temp)+162.74)

spac=lamda2 /(4 .586 e−35∗exp ( temp/12.8523)+2.03714)

s i f c =−0.5∗ spac∗del G

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine l ame l l a thk ( carbon , c cem , c f e r , lamda , lamcem)

r e a l w t f r a c f e r , v o l f r a c f e r , vo l f r ac cem , r f e r

r e a l lamda , lamcem

w t f r a c f e r =(c cem−carbon )/( c cem−c f e r )

v o l f r a c f e r=w t f r a c f e r

c d e n s i t i e s o f f e r r i t e and au s t en i t e are near ly same

vo l f r a c c em=1−v o l f r a c f e r

r f e r=v o l f r a c f e r / vo l f r a c c em

lamcem=lamda/( r f e r +1)

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine ph i c ( de l e , k2 , temp , phi1 )
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r e a l k2 , phi1

phi1=1−exp ( (−d e l e )/ ( k2∗temp) )

c p r i n t ∗ , ’ the va lue o f phi i s : ’ , phi

c p r i n t ∗ , ’ the va lue o f temp i s : ’ , temp

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c SUBROUTINE GIVING THE DIFFERENTIAL OF NATURAL LOGARITHM

c (ACTIVITY OF CARBON IN AUSTENITE) :

subrout ine DCG( var1 m , de l e , temp ,R1 , s l ope )

r e a l DG,DDG, var1 m , temp , s lope , phi10

R1=8.14

phi10=1.0−EXP(−d e l e /(R1∗temp ) )

DG=SQRT(1.0−2.0∗(1 .0+2.0∗ phi10 )∗ var1 m+(1.0+8.0∗ phi10 )

& ∗var1 m ∗∗2)

DDG=(0.5/DG)∗(−2.0−4.0∗ phi10 +2.0∗var1 m+16.0∗ phi10∗var1 m )

s l ope =−((10.0/(1.0−2.0∗ var1 m ))+(5 .0/ var1 m ) )

& +6.0∗((DDG+3.0)/(DG−1.0+3.0∗var1 m )

& −(DDG−3.0)/(DG+1.0−3.0∗var1 m ) )

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c FUNCTION GIVING THE NATURAL LOGARITHM (ACTIVITY

c OF CARBON IN AUSTENITE) :

subrout ine a c t c ( var1 m , temp , de l e ,CG)

r e a l var1 m ,AJ ,DG,EG,EG1,R,W,CG

R=8.31

AJ=1−EXP(−d e l e /(R∗temp ) )

IF ( var1 m .LE. 1 .0 e−10) THEN
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CG=LOG(1 . 0 e−10)

ELSE

DG=SQRT(1.0−2.0∗(1 .0+2.0∗AJ)∗ var1 m+(1.0+8.0∗AJ)∗
& var1 m ∗∗2)

EG=5∗LOG((1−2∗var1 m )/ var1 m)+6∗ d e l e /(R∗temp)

EG1= (38575−13.48∗ temp )/(R∗temp)

CG=EG+EG1+6∗LOG((DG−1+3∗var1 m )/(DG+1−3∗var1 m ) )

ENDIF

RETURN

END

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
c subrout ine GIVING THE CARBON DIFFUSIVITY IN AUSTENITE:

subrout ine DIFF( temp , var1 m , var3 m , de l e , a c t i c , s l ope

& , phi , d avg )

i n t e g e r I I , I I2 , I I 3

r e a l D(1000) ,CARB(1000)

r e a l X,THET,DASH, eta ,R2 , Z2 ,HH,KK, eta1 , eta2 , eta3 , eta4

r e a l ACTI,DACTI,SIGMA,XINCR, var1 m , var3 m , a c t i c , s lope ,

& phi ,A5 , ans , d avg

HH=6.6262e−34

KK=1.38062e−23

Z2=12

A5=1.0

R2=8.31

DASH=(KK∗temp/HH)∗EXP(−(21230/temp ))∗EXP(−31.84)

XINCR=(var1 m−var3 m )/5

DO 111 I I =1,5

CARB( I I )=var3 m+(II −1)∗XINCR

X=CARB( I I )

THET=X/(A5−X)
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c the var1 , var3 and X are to be expres sed in mol f r a c t i o n s .

ACTI=a c t i c

ACTI=EXP(ACTI)

DACTI=s l ope

DACTI=DACTI∗ACTI

DACTI=DACTI∗A5/( (A5+THET)∗∗2)

SIGMA=phi

eta=A5+(Z2∗(A5+THET))

eta2=(A5−((A5+Z2/2)∗THET)+(Z2/2)∗ (A5+Z2/2)∗ (A5−SIGMA)

& ∗THET∗∗2)

eta3=ACTI∗( eta / eta2 )

eta1 =(A5+THET)∗DACTI

eta4=eta1+eta3

D( I I )=DASH∗ eta4

c p r i n t ∗ , ’ the d i f c o e f in cm2/ s and theta i s : ’ ,D( I I )

c wr i t e (113 ,∗ ) , D( I I ) , THET

111 cont inue

c a l l TRAPE( var1 m , var3 m ,XINCR, I I ,D, ans )

d avg=ans /( var1 m−var3 m )

RETURN

END

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine TRAPE( var1 m , var3 m ,XINCR, I I ,D, ans )

r e a l var1 m , var3 m ,XINCR,XX, sum ,D(1000) , ans1 , ans

INTEGER Q, I I

sum=0

do 999 Q=1, I I−1
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XX=var3 m+(XINCR∗Q)

sum=sum+D(Q)

999 cont inue

ans=XINCR∗( (D(1)+D(5)/2 ) + sum )

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine mixed growth ( temp , carbon , d avg , res1 , res2 , ve lo )

r e a l y5 , spac2 , dcgb3 , dcgb4 , dcgb5 , velo1 , velo2 , velo ,

r e a l c cem2 , c f e r 2 , d e l t a

r e a l molfra , wt fe2 , fe mol2 , c mol2 , carbon ,

r e a l lamda2 , lamce2 , lamfe2 , teqm , u

c cem2=6.67

c f e r 2 =0.025

teqm=1000

de l t a =2.5e−10

c a l l l amda c r i t spa ( teqm , temp , spac2 )

lamda2=1e−6/((−0.1627∗temp)+162.74)

c a l l l ame l l a thk ( carbon , c cem2 , c f e r 2 , lamda2 , lamce2 )

lamfe2=lamda2−lamce2

p r i n t ∗ , ’ the S in m i s : ’ , lamda2

pr in t ∗ , ’ the S f e r and S cem in m are : ’ , lamfe2 , lamce2

u=re s1 / r e s2

wt fe2=100−carbon

fe mol2=wt fe2 /55 .8

c mol2=carbon /12 .01

mol f ra=c mol2 /( f e mol2+c mol2 )

y5=mol fra /(1−molfra )

dcgb4 = 8.5133 e−5∗exp (−96851/(8.312∗ temp ) )

p r i n t ∗ , ’The D gb o f carbon in m2 s−1 i s : ’ , dcgb4
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pr in t ∗ , ’The D wei avg o f carbon in m2 s−1 i s : ’ ,

& d avg ∗1e−4

ve lo1 =((2∗d avg ∗0.0001)+(12∗ dcgb4∗ de l t a /lamda2 ) )∗ lamda2

ve lo2=(1−( spac2 /lamda2 ) )∗ ( r e s1 / r e s2 )/ ( lamfe2∗ lamce2 )

ve lo=ve lo1 ∗ ve lo2

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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Appendix D

Program for Pearlite Growth in Ternary Steels

1.1 Provenance of Source Code

Ashwin S. Pandit, Phase Transformations Group, Department of Materials Science

and Metallurgy, University of Cambridge, Cambridge, UK.

1.2 Purpose

The program calculates the isothermal growth rate of pearlite in Fe-C-X steels.

1.3 Specification

Self-contained program written in fortran.

1.4 Description

The program calculates the isothermal growth rate of pearlite in Fe-C-X steel. The

growth rate is calculated based on the user inputs for interfacial compositions based

on the tie-line selection from an isothermal section of a ternary phase diagram. The

growth rate in ternary steels is controlled either by partitioning of substitutional

solute (X) through the phase boundary (P-LE) or by carbon diffusion through the
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austenite and the transformation interface involving negligible partitioning of X,

(NP-LE).

1.5 References
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1.6 Parameters

1.6.1 Input parameters

argument in parentheses corresponds to the data type

Carbon / wt%, (real)

Manganese / wt% (real)

Chromium / wt% (real)

1) P-LE or 2) NP-LE

Eutectoid temperature / K, (real)

Transformation temperature / K, (real)

P-LE: Interfacial compositions of X at α/γ + α and θ/γ + θ phase boundaries based

on the isothermal section of a ternary phase diagram

NP-LE: Interfacial compositions of C at α/γ +α and θ/γ +θ phase boundaries based

on the isothermal section of a ternary phase diagram

1.6.2 Output parameters

Thickness of ferrite lamella, lamfe3 / m, (real)

Thickness of cementite lamella, lamce3 / m, (real)

P-LE: Pearlite growth rate, v pl / m s−1, (real)

NP-LE: Pearlite growth rate, v npl / m s−1, (real)

1.7 Program Listing

program p e a r l i t e

i n t e g e r loop , i , j ,m, p , option , cho ice ,w, p1 , p2 , p3 , p4 , r , s , t

r e a l carbon , c cem , c f e r

r e a l coe f , coe f1 , coe f2 , coe f3 , coe f4 , coe , coe f5 , coe f7 , d co e f
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r e a l a f ac , a f mn , c f mn

r e a l tempf (1000) , a f f e (1000) , af mn (1000) , a f c (1000)

r e a l tempf1 (1000) , a c f e (1000) , ac mn (1000) , ac c (1000)

r e a l tempf2 (1000) , f a f e (1000) , fa mn (1000) , f a c (1000)

r e a l tempf3 (1000) , c a f e (1000) , ca mn (1000) , ca c (1000)

r e a l d f c f , ddash1 , ddash2 , d e l f , k , h , ddash , de l e , v1 , v2

r e a l v , v gb , s tor , s tor1 , st mn , st mn1 , st mn2 , st mn3 , k gb

r e a l v3 , v4 , v5 , s t c , s t c 1

r e a l c f c , c f e (1000) , c c (1000) , a c t i c

r e a l del T , temp , teqm , teqm1 , s i f c , s lope , z1 , d f av

r e a l del hm , del vm , velo , de l ta , f a c to r , lamda , lamfer

r e a l Mn, Cr , Si , f f e (1000) , f c (1000) ,D(1000) , lamcem

r e a l eta , molfra , ans , ans2 , part c , vcgb , dcgb , d e f f

r e a l temp 1 (1000) , a f e (1000) , a c (1000) , temp 2 (1000)

r e a l temp 3 (1000) , a 1 f e (1000) , a1 c (1000) , temp 4 (1000)

r e a l var1 , var2 , var3 , var4 , res1 , res2 , act ,R1 ,CG,CG1

r e a l c a f , c ac , c f a , c ca , v pl , v npl , spcr , var3 m , var1 m

r e a l d b

c v a r i a b l e s f o r s t o r i n g i n t e r f a c i a l compos i t ions and

c v e l o c i t y in te rnary s t e e l s

d e l f =21230

h=6.63E−34

z1=12

c cem=6.67

c f e r =0.025

open ( un i t = 1 , f i l e = ’ output . txt ’ , a c c e s s =’append ’ )

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

pr in t ∗ , ’ Enter the chemica l compos it ion : ’
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pr in t ∗ , ’ Carbon ’

read ∗ , carbon

pr in t ∗ , ’ Manganese ’

read ∗ ,Mn

pr in t ∗ , ’Chromium ’

read ∗ ,Cr

c User input f o r the mechanism o f p e a r l i t e growth

pr in t ∗ , ’ Enter : 1 P−LE or 2 NP−LE : ’

read ∗ , cho i c e

p r i n t ∗ , ’ en te r the eu t e c t o i d temperature in K’

read ∗ , teqm

do 61 loop =1,2

p r i n t ∗ , ’ en te r the temperature : ’

read ∗ , temp

I f ( temp .GE. teqm) then

p r i n t ∗ , ’ P lease ente r temp g r ea t e r than teqm : ’

end i f

I f ( cho i c e .EQ. 1) then

d b=2.81e−3∗exp (−164434/(8.31∗ temp ) )

temp=temp−273

lamda=10∗∗(−2.2358+(0.09863∗1.8)− l og10 ((693−temp )/693) )

& ∗(1 e−6)

c a l l l ame l l a thk ( carbon , c cem , c f e r , lamda , lamcem)

lamfer=lamda−lamcem
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c a l l PLE( temp , lamda , lamfer , lamcem , d b , v p l )

p r i n t ∗ , ’ the v e l o c i t y o f p e a r l i t e assuming P−LE i s :

& m2 s−1 ’ , v p l

e l s e i f ( cho i c e .EQ. 2) then

p r i n t ∗ , ’ carbon in aus . in equ i l i b r i um with f e r r i t e ’

read ∗ , var1

p r i n t ∗ , ’ carbon in aus . in equ i l i b r i um with cementite ’

read ∗ , var3

c r e s1 c a l c u l a t e s the d i f f . in i n t e r f a c i a l compos i t ions

c in Fe−C a l l o y

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
r e s1=var1−var3

r e s2 =6.67−0.025

c a l l mo l f r a c c ( var1 , var3 , var1 m , var3 m )

c c a l c u l a t e s the mo l f r a c t i on o f carbon in au s t en i t e

c var1 i s the carbon in au s t en i t e in wt%

c a l l l amda c r i t spa ( teqm , temp , spac )

lamda=spac ∗3
c a l l l ame l l a thk ( carbon , c cem , c f e r , lamda , lamcem)

lamfer=lamda−lamcem

c a l l v o l d i f f ( var1 m , var3 m , carbon , res1 , res2 , temp , ans2 )

c c a l c u l a t e s the p e a r l i t e growth ra t e us ing volume

c d i f f u s i v i t y o f C in au s t en i t e

c a l l mixed growth ( temp , carbon , ans2 , res1 , res2 , ve l o )

p r i n t ∗ , ’ the v e l o c i t y o f p e a r l i t e in NP−LE mode i s :

& m2 s−1 ’ , ve l o
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wr i t e ( 1 ,∗ ) , temp−273 , ve lo

e l s e

stop

end i f

61 enddo

c l o s e (1 )

stop

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

subrout ine v o l d i f f ( var1 m , var3 m , carbon , res1 , res2 , temp , ans2 )

r e a l v1 , v2 , v , lamda , lamcem , lamfer , phi

r e a l d e f f , d e l t a

de l t a =2.5e−10

teqm=1000

del vm=7.1E−6

c cem=6.67

c f e r =0.025

d e l e =8352

k=1.38E−23

c a l l l amda c r i t spa ( teqm , temp , spac )

lamda=spac ∗3

c a l l l ame l l a thk ( carbon , c cem , c f e r , lamda , lamcem)

c c a l c u l a t e s the th i c kne s s o f f e r r i t e and cement i te l ame l l a

lamfer=lamda−lamcem

c a l l ph i c ( de l e , k , temp , phi )

c c a l c u l a t e s the value o f sigma : s i t e ex c l u s i on

c p robab i l i t y , used in c a l c u l a t i o n o f eta
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c a l l a c t c ( var1 m , temp , de l e , a c t i c )

c c a l c u l a t e s the a c t i v i t y o f carbon in au s t en i t e

c us ing a quas i chemical model :MAP

c pr in t ∗ , ’ the a c t i v i t y i s : ’ , a c t i c

c a l l DCG( var1 m , de l e , temp ,R, s l ope )

c c a l c u l a t e s the d i f f e r e n t i a l o f a c t i v i t y o f carbon

c in au s t en i t e

c p r i n t ∗ , ’ the s l ope i s : ’ , s l ope

c a l l DIFF( temp , var1 m , var3 m , de l e , a c t i c , s lope , phi , ans2 )

p r i n t ∗ , ’ the weighted avg . d i f f c o e f in cm2/ s i s : ’ , ans2

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine mo l f r a c c ( var1 , var3 , var1 m , var3 m )

r e a l wt fe , fe mol , c mol , wt fe1 , fe mol1 , c mol1

wt f e=100−var1

f e mol=wt f e /55 .8

c mol=var1 /12 .01

var1 m=c mol /( f e mol+c mol )

wt f e1=100−var3

fe mol1=wt fe1 /55 .8

c mol1=var3 /12 .01

var3 m=c mol1 /( f e mol1+c mol1 )

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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subrout ine l amda c r i t spa ( teqm , temp , spac )

r e a l spac , del T , del hm , teqm , del vm

s i f c =0.60

del hm=4300

del vm=7.1E−6

del T=teqm−temp

c p r i n t ∗ , ’ the new teqm i s : ’ , teqm

spac=2 ∗ s i f c ∗ teqm ∗ del vm / ( del T∗del hm )

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine l ame l l a thk ( carbon , c cem , c f e r , lamda , lamcem)

r e a l w t f r a c f e r , v o l f r a c f e r , vo l f r a c c em

r e a l r f e r , lamda , lamcem , carbon

w t f r a c f e r =(c cem−carbon )/( c cem−c f e r )

v o l f r a c f e r=w t f r a c f e r

c d e n s i t i e s o f f e r r i t e and au s t en i t e are near ly same

vo l f r a c c em=1−v o l f r a c f e r

r f e r=v o l f r a c f e r / vo l f r a c c em

lamcem=lamda/( r f e r +1)

p r i n t ∗ , ’ lamcem in sub i s : ’ , lamcem

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine ph i c ( de l e , k2 , temp , phi1 )

r e a l k2 , phi1

phi1=1−exp ( (−d e l e )/ ( k2∗temp) )

c p r i n t ∗ , ’ the va lue o f phi i s : ’ , phi

c p r i n t ∗ , ’ the va lue o f temp i s : ’ , temp
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r e turn

end

c FUNCTION GIVING THE DIFFERENTIAL OF NATURAL

c LOGARITHM (ACTIVITY OF CARBON IN AUSTENITE) :

subrout ine DCG( var1 m , de l e , temp ,R1 , s l ope )

r e a l DG,DDG, var1 m , temp , s lope , phi10

R1=8.14

phi10=1.0−EXP(−d e l e /(R1∗temp ) )

DG=SQRT(1.0−2.0∗(1 .0+2.0∗ phi10 )∗ var1 m+

& (1.0+8.0∗ phi10 )∗ var1 m ∗∗2)

DDG=(0.5/DG)∗(−2.0−4.0∗ phi10 +2.0∗var1 m+16.0∗
& phi10∗var1 m )

s l ope =−((10.0/(1.0−2.0∗ var1 m ))+(5 .0/ var1 m))+

& 6 . 0∗ ( (DDG+3.0)/(DG−1.0+3.0∗var1 m

& )−(DDG−3.0)/(DG+1.0−3.0∗var1 m ) )

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c FUNCTION GIVING THE NATURAL LOGARITHM

c (ACTIVITY OF CARBON IN AUSTENITE) :

subrout ine a c t c ( var1 m , temp , de l e ,CG)

r e a l var1 m ,AJ ,DG,EG,EG1,R,W,CG

R=8.31

AJ=1−EXP(−d e l e /(R∗temp ) )

IF ( var1 m .LE. 1 .0 e−10) THEN

CG=LOG(1 . 0 e−10)

ELSE
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DG=SQRT(1.0−2.0∗(1 .0+2.0∗AJ)∗ var1 m+

& (1.0+8.0∗AJ)∗ var1 m ∗∗2)

EG=5∗LOG((1−2∗var1 m )/ var1 m)+6∗ d e l e /(R∗temp)

EG1= (38575−13.48∗ temp )/(R∗temp)

CG=EG+EG1+6∗LOG((DG−1+3∗var1 m )/(DG+1−3∗var1 m ) )

ENDIF

RETURN

END

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

c subrout ine GIVING THE CARBON DIFFUSIVITY IN AUSTENITE:

subrout ine DIFF( temp , var1 m , var3 m , de l e , a c t i c , s lope ,

& phi , ans2 )

i n t e g e r I I , I I2 , I I 3

r e a l D(1000) ,CARB(1000)

r e a l X,THET,DASH, eta ,R2 , Z2 ,HH,KK, eta1 , eta2

r e a l eta3 , eta4 , ans , ans2

r e a l ACTI,DACTI,SIGMA,XINCR, var1 m , var3 m

r e a l a c t i c , s lope , phi ,A5

HH=6.6262e−34

KK=1.38062e−23

Z2=12

A5=1.0

R2=8.31

DASH=(KK∗temp/HH)∗EXP(−(21230/temp ))∗EXP(−31.84)

XINCR=(var1 m−var3 m )/5

DO 111 I I =1,5

CARB( I I )=var3 m+(II −1)∗XINCR

X=CARB( I I )

165



1.7 Program Listing

THET=X/(A5−X)

c the var1 , var3 and X are to be expres sed in mol f r a c t i o n s .

ACTI=a c t i c

ACTI=EXP(ACTI)

DACTI=s l ope

DACTI=DACTI∗ACTI

DACTI=DACTI∗A5/( (A5+THET)∗∗2)

SIGMA=phi

eta=A5+(Z2∗(A5+THET))

eta2=(A5−((A5+Z2/2)∗THET)+(Z2/2)∗ (A5+Z2/2)∗ (A5−SIGMA)∗
& THET∗∗2)

eta3=ACTI∗( eta / eta2 )

eta1 =(A5+THET)∗DACTI

eta4=eta1+eta3

D( I I )=DASH∗ eta4

wr i t e (113 ,∗ ) , D( I I ) , THET

111 cont inue

c a l l TRAPE( var1 m , var3 m ,XINCR, I I ,D, ans )

ans2=ans /( var1 m−var3 m )

RETURN

END

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine TRAPE( var1 m , var3 m ,XINCR, I I ,D, ans )

r e a l var1 m , var3 m ,XINCR,XX, sum ,D(1000) , ans1 , ans

INTEGER Q, I I

sum=0

do 999 Q=1, I I−1

XX=var3 m+(XINCR∗Q)
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sum=sum+D(Q)

999 cont inue

ans=XINCR∗( (D(1)+D(5)/2 ) + sum )

return

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine mixed growth ( temp , carbon , ans2 , res1 , res2 , ve l o )

r e a l y5 , spac2 , dcgb3 , dcgb4 , dcgb5 , velo1 , velo2 , ve l o

r e a l c cem2 , c f e r 2 , d e l t a

r e a l molfra , wt fe2 , fe mol2 , c mol2 , carbon , lamda2

r e a l lamce2 , lamfe2 , teqm

c cem2=6.67

c f e r 2 =0.025

teqm=1000

de l t a =2.5e−10

p r i n t ∗ , ’ the teqm i s : ’ , teqm

c a l l l amda c r i t spa ( teqm , temp , spac2 )

lamda2=spac2 ∗3
c max . entropy product ion c r i t e r i o n

c a l l l ame l l a thk ( carbon , c cem2 , c f e r 2 , lamda2 , lamce2 )

lamfe2=lamda2−lamce2

p r i n t ∗ , ’ the value o f lamce2 , lamda2 i s : ’ , lamfe2 ,

& lamce2 , lamda2

wt fe2=100−carbon

fe mol2=wt fe2 /55 .8

c mol2=carbon /12 .01

mol f ra=c mol2 /( f e mol2+c mol2 )

y5=mol fra /(1−molfra )
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dcgb4 = 2.961 e−6∗exp (−72865/(8.31∗ temp ) )

p r i n t ∗ , ’ dcgb 4 i s : ’ , dcgb4 , ans2

ve lo1 =((2∗ ans2 ∗0.0001)+(12∗ dcgb4∗ de l t a /lamda2 ) )∗ lamda2

ve lo2=(1−( spac2 /lamda2 ) )∗ ( r e s1 / r e s2 )/ ( lamfe2∗ lamce2 )

ve lo=ve lo1 ∗ ve lo2

re turn

end

c ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
subrout ine PLE( temp , lamda3 , lamfer3 , lamcem3 , d b , v p l )

r e a l v pl1 , c a f , c ac , c f a , c ca , lamda3 , lamfer3

r e a l lamcem3 , v p l

r e a l spcr , d b

de l t a =2.5e−10

p r i n t ∗ , ’ compos it ion o f X in aus . in equ i l i b r i um

& with f e r r i t e : ’

read ∗ , c a f

p r i n t ∗ , ’ compos it ion o f X in aus . in equ i l i b r i um

& with cement i te : ’

read ∗ , c ac

p r i n t ∗ , ’ compos it ion o f X in f e r r i t e in equ i l i b r i um

& with aus : ’

read ∗ , c f a

p r i n t ∗ , ’ compos it ion o f X in cement i te in equ i l i b r i um

& with aus : ’

read ∗ , c ca

spcr=lamda3/2

p r i n t ∗ , ’ lamda lamfer3 in p l e are : ’ , lamda3 , lamfer3

v p l1=12∗d b∗ de l t a ∗ ( ( c a f−c ac )/ ( c ca−c f a ) )

v p l=v p l1 ∗ (1/( lamfer3 ∗ lamcem3))∗(1−( spcr / lamda3 ) )

p r i n t ∗ , ’ v i s : ’ , v p l

r e turn
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end
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