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Abstract

A model of thermal conductivity as a function of temperature and steel

composition has been produced using a neural network technique based upon

a Bayesian statistics framework. The model allows the estimation of conduc-

tivity for heat transfer problems, along with the appropriate uncertainty. The

performance of the model is demonstrated by making predictions of previous

experimental results which were not included in the process which leads to

the creation of the model.
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1 Introduction

There are many situations in design or in process modelling where it would be
useful to know the thermal conductivity of the steel being used, and how it would
change as a function of temperature. With the lack of any quantitative model the
usual recourse is to look for a similar composition contained in published tables of
data [1, 2, 3]. However, in the absence of a quantitative model it is not possible to
assess the validity of this procedure.

Thermal conductivity controls the magnitude of the temperature gradients which
occur in components during manufacture and use. In structural components sub-
jected to thermal cycling, these gradients lead to thermal stresses. During heat treat-
ment the conductivity limits the size of components that can be produced with the
desired microstructure, since transformation depends on cooling rate and tempera-
ture. A suitable model of thermal conductivity should help to improve the design
of steels and understanding of heat treatment, solidification and welding processes,
design of steel structures and components, and prediction of thermo–mechanical
fatigue.

The original motivation of the authors was to estimate thermal conductivity of a
range of steels to assess the validity of lump–theory approximation in the design of
a novel probe used to measure heat transfer coefficient [4, 5]. The model presented
here was developed using neural network software to model the thermal conductivity
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as function of composition and temperature. Subsequently the model was combined
with experimentally determined heat transfer coefficient in a finite–element scheme
to predict the instantaneous temperature profile in a cylinder of steel during quench-
ing [4]. Calculated cooling curves and transformation kinetics were used to calculate
the resultant distribution of hardness using a quench factor [6].

1.1 Thermal Conductivity

In metals electrons provide an additional contribution to the thermal conductivity,
which can therefore be much greater than in non–metals in which only phonons
contribute. Interactions between phonons and electrons determine the thermal con-
ductivity in a pure metal. In alloys additional lattice distortions by alloying ele-
ments cause similar disturbances. Both relying on electron transport, thermal and
electrical conductivity behave analogously, and in the ideal case are related by the
Wiedermann–Franz law [7].

At temperatures above the Debeye temperature phonons begin to have wave-
lengths similar to the inter–atomic spacing and increasingly scatter electrons. For
iron this is 398±9 or 418±4 K from X–ray measurements, or calculated to be 467 K
from the elastic–constants [8]. The maximum thermal conductivity occurs at cryo-
genic temperatures. Due to phonon interactions the thermal conductivity is ex-
pected to decrease with increasing temperature, before this effect saturates and
thermal conductivity becomes independent of temperature [9].

When an electron is deflected by an irregularity it changes quantum state. With
more empty states available of similar energies there is a smaller mean free path and
a greater chance that it will be deflected by a given irregularity. The resistance of
alloys with the foreign atoms in solid solution is nearly always greater than that of
a pure metal.

Matthiessen showed that in general the effect of alloying in dilute concentra-
tions is independent of temperature [10]. Both the high resistance of alloys and
Matthiessen’s rule is explained by the electron interactions with the matrix. The
resistance of a pure metal is largely due to the disturbance to the periodicity by
thermal agitation. When foreign atoms are added they cause breaks in the lattice,
and electrons will be deflected in the absence of thermal agitation. The electrical
resistivity of the metal can be written as two separate components; ρ = ρ0 + ρT .
Such a relation has been demonstrated in a series of copper binary alloy [11], and
according to Mott may be expected to be true only in dilute solid solutions [12].

Nechtelberger [13] related the change in thermal conductivity λ of ferrite in cast
iron by alloying to the thermal conductivity of pure iron λ0 by an equation of the
form λ = λ0 − ln

�
x where x is the solute concentrations in %.

Since there is a large effect on thermal conductivity by any disturbance in the
periodicity of the lattice, the temperature and thermal history of steels can be ex-
pected to greatly influence conductivity. Without changing composition, a large
number of different microstructures can be achieved, having different constituents,
of different compositions and distributions. For example, quickly cooling a steel
from the austenite range is likely to produce a martensitic microstructure, with
carbon and other alloying elements present in a super–saturated solid solution of
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metastable α�–ferrite. Heating will then trigger tempering behaviour, as carbides
will precipitate and grow. In comparison cooling would produce a coarse mixture
of cementite and ferrite of lower alloy content, and with lower defect density. The
thermal conductivity of the martensite would be lower, and would increase towards
that of the ferrite/cementite mixture on heat treatment below the austenite phase
field. As temperatures increase into range 700–900◦C and beyond the phonon con-
tribution should become more dominant, also the phase change to austenite occurs
and elements go into solution.

Richter [14] and Powell [15] have reported physical properties as a function of
temperature for a number of different steels. The thermal conductivity of steel
alloys diverge as temperature is decreased, pure iron having the highest thermal
conductivity, followed by carbon steels, alloy steels and then by high–alloy steels.
High–alloy steels having lower thermal conductivity at normal ambient temperatures
than at high temperatures. At higher temperatures where austenite forms all the
alloys have similar thermal conductivities.

Thermal conductivity of an alloy will depend upon temperature and microstruc-
ture (therefore time). In principle an accurate model should be possible when the
microstructure can be accurately predicted. A law of mixtures rule could be success-
ful in some cases, in other cases the distribution of phases will also be important.
Cast irons have enhanced thermal conductivity due to the presence of graphite and
it has been found by experience that the form of the graphite has a large influence.
Flake graphite forms an interconnected network, whereas percolation is not possible
with the stronger and more ductile nodular graphite form. Compacted graphite has
intermediate properties, avoiding sharp edges of flake graphite, but still able to form
a network structure.

2 Method

To investigate the composition dependence of the thermal conductivity a database
was collated and a neural network produced in the Bayesian framework following
MacKay [16, 17, 18, 19], as implemented in the bigback [20] program using the
commercially available Neuromat [21] model manager software interface. In this
scheme the neural network can be regarded as a general form of regression, providing
an approach by which a quantitative prediction may be made in situations where
the complexity of the problem makes a physically rigorous treatment difficult or
impossible. This approach incorporates many techniques to automatically infer the
relevance of the inputs and to avoid ‘over–fitting’, and has been successfully applied
to many complex relationships in materials science [22, 23, 24, 25]. Bhadeshia has
published two comprehensive reviews on their use and performance [26, 27].

A database of the thermal conductivity of steels was compiled from the published
literature [1, 2, 14, 15, 28, 29, 30, 31, 32, 33]. Data is generally available in a form
giving the chemical composition, temperature and heat treatment condition of the
steel. Details of the initial condition of the steel have been omitted from this model
so as to make it more generally applicable, this also avoids any complications which
would be introduced from differences in experimental procedure used to determine
the thermal conductivity reported. Any differences due to microstructure can be
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regarded as being incorporated into the uncertainty which accompanies the predicted
values.

The database contained 756 thermal conductivity values representing more than
100 different steels at various temperatures. For many of the steels thermal con-
ductivity had been reported over a range of temperatures, whereas others were only
associated with a room temperature measurement. Details of the inputs and the
ranges for which data was available can be seen in table 1. The data and the model
have also been made available online [34].

Figure 1 illustrates the range and the distribution of the variables plotted against
the thermal conductivity. A cursory examination of the data for temperature versus
thermal conductivity shows that there is a greater variation in thermal conductivity
at lower temperatures. At higher temperatures thermal conductivity decreases in
all the steels so the data converge. Due to the data source being a sample from
commercial steels, rather than specifically designed combinatorial experiments, there
is a greater spread in commonly used alloying elements. We should therefore expect
higher quality predictions for elements such as carbon, manganese and silicon in
comparison to copper or aluminium were fewer different levels were present in the
data.

The database contained sporadic data for the usually small amounts of boron,
nitrogen and zirconium but there was not a sufficient number of examples to model
the action of these three inputs sufficiently. These elements are sometimes added
purposefully and particularly nitrogen would always be expected to be present but
seldom reported for air melted steels. It was therefore assumed that the usually
small amount these elements do not have a large effect on the thermal conductivity
of steels and the inputs were removed. Steels including these elements in small
amounts were kept in the database used for training. Any effect resulting from the
variation of these elements should therefore be reflected as larger uncertainty in the
predictions. If the amounts vary systematically with the other inputs it is even
possible that the effect would still be modelled successfully even though it cannot
be separated from the other inputs.

The data were divided in to two groups, a training set and a testing set. Later
additional data was collected so that the final model can be quantitatively assessed,
otherwise it may be better to reserve some of the data for final testing.

In the ideal case the data would be a random sample from the input space, with
each input changing independently. This is seldom the case for collated metallur-
gical data from the literature, data usually being available for a number of fixed
compositions; in this case with temperature then varied. With sparse data there is
an advantage in carefully selecting which of the data will be included in the train-
ing and the testing sets. It was found to be advantageous to ensure that each set
contained a sample representative of the whole data, and that as many as possible
different example compositions be present in only one of the sets.

In training each model a number of different sub–models are trained. These had
between 1 and 25 hidden units and used 9 different random seeds which controlled
the initial weights of each node, so as to ensure convergence from different positions
in weight space. This meant a total of 225 initial conditions in each case, resulted
in 163 sub–models being successfully trained in the final model (model C). Testing
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Input Minimum Maximum Average Standard Deviation
Fe wt% 8.69 100 89.2 16.3
C wt% 0 1.22 0.29 0.26

Mnwt% 0 13.0 0.75 1.26
Niwt% 0 63.0 3.52 8.39
Mowt% 0 4.8 0.34 0.83
Vwt% 0 3.0 0.08 0.31
Crwt% 0 30.4 3.83 6.86
Cuwt% 0 0.69 0.032 0.10
Alwt% 0 11.00 0.14 1.15
Nbwt% 0 3.00 0.067 0.33
Siwt% 0 3.50 0.28 0.48
Wwt% 0 18.50 0.48 2.76
Tiwt% 0 1.40 0.015 0.11
Cowt% 0 55.90 0.93 6.05
P wt% 0 0.044 0.014 0.015
Swt% 0 0.050 0.016 0.018

Temperature / ◦C -200 1571 385 332
Conductivity /Wm−1K−1 10.9 83.8 33.6 11.7

Table 1: Summary of the database of steel thermal conductivities, all elements are
in wt%.
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Figure 1: Distribution of inputs in the database.
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Figure 2: Comparison of experimental and calculated thermal conductivity for the
committee model. Trend lines ±10% from the 1:1 correspondence illustrate the low
scatter.

each of the sub–models capability to predict the unseen testing set, allows a ranking
by the log predictive error. A committee of the best models as ranked by log–
predictive–error (LPE) was selected to minimise the combined test error with seven
sub–models found to be optimum in model C as shown in table 2. These models were
allowed to further converge by training on the combined training and test data. As
can be seen in figure 2 the final committee model can reproduce the training data,
within the error bars estimated by the model for the vast majority of cases.

Before reaching the final database different combinations of inputs were at-
tempted. The process of building a database, training and testing the neural network
was repeated iteratively until reaching a satisfactory accuracy. The model can be
quantitatively assessed by measuring the ability to predict data which has not been
used in training the committee, as shown in table 3. In this case a large difference
was observed in the confidence of predictions when each input was within the range
seen in the database, compared to the case when one or more input was outside the
range. The uncertainties correctly predicted the actual performance of each model.

Table 3 shows the improvement in the final few iterations of the model which
used the full database described, this final testing is carried out using completely
unseen data. Models A and B included an input for iron, derived as the balance
of the other inputs. The difference between these two models is that the data was
manually split between training and test sets in model A to ensure that conductivity
data as a function of temperature for some of the alloys only appears in the training
or the testing set. In model B the data was split randomly. Model A was found
to perform better than model B, with lower error in predicting the unseen data,
although model B had estimated a greater confidence in it’s predictions.

In both model C and A the behaviour was safer in that the performance on the
unseen data was slightly better than the perceived error by the model. Earlier in the
development of the model it had been found that it was best to also include iron as an
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Rank LPE TE HU Seed Combined Test Error
1 569.05 0.485 4 4 0.486
2 568.76 0.481 4 6 0.484
3 566.90 0.491 4 3 0.486
4 566.22 0.918 9 2 0.440
5 562.01 0.749 7 9 0.397
6 559.22 0.558 3 8 0.403
7 558.88 0.500 6 9 0.395
8 558.79 0.575 3 4 0.403
9 558.66 0.555 3 1 0.410
10 555.80 0.560 4 7 0.412
11 554.70 0.549 4 5 0.419
...

...
...

Table 2: Model C ranking of sub–models by log–predictive–error (LPE). Sub–
model’s have varying number of hidden units (HU) and different random seeds,
which determines the initial weights from which the model converges to an opti-
mised solution. An optimum committee model can be produced from the best seven
sub–models, so as to minimise the combined test error, lower than test error (TE)
of the best model.

Model Data set Perceived accuracy σy rmse.

A
Unseen data ‘within range’ 5.5 6.1

Data beyond range 82.3 50.8

B
Unseen data ‘within range’ 5.2 12.1

Data beyond range 65.4 51.5

C
Unseen data ‘within range’ 4.6 3.9

Data beyond range 36.4 15.7

Table 3: Performance of model on unseen data. Unseen data was split into two
groups because of the difference in performance in predictions, data was defined as
‘within range’ if each of the input values was within it’s range in the database, due
to the number of different permutations it is still possible to be extrapolating to
completely unknown positions in the input space but for the data to be ‘in range’.
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input, however this has a risk of introducing an unnecessary bias. Therefore model C
was trained excluding the iron input, this lead to an improvement in prediction for
both data within the range of the inputs or when making predictions beyond the
range of the inputs.

3 Results and discussion

Predictions for some of the alloys used to assess the model are shown in figures 3
and 4, the predictions compare favourably with the reference book and previous
data from the literature. With the model reproducing the correct temperature
dependence for the stainless steel, medium and high carbon steels. The compositions
used are stated in the figure captions, each element is within the ranges shown in
table 1.

During training the significance of each of the inputs is inferred from the data.
These significances are shown in figure 5. The significance does not depend on how
strongly each factor influences the output, but rather the complexity of the relation-
ship. As could be expected temperature is one of the strongest influences, with high
significance perceived by each of the sub–models. Manganese, nickel, molybdenum
and chromium were observed to have a strong significance in most of the models.
Carbon, silicon, vanadium and copper had a lower significance, while elements ti-
tanium, tungsten, niobium and aluminium all had very low significance. Except
aluminium the elements with lowest significance are strong carbide formers, as such
they may usually form second phases and so not effect the thermal conductivity
greatly, except by removal of carbon or nitrogen. There is disagreement between
the sub–models as to the significance of cobalt and sulphur, and these values var-
ied widely between the different sub–models. The high significance of manganese,
nickel and molybdenum may be related to their presence in stainless steels which
will differ greatly from the majority of steels in the database, by stabilising austen-
ite to low temperatures. It is surprising that carbon did not having the greatest
significance due to it’s strong effect on the transformation of austenite to ferrite, it
may be due to the importance of the wide variety of heat treatments possible, of
which no information has been included in the database. It seems that a feature
of the model is a higher uncertainty of the thermal conductivity at lower temper-
atures, this reflects the greater number of microstructures that can present at low
temperatures. Metastable microstructures will transform to become closer to equi-
librium upon heating, this is reflected by the lower uncertainty in predictions at
higher temperatures.

Figure 6 shows predicted thermal conductivities in some dilute solutions. It
can be seen that the various alloying elements do not have equivalent effects, so
Nechtelberger’s equation for thermal conductivity of ferrite is not generally appli-
cable. It can be seen that dilute solutions of manganese could be said to obey a
thermal analog of Matthiessen’s law below 1%, but the prediction for Fe-1% man-
ganese deviated from linearity below around 300◦C. If Matthiessen’s law applies
to thermal conductivity it can only be over a limited temperature range, since al-
though the thermal conductivities of dilute solutions as a function of temperature
could be approximately parallel and linear in the range 0–600◦C the values for dif-
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ferent compositions converge at higher temperatures. A transition occurs between
800–1000◦C, to a different temperature dependence corresponding to the austenite
phase, and with thermal conductivity increasing as temperature increases. However
the predictions in this region are associated with larger uncertainties and it is not
sensible to compare the effects of the various elements.

According to Farrell and Grieg [35] it is difficult to measure thermal conductivity
better than 1% due to radiation effects, so in their careful measurements of thermal
conductivity in nickel alloys they measured thermal conductivity between 2–100 K
to see deviations from Matthiessen’s rule. It seems likely that deviations observed at
higher temperatures in the predictions of the neural network model are mainly due
to phase–transformations, either precipitation or between ferrite and austenite. The
perceived uncertainty of the prediction is much larger than 1%, however as observed
in figure 4 the uncertainties encompass the experimental values and are similar
order to the disagreement between the various studies of the thermal conductivity
of the austenitic stainless steel, and also the non–linearity of thermal conductivity
measurement of the ferritic stainless steel.

The model has some ability to extrapolate successfully, as can be seen in figure 7
the model can partly infer the behaviour at cryogenic temperatures, with reasonable
match with experimental data [36] to -200◦C which was the lowest temperature in
the database. For pure iron the data was limited to above room temperature, as
expected this data could be directly reproduced by the neural network. Beyond
-200◦C the thermal conductivity rapidly increases to a maxima at around -250◦C
before more strongly decreasing to near 0 as the temperature approaches absolute
zero. Not being physically based and without any previous examples of this be-
haviour the neural network is not able to predict this behaviour, also as shown it is
possible to make predictions beyond absolute zero which are not thought to have any
physical meaning. This extrapolation to cryogenic temperatures was accompanied
by an increase in uncertainty which contained all the experimental data until the
temperature reached a few degrees Kelvin.

The model is naive in that it has no explicit knowledge of all the physical phe-
nomenon which determine the thermal conductivity, the biggest omission is that no
knowledge of the previous thermal history or microstructure was included. This was
on one hand omitted to allow simple application of the model, secondly to simplify
the modelling procedure, and thirdly to allow the greatest amount of data to be
incorporated in the model. In reality the thermal conductivity will depend upon
the microstructure of the steel, which depends upon the full thermal history of the
steel, and may be also change during holding at a particular temperature. Where it
is necessary to accounts for these effects, or when greater accuracy is needed than
indicated by the uncertainty, experimental measurement of thermal conductivity
would be required.

4 Conclusions

A general regression model has been created which is capable of predicting the
thermal conductivity of steels as a function of composition and temperature. Since
the neural network software applied automatically infers the relevance of the inputs,
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Figure 3: Predictions for unseen compositions, compared to experimental values
(circles) [3].
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Figure 4: Comparison of predictions for unseen composition against experimental
values from various authors [37, 38, 39].
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Figure 5: Significance of each input in each sub–model used to build the committee
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Figure 7: Prediction of the thermal conductivities of pure iron at cryogenic temper-
atures.

predictions can be made accompanied by appropriate uncertainties which vary with
position in the input–space.

The model was tested on unseen data and can correctly predict the thermal
conductivity for a wide range of steels.
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