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Abstract. A theory is developed for martensite variants that have different start temperatures but
exist in the same steel. The method enables the volume fractions of each kind of martensite to
be followed as a function of the steel temperature. The problem is relevant to the calculation of
detail in transformation texture when phase changes occur under the influence of external stress.
It should allow for the first time, the estimation of both the location of crystallographic poles on
a stereographic projection, and the diffraction intensity associated with that location. It is found
that the increment of transformation as a function of undercooling is identical for all variants, once
simultaneous transformation begins. Any variance in the absolute fractions is due to the differences
in the martensite-start temperature.

Introduction

It is now necessary to think of a way of dealing with the kinetics of austenite decomposition into
more than one kind of martensite, albeit with the same crystal structure but different thermody-
namic stabilities. Such transformations may occur simultaneously when appropriate undercoolings
are achieved, but the motivation of the work lies in an entirely different context, that of calculating
transformation plasticity.

Motivation

There are important unresolved difficulties in the calculation of crystallographic texture due to
displacive transformation under the influence of stress [1, 2]. It is often assumed that it is sufficient
to plot calculated crystallographic orientations on stereographic projections or similar devices, and
then compare against experimental data which contain not only the location of poles but also
the associated diffraction intensity. This is misleading because crystallography on its own predicts
only the positions of the poles. The implicit assumption is that all variants, even those that oppose
external influences, contribute equally to intensity. This is illustrated in the austenite grain of Fig. 1a;
two variants of martensite of equal size will display the same calculated texture as that in which one
variant is a hundred times larger in volume than the other. The correct scenario is that illustrated
in Fig. 1b, where the density of poles is much larger in the case of the dominating variant.

The estimation of intensity requires thermodynamic and kinetic theory. The total free energy
that a particular variant of martensite experiences when transformation occurs under the influence
of stress determines whether or not the formation of that variant is favoured. Of the 24 possible
orientations of martensite that can form in any given grain of austenite, some will be favoured and
others opposed since they do not comply with the stress - in other words, variant selection occurs.
The total free energy is the sum of the chemical and mechanical components, the latter being zero
in the absence of an applied stress during transformation [3, 4]:

∆G = ∆GCHEM +∆GMECH (1)

Harshad Bhadeshia
Materials Science Forum 762 (2013) 9-13



Fig. 1: Schematic illustration of the difficulty
in calculating pole figures. Note that the size
of the dots is intended to reflect the density of
poles. (a) Representation of pole figure calcu-
lated without taking account of the volume of
the diffracting crystal. (b) Intensity scaling with
the fraction of the contributing crystals. Any
method which only plots crystallographic ori-
entations in comparisons against experimental
data will therefore be incomplete.

where for an applied stress that is uniaxial, ∆GMECH = sτ +δσN [3], s and δ representing the shear
and dilatational strains due to transformation, the latter being normal to the martensite habit plane.
The magnitudes of the shear stress τ on the habit plane, and σN normal to that plane, depend on
the orientation of the plate relative to the applied stress. Therefore, the sign and magnitude of the
mechanical driving force depends on the orientation of each of the 24 variants of martensite in any
given grain of the parent phase with respect to the external stress. Strong variant selection occurs
when the ratio of ∆GMECH/∆G is large [5], as illustrated in Fig. 2, which is empirical in the sense
that we do not know whether this relationship should be linear [6].

Fig. 2: ∆GMECH/∆G versus the
number of most favoured variants
per grain (n), for a variety of
steels. [6]. Data from [7, 8, 6].

An important point to note is that during transformation under stress, the martensite-start
temperature is different for each of the 24 crystallographic variants in any given grain. This is
because transformation is triggered only when ∆G < ∆GMS

, where ∆GMS
is a critical value of the

free energy change.



There are therefore, 24 values of MS to deal with for each austenite grain, and a theory
is necessary to enable the volume fractions of each of these variants to be estimated as a
function of temperature.

Kinetic theory for single variety of martensite

We now proceed to describe how the volume fraction of each variant of martensite, with its distinct
martensite-start temperature, might be calculated. The basic theory has its origins in the empirical
equation derived by Koistinen and Marburger [9] and elaborated by Magee [10]. Consider first the
case of stress-free transformation where a unique MS is defined for a given steel. Following Magee,
the number dN of new plates per unit volume of austenite is assumed to increase linearly with the
increment in ∆G due to undercooling below MS:

dN = −φ d{∆G} where φ is a constant. (2)

The change df in the fraction of martensite, given an average volume per plate of V is

df = V (1 − f) dN (3)

since (1− f)dN is the change in the per unit volume of sample. On combining these equations and
making the substitution

d{∆G} ≡
d{∆G}

dT
dT

we see that

df = −V φ(1 − f)
d{∆G}

dT
dT (4)

that on integration gives the classical Koistinen and Marburger equation with χ ≈ −0.011:

1 − f = exp

[

V φ
d{∆G}

dT
︸ ︷︷ ︸

χ=−0.011

(MS − T )

]

. (5)

Simultaneous formation of multiple martensite varieties

From Eq. 4 we see that df = χ(1 − f) dT . This relationship can be generalised in much the same
way that the original Avrami theory [11, 12, 13] for overall transformation kinetics was adapted
for simultaneous transformations [14, 15, 16, 17, 18]. So for two different martensitic reactions
happening at the same time, and in a temperature interval dT

df1 = χ(1 − [f1 + f2]) dT, with df1 = 0 if MS1
< T

df2 = χ(1 − [f1 + f2]) dT, with df2 = 0 if MS2
< T (6)

These equations can be numerically solved as a function of undercooling below the respective MS

temperatures. Some calculations are illustrated in Fig. 3. Notice that at the point where the two kinds
of martensite start to form together, the increments df in their respective fractions as a function
of undercooling dT are identical, consistent with Eq. 6. This is because it is assumed that χ is
the same for both ‘phases’. This parameter is of course determined by the mean volume per plate
(V ) and (.∆G)/dT . Since the only thermodynamic difference between the two forms of martensite
comes from the mechanical free energy term ∆GMECH , which does not vary with temperature,
d{∆G}/dT = d{∆GCHEM}/dT so that χ does not depend on the MS temperature of the variant.



Similarly, if the geometrical partitioning of the austenite remaining once MS2
is reached is iden-

tical for all variants, then χ can reasonably be assumed constant. The conclusion therefore, is that
following the onset of simultaneous transformation of the kind described here, the change in volume
fraction of each variant of martensite is identical. Differences in the total volume fractions of indi-
vidual variants arise only through the thermodynamic effect of the mechanical driving force on the
martensite-start temperature.

(a) (b)

Fig. 3: Two martensite-start temperatures, (a) 500◦C and 400◦C, (b) 500◦C and 450◦C .

There are circumstances in which the applied stress can vary with temperature, for example
during the cooling of a mechanically constrained tensile specimen of austenite. It cannot then be
assumed the χ will be identical for each variant. Fig. 4 illustrates a case where χ depends on variant.
In such a case, the value of χ should include the temperature dependence of the mechanical driving
force through the term d{∆G}/dT ≡ d{∆GCHEM +∆GMECH}/dT in equation 5. So the ordinary
value of χ = −0.011 which is identical for all variants, would be modified to the new value χi as
follows:

χi = χ ×
d{∆GCHEM +∆Gi

MECH}/dT

d{∆GCHEM/dT}
(7)

where the superscript i refers to the particular martensite variant of interest.

Summary

A simple theory is presented to permit the calculation of the volume fractions of martensite variants
which differ in their martensite-start temperatures within the same austenite grain or in a sample of
polycrystalline steel. It is found that the differences in volume fractions obtained can be attributed
entirely to variations in MS. Once the variants of martensite grow together, the increments in each
of their volume fractions as a function of an increase in undercooling, are identical.

This theory forms the basis for predicting the diffracted intensities observed during the develop-
ment of transformation texture under the influence of external stress.



Fig. 4: This figure corresponds
to Fig. 3a, but with the Koisti-
nen and Marburger parameter χ
taken to be different for the two
variants of martensite. The total
fraction of variant 2 is therefore,
significantly reduced.
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