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Abstract

Methods have been evaluated for the prediction of the martensite–
start temperature as a function of composition. Linear regression
models have been improved by applying the concept of a commit-
tee borrowed from more sophisticated empirical techniques. Neural
networks and thermodynamic models are tested, and a hybrid neural
network model is developed using the thermodynamic model. The
performance of the models is compared by different methods of as-
sessment. The thermodynamic model performance was the best when
tested within a typical range of the input–space. Bayesian neural
network possess the advantage that the predictions are naturally ac-
companied by a measure of the uncertainty. It is demonstrated that
combining the thermodynamic model with neural network can com-
bine the advantages of the two methods.

1 Introduction

Due to the importance of phase transformations and heat treatments
on the mechanical properties of steels, and due to the apparent sim-
plicity of the concept and relative ease of measurement, a large number
of studies have been made of the influence of elemental composition on
the martensite–start temperature (MS). Prediction of MS enables the
design of new alloys or heat treatments, and can give helpful insights
in the context of understanding mechanical properties when retained
austenite is present.

Many authors have used multiple linear regression equations to
summarise the influence of the various alloying elements on the martensite–
start temperature (MS) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The
form is;

MS = k0 +
∑

kiwi (1)
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Figure 1: MS temperature of Fe-X binary alloys (adapted from Izumiyami et
al. [14]).

where k0 is the ‘MS’ of pure iron, wi is the concentration of element i
usually in weight percent, ki is a parameter relating the concentration
each element to the change in the MS temperature.

Such equations are usually limited to a particular range of compo-
sitions, but the bounds of applicability may not have been determined
or stated. There is often a temptation to use the equations outside
the range of compositions used to determine the parameters.

One objection to such an approach is that the MS temperature
should not in general be expected to have a simple dependence on
elemental composition. As shown in figure 1 [14]), even in binary
solid solutions there is a non–linear dependence on solute concentra-
tion. Thermodynamic calculations of MS using the Calphad approach
therefore have an advantage over linear models, because they con-
sider the change in chemical driving force due to binary and tertiary
interactions, which is a more physically relevant parameter. Neural
networks can also cope with the interdependencies necessary to esti-
mate MS [15], for example this approach was used by Vermeulen et
al. [16].

Sourmail and Garcia–Mateo [17] have assessed various models for
calculation of martensite–start temperature including thermodynamic
calculation [18, 19] and Bayesian neural network methods [20], and
have also made available an extensive database of steels [21]. They
developed a model using a Bayesian neural network as developed by
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Mackay that performed at least equally well as the thermodyanamic
model approach.

Even the thermodynamic approach is eventually ‘empirical’ be-
cause it is necessary to calculate the critical value of the driving force
necessary to trigger transformation. The estimation of the driving
force itself is dependent on the empirical database and thermodynamic
data.

Sourmail and Garcia–Mateo bounded the output of the neural net-
work to prevent non–physical predictions. This approach was intro-
duced by Yescas [22] in the context of phase fractions, but later results
have shown that this can lead to poor performance by introducing an
artificial bias in the cases were the bounding function is not supported
by the underlying physics [23]. Therefore in this work a neural network
was trained without using the bounding function for comparison.

In this work various models were compared. The concept of a com-
mittee of models was applied to multiple linear regression models. In
addition to the Bayesian neural network, attempts were also made to
combine the neural network method with thermodynamic modelling.

2 Method

A database (data set A) of 69 points collated by Sourmail and Garcia-
Mateo but unused in the training of their model were used to assess the
performance of various models by Pearson’s correlation coefficient, the
root mean squared error, test error and the log predictive error. The
database provided by Sourmail contained data also used by Capdevilla
et. al. [24], Vermuelen et. al. [16] and data used by Ghosh and Olson
to derive the critical driving force.

The test error (TE) minimisation or sum squared error∑(
t(m) − y(m)

)2
(2)

is commonly used in assessment of regression models. The log predic-
tive error (LPE) is an alternative, that has the advantage of penalising
wild predictions less when they are accompanied by large uncertain-
ties. Assuming that for each example m the model gives a prediction
according to the normal distribution with average y(m) and variance

σ(m)2;

LPE =
∑
m

[
1

2

(
t(m) − y(m)

)2
/σ(m)2 + log(

√
2
√
πσ(m))

]
(3)

Pearson’s correlation coefficient, r and it’s square r2 the coefficient
of determination are also popularly used to compare model perfor-
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mance. The sample correlation coefficient is defined in terms of the
sample standard deviations sx and sy and the sample covariance sxy.

rxy =
sxy
sxsy

(4)

Positive correlation is indicated when r is close to 1, and negative
correlation when close to -1.

The residual sum of squares RSS is another measure of the dis-
crepancy between the data and an estimation model,

RSS =
n∑

i=1

(yi − ŷi)2 (5)

where yi is the ith value of the variable to be predicted, and ŷi is the
predicted value i.e. f(xi)

There is scope to introduce alternate objective functions depending
on the purpose of the modelling. Two functions were introduced to
minimise both TE and LPE, the simplest being F1=LPE×TE. Due
to the sensitivity to scaling, if the function

√
(TE2 + LPE2) were used

the result would be dominated by the TE. The function F2=
√

(TE2
N +

LPE2
N ) gives a similar ranking to F1, where TEN and LPE2

N are the
values of TE and LPE normalised by dividing by the maximum value
of each i.e. TEN = TE

TEmax
.

2.1 Regression equations

The MLR equations were ranked by their performance on data set A
and combined to make committee models of the best n models. The
average and standard deviations were calculated for these combina-
tions. Equations due to Tamura, Pickering and Finkler and Sehirra
[8, 11, 12] relevant to specific composition ranges where excluded at
this stage since the predictions were usually outliers with respect to
the other functions – although it is expected that they be preferred in
their appropriate ranges.

Combining the equations in this simple way, is equivalent to al-
lowing each parameter to be represented by a distribution of values
rather than a single value, providing an assessment of the uncertainty
as a function of position in the input space. Uncertainty of the pa-
rameters can be estimated in multi–linear regression, but these values
are seldom reported or used. The approach espoused here benefits
from the large number of independent assessments made by previous
researchers to provide an assessment of predictive ability.

Similar concepts are used in Bayesian approaches to neural network
modelling. For example the use of a committee of models combined to
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produce lowest combined test error [20], and Markov–Chain Monte–
Carlo techniques were the distribution of weights is explicitly assessed
during training and incorporated into the predictions [25].

2.2 Neural Network models

Two neural network models were successfully trained using the train-
ing data used by Sourmail and Garcia–Mateo. The first simply used
the database provided but without normalisation to constrain the out-
put to the range 0-1000 K. The second used predictions of the thermo-
dynamic model as implemented by Sourmail as an input for training
to produce a hybrid model. Using the Neuromat model manager soft-
ware a number of sub-models were trained and then ranked by log
predictive error (LPE) and the best models combined to produce a
committee with the lowest combined test error.

2.2.1 Attempt to model error

A neural network model was trained with the target being the dif-
ference between the value predicted using the Ghosh and Olsen ther-
modynamic model and the experimental database, but no systematic
trend could be extracted. Such an approach seems to have the po-
tential to improve performance if there were a systematic error in the
model.

2.2.2 Hybrid model

Thermodynamic prediction of the martensite–start temperature was
performed using the model of Ghosh and Olsen as implemented and
provided by Sourmail (GOS). The thermodynamic prediction was added
into the input data of the training database, to produce a dataset for
the hybrid thermodynamic–Bayesian neural network model (Hybrid
GOS/BNN).

3 Results

3.1 Performance of committee of linear mod-
els on ‘data set A’

The committee model of the best 3 performing MLR equations had
the lowest test error of the combined MLR models, performing better
than any of the individual models. Considering the LPE then the
committee model of the 11 MLR equations had the best performance
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and performed reasonably well when measured by TE, therefore it was
also the best performing MLR model when considering simultaneous
minimisation of LPE and TE (see table 2). Comparison against the
unseen data of ‘test A’ data with the 11 member committee model can
be seen in figure 3. The error bars represent one standard deviation
of the predictions of the various equations.

The combined empirical models work reasonably well for general
steels included in ‘test A’ which have no elements added significantly
beyond the austenite solubility limit. There is a systematic error in the
calculation of high chromium steels in the test data set, these data can
be expected to have formed an amount of ferrite. An improved calcu-
lation may be expected if the change in composition of the austenite
can be accounted for, for example using thermodynamic calculation
of equilibrium composition at high temperature. In the committee
models these wild predictions are in regions where the various models
disagree and are accompanied by larger uncertainties.

Further inspection of the predictions and the associated errors
shows that the error bars are reasonably appropriate to the perfor-
mance of the model, from 69 test cases 71% were within one standard
deviation and 86% are within 2 standard deviations from the predic-
tion.

Figure 2 is an example of how the predictions can change as a
function of the input space, note with the MLR equations only linear
trends can be captured and error can only vary linearly as a function
of composition for each element.

3.2 Performance of thermodynamic and neu-
ral network models on ‘test A’ data

On the ‘test A’ database the model of Ghosh and Olson performed
very well when measured by the test error. The RSS of 20 (standard
error assuming no bias) is comparable to the standard deviation of
12 in experimental measurements of a single alloy with MS 370◦C
reported by by Yang and Bhadeshia [26]. Sourmail and Garcia–Mateo
previously demonstrated that the thermodynamic model is not able to
perform as accurately when elements are added beyond their solubility
limit in the austenite phase (i.e. addition of strong carbide formers
such as Nb, V).

The unbounded Bayesian neural network performed best when
measured by LPE but the worst when considering the test error. Com-
paring figure 7 and 8 it seems that a more general trend was extracted
in comparison to when the bounding function was applied.

The performance of the hybrid thermodynamic-Bayesian neural
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Figure 2: Calculated trends using committee of best 9 multi-linear models.

network model had a slightly better TE and a much improved LPE
compared to the bounded BNN. Compared to the unbounded BNN
the TE is very much better and the LPE performance is worse.

The performance of the various modelling techniques is summarised
in table 1 and figure 4, figures 5–8 show the experimental versus pre-
dicted results for each of the models.

The thermodynamic model has the lowest test error when in the
range of predictions, but these models are not accompanied by any
indication of the accuracy. The test reported in table 1 can provide an
error estimate of ±20 based on RSS value. This results in a calculated
LPE of 182, better than the Hybrid model, but should not properly
be compared using the data from which the value of RSS was derived
– additional data would be required to test this.

The neural network should be properly preferred because it offers
to have the size of the error estimate to vary as a function of the input
space, therefore the behaviour is that values far from the training data
will be accompanied by large error estimates.

The Bayesian neural network trained without bounding the MS

had the best performance when measured using LPE but performed
poorly when assessed by the test error.

Development of the hybrid model combining thermodynamic and
BNN demonstrated that is can result in better performance when
considering the error estimate accompanying the predictions.

Using the dataset applied the performance of the hybrid neural
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Table 1: Performance of various models of MS temperature.
Model r r2 RSS TE LPE
Ghosh and Olson (Thermodynamic) 0.95 0.91 20 13466 ∞
Sourmail (Bounded BNN) 0.85 0.72 38 50614 627.5
Present (BNN) 0.47 0.22 77 204224 166.9
Present (Hybrid BNN) 0.87 0.76 37 47998 214.2
Andrews (MLR) 0.55 0.30 35 42913 ∞
Eldis (MLR) 0.92 0.85 36 45515 ∞
Kung/Andrews (MLR) 0.91 0.83 36 44265 ∞
Kung/Steven and Haynes (MLR) 0.91 0.83 47 77152 ∞
Steven and Haynes (MLR) 0.91 0.83 47 77242 ∞
Kunitake (MLR) 0.89 0.80 46 73515 ∞
Kunitake and Ohtani (MLR) 0.86 0.75 46 73515 ∞
Tamura[2] (MLR) 0.86 0.75 47 73409 ∞
Monma (MLR) 0.86 0.73 48 80785 ∞
Nehrenberg (MLR) 0.77 0.59 70 170665 ∞
Finkler and Sehirra (MLR) 0.91 0.82 76 196716 ∞
Tamura[1] (MLR) 0.70 0.49 90 277455 ∞
Payson and Savage (MLR) 0.70 0.49 105 379927 ∞
Rowland and Lyle 0.72 0.52 107 395527 ∞
Andrews b (Polynomial) 0.55 0.30 109 410657 ∞
Grange and Stewart (MLR) 0.63 0.40 157 850835 ∞
Carapella 0.63 0.39 115 459241 ∞
Pickering (MLR) 0.85 0.73 186 1190500 ∞
Present (Best 3 MLR) 0.93 0.86 33 36619 789.3
Present (Best 5 MLR) 0.92 0.85 35 41742 254.1
Present (Best 9 MLR) 0.91 0.83 39 51594 268.7
Present (Best 10 MLR) 0.91 0.82 40 55337 230.4
Present (Best 11 MLR) 0.91 0.82 40 56025 182.6
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Figure 3: Combined prediction from best 11 linear regression models.

Table 2: Ranking of models using combined LPE×TE parameter.
Model LPE TE F1 / 106 Rank F2 Rank
Present MLR best 11 56025 183 10.23 1 0.3589 1
Present hybrid BNN 47998 214 10.28 2 0.3590 2
Present MLR best 5 41742 254 10.61 3 0.3813 3
Present MLR best 10 55337 230 12.75 4 0.3983 4
Present MLR best 9 51594 269 13.86 5 0.4239 5
Present MLR best 3 36619 789 28.90 6 1.0159 7
Sourmail bounded 50614 628 31.76 7 0.8327 6
Present BNN 204224 167 34.08 8 1.0221 8
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Figure 5: Ghosh and Olson model performance on ‘test A’, calculation fol-
lowing Sourmail.

network was similar to the committee model of linear regression mod-
els. Committee of 11 models and the hybrid BNN were ranked first
and second by the parameters F1 and F2. This may be a result of
the limited testing applied, the neural network contains knowledge of
many more elements, but in principle these data could also be used to
train new multi-linear models.
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Figure 6: Hybrid model performance on ‘test A’, BNN with additional input
from Ghosh and Olson model.
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Figure 7: Bounded BNN of Sourmail and Garcia–Mateo, performance on
‘test A’.
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Figure 8: Performance on ‘test A’, Unbounded model using data collated by
Sourmail and Garcia–Mateo
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4 Conclusions

The performance of multiple linear regression models was improved
by combining them into committee models. This has the advantage
of introducing an estimate of the accuracy as well as allowing the
results from various studies to be combined. The model with the best
11 performing linear models in the committee performed best when
considering both test error and log predictive error, and the committee
3 performed the best considering only the test error.

The purely thermodynamic model is expected to give the best
predictions as measured by TE. An error estimate of 20 was calculated
for the thermodynamic model. Use of this thermodynamic model
requires access commercially available thermodynamic databases and
software.

It may not be safe to assume that the thermodynamic model will
always give superior performance, the neural network schemes offer
the advantage that large error estimates can provide an appropriate
warning of extrapolation out of the data range.

Combining both thermodynamic modelling and Bayesian neural
network, a hybrid model was produced. This allowed the strengths of
both methods to be combined.
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