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Abstract 
    High integrity, safety critical SA508 Gr.3 forgings have very demanding requirements for strength and toughness. 

However due to the large size of components, up to a metre in thickness, there is an uncertainty in achieving the required 
mechanical properties at the largest sections after the quality heat treatment. This location based dissimilarity in mechanical 
properties occurs because of variations in the effective heat treatment and cooling rates experienced. A method, based on 
neural networks, has been developed using highly controlled, industrially relevant data capable of estimating tensile 
strength and toughness. Validation of the method in both independent data and through thickness measurements reveals 
considerable closure between experiments and predictions. 
 
 
1. INTRODUCTION 

High integrity, safety critical forgings have very 
demanding requirements for strength, toughness and 
resistance to extreme environmental conditions such as 
irradiation embrittlement over the intended service life. As 
a consequence, there are only a few steels that have 
sufficient accumulated experience for use in the 
construction of nuclear pressure vessels, partly because the 
qualification of such materials requires an enormous 
amount of time-consuming work. In this context low-alloy 
steels, such as the SA508 type alloy variants, have been the 
key materials for the manufacture of large, safety critical 
forgings over the last 40 years. This is because of the 
material's good balance between strength, toughness and 
cost.  

 
The components made using SA508 Gr. 3 material, 

such as shells, heads and tubesheets can be very large. 
These high integrity parts are manufactured from ingots 
weighing up to 650 tonnes, where the wall thickness may 
vary between 150 and 900 mm.  At the largest sections, 
the key challenge is achieving the required mechanical 
properties through thickness after the quality heat 
treatment. This location based dissimilarity in mechanical 
properties occurs by the variation of effective heat 
treatment and cooling rates.  

 
Components are water quenched after the 

austenitising process during the final quality heat 
treatment. In spite of the water quench, the large size of 
the components means that the cooling rate following 
austenitisation will vary significantly as a function of 
depth, relative to the surface. A location-dependent 
microstructure may appear and, consequently, 
through-thickness variations of mechanical properties. 
Cooling rates of ≈ 0.3 ºC s−1 are common at the 1/4 
thickness position, and 0.2 ºC s−1 has been measured at the 
mid-wall of a 340 mm thick forging component during the 
water quenching process [1, 2].  

 
Figure 1 presents the measured cooling curve of a 320 

mm thick SA508 Gr. 3 component during water 
quenching, where a rate of 0.2 ºC s−1 is recorded at the 
mid-wall of the component. 

 

 
 

Figure 1. Measured cooling curve using thermocouples attached 
to the midwall position of a 320mm thick SA508 Gr. 3 

component. Data courtesy of Rolls-Royce Plc. 
 
 
It is therefore, of great interest to the industry to find a 
reliable method to accurately estimate the mechanical 
properties of large vessels as a function of depth from the 
surface and the thermal processing parameters.  
 

Advanced numerical techniques can be used as a 
predictive tool to address these challenges. This work 
presents a methodology that combines industrially relevant 
experimental data and neural networks (NN), an approach 
by which a quantitative prediction can be made in 
situations where the complexity of the problem makes a 
physically rigorous treatment difficult. This has allowed 
the determination of the relationship among key processing 
parameters: austenite grain size, cooling rate and tempering 
parameter (TP) [3-5]. A method has been developed with 
high confidence for predicting through thickness tensile 
strength and toughness.  
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2. EXPERIMENTAL 
The chemical composition of the SA508 Gr.3 steel 

used in this work is given in Table 1. Specimens from the 
as-received condition were quality heat treated at a total of 
18 conditions, varying austenitisation temperature, cooling 
media (cooling rates monitored by thermocouples) and 
tempering time. The different conditions were assessed by 
means of tensile strength and Charpy impact energy in 
order to understand the effects of the previously identified 
key processing parameters. Testing was carried out at 
Sheffield Forgemasters International Ltd. 
 
Table 1. Chemical composition of as-received SA508 Gr. 3 steel 
(wt%). 

C Mn Ni Mo Cr Si Al N 
0.17 1.32 0.76 0.51 0.2 0.23 0.019 0.010 

 
Tensile testing was performed following the 

ASTM-370 standard [6]. Parameters recorded during 
testing include yield strength (by using the offset method 
at 0.2% strain), the ultimate tensile strength (UTS), the 
elongation, the reduction of area and the Young’s modulus. 
Tensile tests were carried out at room temperature and at 
350ºC at a controlled strain rate of 0.012 min-1 until the 
yield strength and then at 0.25 min−1 through to break. 
Charpy V-notch impact testing was performed complying 
with the ASTM E23 standard [7]. Impact tests were 
performed over the temperature range -196 to 250 ºC. A 
total of 36 tensile and 360 Charpy samples were tested.  
 
3. NEURAL NETWORK MODELLING 

To investigate the influence of the processing 
parameters on yield strength, ultimate tensile strength and 
impact energy at different temperatures testing results 
were collected as databases and three neural networks 
produced in the Bayesian framework following MacKay 
[8–10]. The database for the impact energy contained 360 
values representing 78 different conditions in terms of 
austenite grain size, cooling rate and TP at various 
temperatures.  

 
Databases for the yield strength and ultimate tensile 

strength incorporated 36 values representing 18 different 
conditions, for each case. Details of composition of the 
steel have been omitted from the models so as to make it 
more generally applicable to SA508 Gr. 3 steels where 
there is relatively small compositional range. Differences 
due to microstructure can be regarded as being 
incorporated into the uncertainty that accompanies the 
predicted values. Table 2 summarises the range in the 
input data used to create the models. 

 
Table 2. Summary of the databases input data for neural network 
modelling. 

 Impact 
energy 

Yield 
strength 

Ultimate tensile 
strength 

Austenite grain 
size / µm 14 & 68 14 & 68 14 & 68 

Cooling rate /   
ºC s−1 

0.17 to 
9.96 

0.17 to 
10.45 0.17 to 10.45 

Tempering 
parameter / K h 

18.5 to 
19.5 

18.5 to 
19.5 18.5 to 19.5 

Test temperature / 
ºC 

-196 to 
250 21 & 350 21 & 350 

The data were randomly divided in two groups, a 
training set and a testing set. In the training stage of the 
network, different sub-models were trained allowing a 
maximum of 25 hidden units. Nine different random seeds 
were used to control the initial weights of each input 
parameter, so as to ensure convergence from different 
positions in weight space. This meant a total of 225 initial 
conditions in each case, resulting in 224, 222 and 221 
sub-models being successfully trained for the impact 
energy, yield strength and ultimate tensile strength models 
respectively.  

 
To test for over fitting, each of the sub-models was 

tested to predict the unseen testing set, allowing a ranking 
by the log predictive error. A committee of the best 
models as ranked by log-predictive-error was selected to 
minimise the combined test error, with two sub-models for 
the impact energy model and one sub-model for the yield 
and ultimate strength models as best solutions. The 
significances of the input parameters for each model are 
shown in Figure 2. 

 

 
 

Figure 2. Significance for the input parameters. 
 

 
Figure 3 shows reasonable agreement between the 

experimental data and the calculation using NN for the case of 
the data used to generate the databases. However, to assess the 
ability of the models unseen data needs to be tested. 

 
3.1 Testing against unseen data 

As shown in Figure 4, the neural network predictions 
compare favourably with independent data obtained from 
the literature even outside the range seen in the database. 
This proves that the identified processing parameters, 
austenite grain size, cooling rate and tempering parameter 
are in fact controlling the material behaviour in terms of 
strength and toughness, as independent data from different 
compositions of SA508 Gr. 3 steels can be predicted. 

 
The methodology presented here appears to compare 

well for tensile strength and toughness from unseen data. 
Therefore, these models have the potential to be used with 
the aid of thermal processing data from finite element 
software to map the distribution of strength and toughness 
in large components. 

 
 



 
 

 
 

 
  

Figure 3. Neural network prediction of the data used to generate 
the databases. 

 

 
 

 
 

 
 

 
 

Figure 4. Predictions for unseen data from various authors 
[11-15] 



4. PREDICTING TOUGHNESS AND STRENGTH 
IN LARGE FORGINGS 
As previously discussed, thermal processing 

parameters vary as a function of depth relative to the 
surface during the quality heat treatment of large 
components. In particular, the cooling rate from 
austenitisation temperatures is of crucial importance to 
determine the ratio between diffusive and displacive 
transformation products [5], which will control material 
properties.  

 
An accurate determination of the location dependent 

cooling rate from a known geometry can be obtained with 
the aid of finite element (FE) software. In the present work, 
FE simulations were carried out to the determine the 
cooling rates at different locations: ½ thickness, ¼ 
thickness and 50 mm from the quenched surface in a 
SA508 Gr. 3 experimental forging, approximately one 
metre thick. Mechanical property data from the 
experimental forging was collated and compared with 
results from the NN calculations. Figure 5 presents the 
reproduced cooling rates for the mentioned locations.  

 
 

 
 

 
 

Figure 5. Cooling rates at different locations through thickness. 
 
 

Figure 6 compares the calculated and the 
experimental data as a function of cooling rate. Neural 
network predictions are able to reproduce impact energy 
values for the tested cooling rates. These results prove that 
the model developed here is able to predict, with 
reasonable accuracy, toughness through thickness in large 
components. 
 
For the case of tensile properties, predictions present an 
offset between the data and the prediction of about 60 MPa 
for the faster cooling rates (positions A and B). This may 
indicate that more tensile data is needed in order to create a 
more robust model. However, the predictions are not 
giving unreasonable values. 

 
 

 
 

 
 
Figure 6. Comparison between experimental and calculated data 

of properties through the thickness. Austenite grain size of 20 
µm and a temper parameter of 19.3 Kh were used for the 
calculations. A, B and C refer to locations as previously 

indicated in Figure 5. 
 
 
5. CONCLUSIONS 

A reliable method based on neural networks has been 
developed to predict strength and toughness in a nuclear 
pressure vessel steel (SA508 Gr.3). The essential 
conclusions of the can be summarised as follows: 

1- Highly controlled, industry relevant experimental 
data have been used as input for the neural 
networks modelling. 



2- Processing parameters, austenite grain size, 
cooling rate and tempering parameter, have been 
identified as key variables that control material 
performance. 

3- Reasonable agreement between independent data 
and predictions has been found. It is established 
that the models developed here are not 
composition dependent and can be applied widely 
to SA508 Gr. 3 steels. 

4- Models have the potential to be used with the aid 
of thermal processing data from finite element 
software to map the distribution of strength and 
toughness in large components. 

5- It may be necessary to collect and include more 
tensile data as database for the neural network to 
have a model capable of predicting more 
conditions. 
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