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Abstract

The theory for the diffusion-controlled growth of ferrite in steels that also contain
substitutional solutes is fraught with difficulties when it comes to transformation
at large supersaturations, where the bulk compositions of the ferrite and austen-
ite do not differ much, but where local-equilibrium is nevertheless maintained
at the transformation front. This requires the existence of a narrow variation
in substitutional solute content in the austenite at the interface (so-called ‘con-
centration spike’) - so narrow that it has no physical meaning. Drawing on the
theory for spinodal reactions, it is demonstrated here that there is a substan-
tial penalty associated with the creation of such sharp changes in composition.
Therefore, the spikes would never occur in practice. The actual distribution
of solute would be over distances orders of magnitude larger than currently
calculated, leading to slower growth rates than are predicted currently. The
consequences of this conclusion place doubt both on the transition from local
to paraequilibrium, and whether the latter state exists at all for reconstructive
transformations.
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1. Introduction

It could be argued quite reasonably that the interpretation of growth rate
data on the formation of ferrite2 in steels, is in a state of crisis. This is be-
cause of a failure to account for the limitations of experimental techniques and
genuine difficulties with the theory of diffusion-controlled growth in multicom-
ponent steels. One might be forgiven in deducing from the published literature
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that whenever there is a gap between theory and experiment, it is explained by
appealing to free energy dissipations that have little in the way of supporting
evidence. As pointed out in recent reviews [1, 2], this necessitates the choice
of fitting parameters including interface thickness, interface diffusivity, binding
energies, etc. which make the theory less useful as a predictive tool. In con-
temporary discussion, however, a key factor relevant to the theory is neglected,
i.e. that difficulties arise when sharp concentration profiles are developed, the
solution to which may give a more physically realistic picture of allotriomorphic
ferrite growth. This is the focus of the present contribution.

To explain the issues properly, it is necessary to first introduce, in some
detail, the basic concepts of diffusion-controlled growth in Fe-C and in alloyed
steels where the diffusivity of the substitutional solutes can be many orders of
magnitude smaller than of the interstitial carbon. How then is it possible to
maintain local equilibrium for both kinds of solutes at the moving interface?

2. Diffusion-controlled growth in binary system

There are many processes that participate in the events leading to the trans-
formation of austenite (γ) into ferrite (α) by the translation of the α/γ interface
[3–5]. These include the diffusion of solute ahead of the transformation front,
the transfer of atoms across the interface and the movement of solute atoms that
might be segregated to the interface. All of these in principle dissipate the free
energy that is available for transformation, but the process that accounts for the
majority of the dissipation is said to be rate controlling. Diffusion-controlled
growth is therefore said to occur when most of the available free energy is used
in driving the diffusion of solutes ahead of the interface.

In the case of alloys, two phases are in equilibrium when the chemical po-
tentials (µ) of the solutes are identical in each phase, Fig. 1a. The chemical
potential of a solute when multiplied by its concentration represents the con-
tribution of that solute to the total free energy of the phase. If µα

C is identical
to µγ

C then there is no driving force for carbon to diffuse between the phases
even if the compositions cαγ and cγα are different.3 Here cαγ is the composition
of ferrite that is in equilibrium with austenite, and a similar logic applies to
the other term. These compositions are not independent but rather, are tied
together. Fig. 1b illustrates a tie-line for temperature T1 that connects the equi-
librium compositions cαγ and cγα of ferrite and austenite respectively. There is
a unique tie-line at a given temperature, which passes through the average alloy
composition c.

If a reasonable assumption is now made that for diffusion-controlled growth,
the compositions at the flat transformation front are in local equilibrium, then
the composition profile that develops during transformation at T1 is that illus-
trated in Fig. 1c, assuming that the far-field value is unaffected and therefore

3The term c is the concentration per unit volume throughout this paper. On the other
hand, x represents an atomic fraction.
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fixed at c. The concentrations cαγ and cγα are maintained at the interface
throughout the growth process because the chemical potentials of the solute in
the ferrite and austenite in contact at the interface are then equal. To achieve
this constancy requires that the rate at which solute is partitioned into the
austenite as the interface moves is equal to the rate at which it is carried away
from the interface by diffusion in the austenite:

(cγα − cαγ)
∂z∗

∂t
︸ ︷︷ ︸

rate solute partitioned

= −D
∂c

∂z

∣
∣
∣
∣
z=z∗

︸ ︷︷ ︸

diffusion flux from interface

(1)

where t is the time set to zero at the beginning of interface motion,D is the solute
diffusivity in the parent phase, z is a coordinate normal to the interface with a
value z∗ at the position of the interface. The concentration gradient is evaluated
at the position of the interface (z = z∗). The rate of movement of the interface is
v = ∂z∗/∂t. These concepts can now be generalised to multicomponent alloys.

3. Diffusion-controlled growth in substitutionally alloyed steel

Consider now a ternary steel in which one of the solutes is substitutional
and the other interstitial, say Fe-Mn-C, with DC ≫ DMn. The equilibrium
conditions are the same as those for a binary alloy, that µα

i = µγ
i for i = Mn, Fe

or C. Fig. 2a shows that the free energy curves of the binary system now become
free energy surfaces in three dimensions, and it is the contact of a tangent plane
that is common to both the austenite and ferrite surfaces that defines the tie-
line connecting the compositions of the two phases in equilibrium. However,
the tie-line illustrated is not unique because the tangent plane can be rocked
while remaining in contact with the free energy surfaces. This is why there is an
entire two-phase α + γ phase field at constant temperature. There is therefore
a choice of tie-lines4 that would all satisfy local equilibrium at the growth front
during interface motion in a ternary system. We will see that this is important
in the discussion below.

It would be necessary to satisfy two equations of the form of equation 1,
simultaneously, for each of the solutes5:

(cγαC − cαγC )v = −DC∇cC
(cγαMn − cαγMn)v = −DMn∇cMn (2)

where the subscripts refer to the solutes to the solute concerned. The interface
velocity v is the ∂z∗/∂t in equation 2.

4The whole of the two phase field is defined by tie lines.
5In presenting these equations, we neglect cross-diffusion effects of the type described in

[4, 6, 7]. This is because their importance in the difficulties to be described later, in the
context of growth at high supersaturations, is not significant [8].
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(a)

(b) (c)

Figure 1: (a) Free energy curves for ferrite and austenite for a temperature T1, showing
how the common tangent defines the compositions that are in equilibrium. (b) Binary phase
diagram with tie-line plotted at the transformation temperature T1. (c) Concentration profile
developed at the α/γ interface during diffusion controlled growth.
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Because DC ≫ DMn, these equations cannot in general be simultaneously
satisfied for the tie-line passing through the alloy composition cC, cMn. It is,
however, possible to choose other tie-lines which satisfy equation 2. If the
tie-line is such that cγαC = cC (e.g. line cd for alloy marked with a dot in
Fig. 2b), then ∇cC will become very small thus reducing the driving force for
carbon diffusion, so that the flux of carbon atoms slows to a rate consistent
with that of manganese. Ferrite forming by this mechanism is said to grow by
a ‘Partitioning, Local Equilibrium’ (or P-LE) mechanism, in recognition of the
fact that cαγMn can differ significantly from cMn, giving considerable partitioning
and long-range diffusion of manganese into the austenite.

(a)

(b) (c)

Figure 2: (a) Free energy surfaces of austenite and ferrite, with a common tangent plane
defining equilibrium at the compositions given by the contact points of the tangent with the
surfaces. The diagram is for a particular temperature. (b) Schematic isothermal section of
the Fe-Mn-C system, illustrating ferrite growth occurring with local equilibrium at the α/γ
interface. Growth at low supersaturations (P-LE) with bulk redistribution of manganese, (c)
growth at high supersaturations (NP-LE) with negligible partitioning of manganese during
transformation. The bulk alloy compositions are designated by the symbol • in each case.
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An alternative choice of tie-line could allow cαγMn → cMn (e.g. line cd for the
alloy marked with a dot in Fig. 2c), so that ∇cMn is drastically increased since
only very small amounts of Mn are partitioned into the austenite. The flux of
manganese atoms at the interface correspondingly increases and manganese dif-
fusion can then keep pace with that of carbon, satisfying the mass conservation
conditions of equation 2. The growth of ferrite in this manner is said to oc-
cur by a ‘Negligible Partitioning, Local Equilibrium’ (or NP-LE) mechanism, in
recognition of the fact that the manganese content of the ferrite approximately
equals cMn, so that little if any manganese partitions into austenite.

What circumstances determine whether growth follows the P-LE or NP-LE
mode? Fig. 3 shows the Fe-Mn-C phase diagram, now divided into domains
where either P-LE or NP-LE is possible but not both. The domains are ob-
tained by drawing right-handed triangles on each tie-line in the α + γ phase
field and joining up all the vertices. If an attempt is made to define NP-LE
conditions in the P-LE domain, then the tie-line determining interface compo-
sitions will incorrectly show that both austenite and ferrite contain less carbon
than cC, a circumstance which physically is impossible. An important point
to note is that P-LE and NP-LE are modes that operate at low and high su-
persaturations, respectively. Furthermore, as the composition of the austenite
changes, so will the tie-line controlling the interface compositions, but for the
purposes of the discussion here, it is assumed that the overlap of diffusion fields
(soft-impingement) does not occur.

Figure 3: Regions of the two-phase field where either P-LE (low supersaturation) or NP-LE
(high supersaturation) modes of transformation are possible.

4. The problem

The negligible-partitioning local-equilibrium concepts becomes less realistic
as the velocity of the interface increases, i.e. at high supersaturations. This is
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because the extent of the diffusion field for the substitutional solute decreases
so much, that it becomes a mathematical formality [3, 6, 9]; indeed, there are
no experimental data [reviewed in: 2] that confirm the existence of the sharp
concentration spikes predicted theoretically in domains where the transforma-
tion is supposed to occur by the NP-LE mechanism. It may be argued that an
unphysical diffusion profile where the width becomes of the order of an atom size
or less would lead essentially to a breakdown of local equilibrium and therefore,
give way to paraequilibrium transformation [10–13] in which the Fe/Mn ratio6

is maintained constant throughout. We shall return to the issue later in this
article.

Coates estimated that for one-dimensional growth with local equilibrium
at the interface, the extent of the substitutional-solute diffusion field in the
austenite is given approximately by:

zMn ≈ 2DMn/v. (3)

However, Coates appreciated that in these circumstances, where there exist
steep concentration gradients, it becomes important to account for the depen-
dence of the diffusion coefficient on the concentration gradient itself, as in the
theory of spinodal decomposition. In the latter case, a homogeneous solution
can spontaneously develop composition waves that grow in amplitude. However,
the wavelengths that develop are not small because there is a cost in creating
large concentration gradients. We now consider this scenario in the context of
NP-LE growth, but drawing directly on the theory of heterogeneous solutions
from spinodal decomposition [14–19]. We shall see that there are factors which
oppose the development of sharp concentration spikes, whether they occur in
spinodal decomposition or with diffusion-controlled growth. The subject has
been reviewed nicely by Hilliard, whose treatment we follow [20].

The free energy of a heterogeneous solution can be expressed by a multivari-
able Taylor expansion [e.g. 19]:

g{a, b, . . .} = g{c}+ a
∂g

∂a
+ b

∂g

∂b
+ . . .

+
1

2

[

a2
∂2g

∂a2
+ b2

∂2g

∂b2
+ 2ab

∂2g

∂a ∂b
+ . . .

]

+ . . . (4)

in which the variables, a, b, . . . in our context are the spatial composition deriva-
tives (dc/dz, d2c/dz2, etc). For the free energy of a small volume element
containing a one-dimensional composition variation (and neglecting third and
high-order terms), this gives

g = g{c}+ κ1
dc

dz
+ κ2

d2c

dz2
+ κ3

(
dc

dz

)2

(5)

6Fe/substitutional-solute ratio.
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where c is the average composition and

κ1 =
∂g

∂(dc/dz)
(6)

κ2 =
∂g

∂(d2c/dz2)
(7)

κ3 =
1

2

∂2g

∂(dc/dz)2
. (8)

In this, κ1 is zero for a centrosymmetric crystal since the free energy must be
invariant to a change in the sign of the coordinate z.

The total free energy per atom, gih for the inhomogeneous solution, is ob-
tained by integrating over the volume V :

gih =

∫

V

[

g{c}+ κ2
d2c

dz2
+ κ3

(
dc

dz

)2]

(9)

On integrating the third term in this equation by parts:

∫

κ2
d2c

dz2
= κ2

dc

dz
−

∫
dκ2

dc

(
dc

dz

)2

dz (10)

As before, the first term on the right is zero, so that an equation of the form
below is obtained for the free energy per atom of a heterogeneous system:

gih =

∫ [

g{c}+ v3aκ(∇c)2
]

dV (11)

where va is the volume per atom and κ is known as the gradient energy coef-
ficient. The term g{c} is the free energy of a homogeneous solution with the
average concentration c. The interpretation of this equation is that gradients
of concentration lead to an increase in the free energy, so that the formation of
steep gradients will in general be opposed. Before discussing the implications
of this, it is necessary to consider an additional term which arises because the
lattice parameter varies with concentration. The resulting elastic strains add to
the free energy. If the dimensionless quantity η is defined as d ln a/dx, where
a is the lattice parameter and x the atomic fraction of concentration, then
the strain energy per atom has two components. The first is approximately
η2v3aE(c − c)2/(1 − ν) where E is the Young’s modulus and ν is the Poisson’s
ratio, and the second contribution has a dependence on (∇c)2 and hence can be
incorporated into the gradient energy coefficient [20, 21].

The strain energy term turns out to be rather small so we focus instead on
the gradient energy component. Fig. 4 shows the increase in free energy of the
solution as a consequence of the substitutional solute concentration spike in the
austenite at the γ/α interface during negligible partitioning local equilibrium
growth. The diffusion distance is intended to represent the width of the spike.
The calculations assume a gradient energy coefficient of 3.85×10−10 Jm−1 based
on the Fe-Cr system [22, 23] and that (x− x) = 0.03.
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Figure 4: Estimate of the
penalty on free energy due to the
gradient of concentration in the
austenite ahead of the α/γ inter-
face.

To put these calculations into perspective, equation 3 was applied to the
growth rate calculations of Zhang et al. [24], who also conducted experimental
measurements over the temperature range where a transition from P-LE to NP-
LE is expected. Using a value for the manganese diffusion coefficient (1.05 ×
10−5 exp(−286000/RT )m2 s−1, R = 8.3143 JK−1) from [25], the parabolic
rate constant (5.17 × 10−7ms−0.5) from Zhang et al. for 775◦C, the diffusion
distance is estimated using equation 3 to be just 0.03nm. This not only is
physically unrealistic but if it existed would have an intolerable penalty from
the gradient energy term.

This basically means that the NP-LE calculations as implemented currently
are wrong because they do not account for the gradient energy term. If such a
term is incorporated then the concentration spike would be moderated to larger
widths, making the extent of partitioning greater and the growth rate slower.
This is precisely what happens during spinodal decomposition, where there is
a wavenumber that receives maximum amplification [Fig. 4, 20], so the actual
wavelength observed is of the order of 10-20nm [20].

5. Conclusions

1. If the constraint of local equilibrium at the α/γ interface is retained, then
it is necessary to account for gradient energy terms in dealing with sharp
concentration profiles. The penalty due to gradient energy will stop con-
centration profiles from becoming unrealistically narrow - judging from
work on spinodal decomposition, a diffusion distance of the order 10-
20 nm should be minimum although the actual number will depend on
the magnitude of the free energy change available for transformation.

2. Another consequence of broader concentration profiles is that the extent
of partitioning of solute between the austenite and ferrite may not then
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be ‘negligible’.
3. Many solute-drag models rely on free energy being dissipated during dif-

fusion within the interface. Since interfaces are thin, any concentration
profiles must be narrow and may require an accounting for gradient energy
terms.

4. A model in which growth with local equilibrium at the interface gives
way to paraequilibrium when the concentration spike at the α/γ interface
becomes unphysical is not viable, because narrow spikes will simply not
develop.

5. The concept of paraequilibrium, where the ratio of substitutional solute to
iron atoms (X/Fe) remains constant throughout transformation, may need
to be looked at for the case of reconstructive transformations. Paraequilib-
rium transformation is inconsistent with the fact that reconstructive dif-
fusion [4, 26] is essential in order to avoid any shape deformation involving
shear components.7 It is worth emphasising that there is no experimental
evidence to support a constant (X/Fe) ratio during any stage of allotri-
omorphic ferrite formation. It is likely that the concept of paraequilibrium
is valid only for displacive transformations such as the formation of Wid-
manstätten ferrite in alloy steels, or the low-temperature precipitation of
cementite [28].

Whereas we have identified that the gradient energy penalty can be a large
portion of the driving force for transformation, the term now needs to be in-
cluded in the kinetic theory. Thus, the flux from the interface will depend
not just on the concentration gradient but on various derivatives of the gra-
dient [equation 42.11, 5]. This is work in progress, but it is worth pointing
out that phase field models may not be useful in this context because of issues
with interfacial widths [1]. Transmission electron microscopy indicates sharp
α/γ interfaces with vivid dislocation structures [29]. The interfacial width is
essentially a fitting or convenience parameter in phase field method.

Sharp interfaces have also been observed between the components of pearlite
and the parent austenite [30]. Pearlite forms by a reconstructive transforma-
tion mechanism and always involves the partitioning of solutes irrespective of
transformation temperature [31–33].
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25. J. Fridberg, L.-E. Torndähl, and M. Hillert: ‘Diffusion in iron’, Jernkon-
torets Annaler, 1969, 153, 263–276.

26. H. K. D. H. Bhadeshia: ‘Bainite: Mobility of the transformation interface’,
Journal de Physique: Colloque C4, 1982, 43, 449–454.

27. R. P. Zerwech, and C. M. Wayman: ‘On the nature of the α → γ transfor-
mation in iron: A study of whiskers’, Acta Metallurgica, 1965, 13, 99–107.

28. S. S. Babu, and H. K. D. H. Bhadeshia: ‘Transition from bainite to acicular
ferrite in reheated Fe-Cr-C weld deposits’, Materials Science and Technol-
ogy, 1990, 6, 1005–1020.

29. F. A. Khalid, and D. V. Edmonds: ‘Observations concerning transforma-
tion interfaces in steels’, Acta Metallurgica et Materalia, 1993, 41, 3421–
3434.

30. S. A. Hackney, and G. J. Shiflet: ‘The pearlite-austenite growth interface
in an Fe-0.8C-12Mn alloy’, Acta Materialia, 1987, 35, 1007–1017.

12



31. J. Chance, and N. Ridley: ‘Chromium partitioning during isothermal trans-
formation of a eutectoid steel’, Metallurgical Transactions A, 1981, 12A,
1205–1213.

32. H. K. D. H. Bhadeshia, and J. W. Christian: ‘The bainite transformation
in steels’, Metallurgical & Materials Transactions A, 1990, 21A, 767–797.

33. H. K. D. H. Bhadeshia: Bainite in steels: theory and practice: 3rd ed.,
Leeds, U.K.: Maney Publishing, 2015.

13


