Appendix 1

Introduction to Backpropagation Network

�EMBED Word.Picture.8���

Figure 1 A schematic sketch of a couple of neurons in a nervous system

	Artificial neural network modeling (ANN) is a mathematical representation of the biological nervous system. Since there are still uncertainties in neuron science, ANN is a crude approximation. In brief, the biological nervous system is made up of a collection of neurons connected with dendrites/axons (see Figure 1). The magnitude of the signals passing through the neurons is controlled by synaptic strengths. All ANNs imitate these basic nervous system functions. Neurons, dendrites/axons and synaptic strengths are represented by nodes, directional links and weights. When these nodes and links are connected with different assumptions and learning rules, different paradigms are constructed. Each paradigm has unique characteristics and is used for applications appropriate to those features. No matter how the nodes are connected, all paradigms share the central feature of ANN - the ability to acquire knowledge from examples or learning.

�EMBED MSDraw���

Figure 2 A single hidden layer backpropagation network.

	Backpropagation network (BPN) is one of the many different ANN paradigms which is well known for its prediction and data mapping characteristics, i.e., acquiring knowledge about a relationship between input-output data sets in training and subsequently predicting an outcome for any given input data set within the knowledge domain of interest. Nodes in the backpropagation network are organized into layers (see Figure 2). The network interacts with the outside world through the input and output layers. The response of a network depends on its internal representation which is composed of a layer or layers of hidden nodes. All nodes are fully connected to nodes in preceding and succeeding layers by directional links with numerical weights (Wij). There are no inter-connections within layers.

	In-coming signals (xi) are weighted and added together for each node. If the total is greater that a certain threshold, another signal is relayed to the nodes in the preceding layers:

	�EMBED Unknown��� 			 (1)

Otherwise, the out-going signal is zero. In this case, the node has the characteristic of a step function. However, biological neuron is more like a continuous sigmoid function. The out-going signal F(S) is assumed by:

				�EMBED Unknown��� 	 (2)

	The learning capability of a network enables it to acquire knowledge in response to different input data sets. Learning is accomplished by adjusting the weights when network errors (Ej) are back propagated. Network errors (Ej) are determined by comparing network responses (yjn) to expected outputs (yje) during training:

�EMBED Unknown��� (3)

The weights of links connecting nodes in the hidden and the output layer are adjusted according to these network errors:

�EMBED Unknown��� (4)

where

�EMBED Unknown��� (5)

The learning rate (h) and the momentum coefficient (a) control the speed of learning. The network may learn quickly with large values of h and a. However, large values of h and a tend to destabilize the learning. Values between zero and one should be used [1].

	The weights of the links connecting the nodes in the hidden and input layers are refined in the same way by back propagating dj to the preceding layer:

�EMBED Unknown��� (6)

and

�EMBED Unknown��� (7)

	A set of input-output patterns (p) is required for training of the network. The weights are adjusted after each exposure to a training pattern. The network is said to have finished one epoch of training when the whole training set (1st to p-th pattern) has been submitted and the weights are adjusted accordingly. The network may require many epochs before it acquires the knowledge necessary to be useful. The accuracy of the response of a network is usually judged by the root mean square error (RMS error) of an epoch:

�EMBED Unknown��� (8)

The network is considered to have acquired adequate knowledge when the RMS error is less than a certain tolerance. Usually a tolerance value of RMS error between 0.03 and 0.06 is used.

Fahlman’s Derivative

	In equations (5) and (6), if the sum of the weighted incoming signals, S, is a large positive number (or small negative number), the result of the transfer function, F(S), will approach one (or zero) and the network error, (, will become zero. Fahlman [2] proposed a slight adjustment to avoid the output activation saturated by:

�EMBED Unknown��� (9)

and

�EMBED Unknown��� (10)

Differential Step Size

	Chen and Mars [3] have also suggested a modification to handle the output activation saturation for the hidden-output layer:

�EMBED Unknown��� (11)

In addition, multiple learning rates are used for different layers weight adjustments:

�EMBED Unknown��� (12)

Dynamic Learning

	With dynamic learning [4], a moderate learning rate is used initially. The RMS error of pervious epoch is compared to that of the current epoch. If the current RMS error is larger that the pervious RMS error, the situation is alarming since the learning is moving in the wrong direction. Therefore, the learning rate is reduced geometrically by a factor of 0.995 immediately:

�EMBED Unknown��� (13)

The value 0.995 is an arbitrary number used in order to avoid a zero learning rate. On the other hand, if the current RMS error is smaller that the pervious RMS error, nothing is done until the fifth consecutive decreasing in RMS error. After the fifth consecutive decreasing in RMS error, the learning seems to be moving in the correct direction and learning can be accelerated by increasing the learning rate by 0.005:

�EMBED Unknown��� (14)

Appropriate Numbers of Hidden Nodes, Layers and Training Patterns

	A network with too many or too few hidden nodes is nor desirable. Too few hidden nodes pose the danger of limiting the memory of the network. As a result, the network may not be able to learn. On the other hand, if there are too many hidden nodes, the network may memorize the training patterns instead of generalizing knowledge from the training patterns. Furthermore, training time increases with the number of hidden nodes. The appropriate number of hidden nodes is usually accomplished by trial and error starting with a reasonable number of nodes [5]:

�EMBED Unknown��� (15)

where c is a small number. The optimal number of hidden nodes is the minimal number obtained from the trials which can provide a successful learning.

	In general, a single hidden layer network is capable of most applications [1]. However, in principle a two hidden layers network should be able to perform arbitrarily complex predictions.

	The appropriate number of training patterns required depends on the complexity of the input/output relationship. As suggested by Hafez [6], each link should have about two training patterns to cover. Therefore, the number of training patterns is about twice the number of links in the network. The suggestion can be used as a guide line. Training patterns can be added or removed from the training set as required.

References

1)	Rumelhart, D.E., Hinton, G., Williams, R.J., Learning Internal Representation by Error Propagation, Parallel Distributed Processing, Vol. 1, edited by Rumelhart and McClelland, Cambridge MA, the MIT Press, 1986, pp 318-362.

2)	Fahlman, S.E., Faster Learning Variations on Backpropagation: An Empirical Study, in Proceeding of 1988 Connectionist Models Summer School, D.S. Touretzky, G. Hinton, T. Sejnowski, editors, Morgan Kaufmann, 1988.

3)	Chen, R., Mars, P., Step-size Variation Methods for Accelerating the Backpropagation Algorithm, International Joint Conference on Neural Network, IJCNN-90-WASH-DC, 1990.

4)	Jacobs, R.A., Increased Rates of Convergence through Learning Rate Adaptation, Neural Networks, Vol. 1, 1988, pp. 295-307.

5)	Eberhart, R.C., Dobbins, R.W., (editors), Neural Network PC Tools: A Practical Guide, Academic Press Inc., San Diego CA, 1990, pp 40-43, 240-242.

6)	Hafez, H.M., personal communication, Department of System and Computer Engineering, Carleton University, 1993.

�Appendix 2

SAMPLE.DAT

Format:

line 1:	file header

line 2:	number of training patterns

line 3:	input parameter titles

	{each title can contain maximum 7 characters and must be followed by ‘*’}

line 4:	output parameter titles

	{each title can contain maximum 7 characters and must be followed by ‘*’}

line 5:	input data

line 6: output data

...

...

...

e.g. sample.dat

NN RAW DATA FILE

40

wt%C*Pcm*CE*T85*

HVN*

0.160 0.250 0.407 60

200

0.231 0.306 0.437 40

235

0.254 0.359 0.560 30

380

0.240 0.303 0.418 3

460

0.159 0.244 0.398 4

340

0.065 0.179 0.387 10

280

0.130 0.280 0.556 8

400

0.112 0.247 0.518 6

370

0.034 0.172 0.458 3

320

0.141 0.224 0.374 15

255

...

...

...

�Appendix 3

SAMPLE.TST

Format:

line 1:	file header

line 2:	number of test patterns

line 3:	input data

...

...

...

e.g. sample.tst

NN TEST FILE

140

0.16 0.25 0.407 3

0.159 0.244 0.398 3

0.173 0.268 0.431 3

0.142 0.235 0.402 3

0.099 0.201 0.372 3

0.231 0.306 0.437 3

0.254 0.359 0.56 3

0.24 0.303 0.418 3

0.141 0.224 0.374 3

0.065 0.179 0.387 3

0.13 0.28 0.556 3

0.112 0.247 0.518 3

0.049 0.166 0.391 3

0.034 0.172 0.458 3

0.16 0.25 0.407 4

0.159 0.244 0.398 4

0.173 0.268 0.431 4

0.142 0.235 0.402 4

0.099 0.201 0.372 4

0.231 0.306 0.437 4

0.254 0.359 0.56 4

0.24 0.303 0.418 4

0.141 0.224 0.374 4

0.065 0.179 0.387 4

0.13 0.28 0.556 4

0.112 0.247 0.518 4

0.049 0.166 0.391 4

0.034 0.172 0.458 4

...

...

...

��Appendix 4

SAMPLE.RES

Format:

line 1:	output data

...

...

...

e.g. sample.res

376.541

376.577

385.426

359.920

339.544

438.622

464.210

445.460

370.804

309.181

408.451

365.931

299.883

307.430

361.720

361.371

371.745

345.559

325.433

426.969

460.997

434.610

355.144

299.519

405.052

361.619

292.007

...

...

...

��Appendix 5

Advance NNWork Features

(a)	Modified Dynamic Learning :-

In the original dynamic learning, the learning rate is altered geometrically and arithmetically according to the comparison of the pervious and current RMS errors, see Appendix 1. In the modified dynamic learning, the learning rate is altered geometrically only. If the RMS error is improving, the learning rate is increased by a factor of 1.01. On the other hand, if the RMS error is deteriorating, the learning rate is reduced by a factor of 0.99. The modified dynamic learning is found to be more stable than the original dynamic learning and still having the advantage of improving the learning time.

(b)	Step-declining Learning :-

The step-declining learning is designed to minimize the instability of the learning process. In the step-declining learning, the learning rate is reduced by a factor of 0.99 when the RMS error is deteriorating and the learning rate will never be increased. This is a very conservative approach and the initial learning rate can be a relatively large value, e.g., 0.75.

(c)	<Alt R> :-

The dynamic learning feature can be activated or deactivated in the middle of learning process by pressing <Alt R>. If the current dynamic learning status is off, by pressing <Alt R>, either modified dynamic learning or step-declining learning can be introduced. On the other hand, the dynamic learning can be deactivated by pressing <Alt R>, which is very useful if the user desires to hold the current learning rate for a certain period.

(d)	<Alt S> :-

When using dynamic learning, it is possible that the learning might become saturated (the learning rate might have been reduced to a very small value, 0.005) and it becomes very slow. By pressing <Alt S>, the system can be shaken up by increasing the learning rate dramatically. The increase is determined by random and dynamic learning will be activated despite of the dynamic learning status. However, there is no guaranty that the learning will converge. This can be used as the last resort before abandoning the current effort.

NNWork - User’s Guide

�PAGE �
11
�

Appendix 1 Backpropagation Network

�PAGE �
15
�

Appendix 2 Sample.DAT

�PAGE �
16
�

Appendix 3 Sample.TST

�PAGE �
17
�

Appendix 4 Sample.RES

�PAGE �
18
�

Appendix 5 Advance NNWork Features

