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Lecture 1: The Thermodynamic Functions

List of Symbols

Symbol Meaning

Ce Electronic specific heat coefficient

CP Specific heat capacity at constant pressure

Cµ
P Magnetic component of the specific heat capacity

CV Specific heat capacity at constant volume

CL
V Debye specific heat function

G Gibbs free energy

H Enthalpy

P Pressure

q Quantity of heat

S Entropy

T Absolute temperature

TD Debye temperature

U Internal energy

V Volume

w Work done by a closed system

ωD Debye frequency



Internal Energy & Enthalpy

Classical thermodynamics has a formal structure which serves to or-

ganise knowledge and to establish relationships between well–defined

quantities. It is in this context that extensive observations are taken to

imply that energy is conserved. Therefore, the change in the internal

energy ∆U of a closed system is given by

∆U = q − w (1)

where q is the heat transferred into the system and w is the work done by

the system. The historical sign convention is that heat added and work

done by the system are positive, whereas heat given off and work done

on the system are negative. Equation 1 may be written in differential

form as

dU = dq − dw. (2)

For the special case where the system does work against a constant

atmospheric pressure, this becomes

dU = dq − PdV (3)

where P is the pressure and V the volume.

The specific heat capacity of a material is an indication of its ability

to absorb or emit heat during a unit change in temperature. It is defined

formally as dq/dT ; since dq = dU + PdV , the specific heat capacity

measured at constant volume is given by:

CV =

(

∂U

∂T

)

V

. (4)



It is convenient to define a new function H, the enthalpy of the system:

H = U + PV. (5)

A change in enthalpy takes account of the heat absorbed at constant

pressure, and the work done by the P∆V term. The specific heat ca-

pacity measured at constant pressure is therefore given by:

CP =

(

∂H

∂T

)

P

. (6)

A knowledge of the specific heat capacity of a phase, as a function

of temperature and pressure, permits the calculation of changes in the

enthalpy of that phase as the temperature is altered:

∆H =

T2
∫

T1

CP dT (7)

Entropy & Free Energy

Enthalpy is not the only thermodynamic parameter to change with

temperature and hence is not a sufficient indicator of whether a reaction

can occur spontaneously.

Consider what happens when a volume of ideal gas is opened up

to evacuated space (Fig. 1). The gas expands into the evacuated space

without any change in enthalpy, since for an ideal gas the enthalpy is

independent of interatomic spacing. The state in which the gas is uni-

formly dispersed is far more likely than the ordered state in which it

is partitioned. This is expressed in terms of a thermodynamic function

called entropy S, the ordered state having a lower entropy. In the ab-

sence of an enthalpy change, a reaction may occur spontaneously if it



leads to an increase in entropy (i.e. ∆S > 0). The entropy change in a

reversible process is defined as:

dS =
dq

T
so that ∆S =

T2
∫

T1

CP

T
dT (8)

Fig. 1: Two isothermal chambers at identical temper-

ature, one containing an ideal gas at a certain pressure

P , and the other evacuated. It is expected that if the

chambers are connected, then gas will flow into the

evacuated chamber in order to equalise pressure. The

reverse case, where all the atoms on the right hand

side by chance move into the left chamber, is unlikely

to occur.

It is evident that neither the enthalpy nor the entropy change can be

used in isolation as reliable indicators of whether a reaction should occur



spontaneously. It is their combined effect that is important, described

as the Gibbs free energy G:

G = H − TS. (9)

The Helmholtz free energy F is the corresponding term at constant

volume, when H is replaced by U in equation 9. A process can occur

spontaneously if it leads to a reduction in the free energy. Quantities

such as H, G and S are path independent and therefore are called

functions of state.

More About the Heat Capacity

The heat capacity can be determined experimentally using calorimetry.

The data can then be related directly to the functions of state H, G

and S. The heat capacity varies with temperature and other factors and

hence is important in determining the stabilities of phase. It is useful

to factorise the specific heat capacities of each phase into components

with different origins; this is illustrated for the case of a metal.

The major contribution comes from lattice vibrations; electrons

make a minor contribution because the Pauli exclusion principle pre-

vents all but a few from participating in the energy absorption process.

Further contributions may come from magnetic changes or from order-

ing effects in general. As an example, the net specific heat capacity at

constant pressure has the components:

CP {T} = CL
V

{

TD

T

}

C1 + CeT + Cµ
P {T} (10)

where CL
V {TD

T } is the Debye specific heat function and TD is the Debye

temperature. The function C1 corrects CL
V {TD

T } to a specific heat at



constant pressure. Ce is the electronic specific heat coefficient and Cµ
P

the component of the specific heat capacity due to magnetic effects.

The Debye specific heat has its origins in the vibrations of atoms,

which become increasingly violent as the temperature rises. These vi-

brations are elastic waves whose wavelengths can take discrete values

consistent with the size of the sample. It follows that their energies are

quantised, each quantum being called a phonon. The atoms need not

all vibrate with the same frequency, so that there is a vibration spec-

trum to be considered in deriving the total internal energy U due to

lattice vibrations. The maximum frequency of vibration in this spec-

trum is called the Debye frequency ωD, which is proportional to the

Debye temperature TD through the relation

TD =
hωD

2πk
(11)

where h and k are the Planck and Boltzmann constants respectively.

The internal energy due to the atom vibrations is:

U =
9NkT 4

T 3
D

∫ TD/T

0

x3

(ex − 1)
dx (12)

where x = hωD/(2πkT ) and N is the total number of lattice points in

the specimen. Since CL
V = dU/dT , it follows that the lattice specific

heat capacity at constant volume can be specified in terms of the Debye

temperature and the Debye function (equation 12). The theory does

not provide a complete description of the lattice specific heat since TD

is found to vary slightly with temperature. In spite of this, the Debye

function frequently can be used quite accurately for CL
V {T} if an average

TD is calculated for the range TD/6 − TD.



At low temperatures (T ¿ TD), U → 3NkT 4π4/(5T 3
D) so that

CL
V → 12π4NkT 3/(5T 3

D) and the lattice specific heat thus follows a

T 3 dependence. For T À TD, the lattice heat capacity can similarly be

shown to become temperature independent and approach a value 3Nk,

as might be expected for N classical oscillators each with three degrees

of freedom (Fig. 2).

Fig. 2: The Debye function.

Fig. 3 shows the variation in the specific heat capacities of allotropes

of pure iron as a function of temperature. Ferrite undergoes a param-

agnetic to ferromagnetic change at a Curie temperature of 1042.15 K.

The Equilibrium State

Equilibrium is a state in which “no further change is perceptible,

no matter how long one waits”. For example, there will be no tendency

for diffusion to occur between two phases which are in equilibrium even

though they may have different chemical compositions.

An equilibrium phase diagram is vital in the design of materials.



Fig. 3: The specific heat capacities of ferrite and

austenite as a function of temperature (after Kauf-

man, 1967). The thin lines represent the combined

contributions of the phonons and electrons whereas

the thicker lines also include the magnetic terms. The

dashed vertical lines represent the Curie, α → γ and

γ → δ transitions.

It contains information about the phases that can exist in a material of

specified chemical composition at particular temperatures or pressures.

It carries information about the chemical compositions of these phases

and the phase fractions. The underlying thermodynamics reveals the

driving forces which are essential in kinetic theory. We shall begin the

discussion of phase equilibria by revising some of the elementary thermo-

dynamic models of equilibrium and phase diagrams, and then see how

these can be adapted for the computer modelling of phase diagrams as

a function of experimental thermodynamic data.
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Allotropic Transformations

Consider equilibrium for an allotropic transition (i.e. when the

structure changes but not the composition). Two phases α and γ are

said to be in equilibrium when they have equal free energies:

Gα = Gγ (13)

When temperature is a variable, the transition temperature is also fixed

by the above equation (Fig. 4).

Fig. 4: The transition temperature for an allotropic

transformation.


