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Introduction

The regular solution model assumes a random distribution of atoms even though the

enthalpy of mixing is not zero. In reality, a random solution is only expected at very

high temperatures when the entropy term overwhelms any tendency for ordering or

clustering of atoms. It follows that the configurational entropy of mixing should vary

with the temperature. The quasi–chemical solution model has a better treatment of

configurational entropy which accounts for a non–random distribution of atoms. The

model is so–called because it has a mass–action equation which is typical in chemical

reaction theory

Partition Function

The essential problem in the construction of a quasi–chemical model is the partition

function.

Consider a total number N of atoms in a system where there are just two energy

levels. At any finite temperature a number N0 of the atoms are in the ground state,

whereas a number N1 (= N −N0) belong to the higher level with an energy E1 relative

to the ground state. The fraction of atoms in the two states at a temperature T and

at zero pressure is given by:

No

N
=

g0

g0 + g1 exp
{

−E1

kT
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=
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{

−E1
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where gi represents the degeneracy of the ith energy level. The degeneracy gives the

number of states with the same energy. In each of these equations, the term in the

denominator is called the partition function Ω; in general, for a multi–level system,

Ω =
∑

i

gi exp

{
−Ei

kT

}



where Ei is the energy relative to the ground state.

The regular solution model assumes a random distribution of atoms even though the

enthalpy of mixing is not zero. whereas in reality a random solution is only expected at

very high temperatures when the entropy term overwhelms any tendency for ordering

or clustering of atoms. It follows that the configurational entropy of mixing should

vary with the temperature. The quasi–chemical solution model has a better treatment

of configurational entropy which accounts for a non–random distribution of atoms.

The model is so–called because it has a mass–action equation which has similarity to

chemical reactions.

The total energy of the assembly for a particular value of NAB is UNAB
=

−z(NAεAA + NBεBB − NABω) where ω = εAA + εBB − 2εAB . In a non–random

solution there are many values that NAB can adopt, each value corresponding to one

or more arrangements of atoms with an identical value of U . Each of these energy

states is thus associated with a degeneracy gNAB
which gives the number of arrange-

ments that are possible for a given value of U . The partition function is therefore the

sum over all possible NAB :

Ω =
∑

NAB

gNAB
exp

{

−
UNAB

kT

}

=
∑

NAB

gNAB
exp

{
z(NAεAA + NBεBB − NABω)

kT

} (2)

For a given value of NAB , the different non–interacting pairs of atoms can be

arranged in the following number of ways

gNAB
∝

( 1
2
zN)!

( 1
2
z[NA − NAB ])! (1

2
z[NB − NAB ])! (1

2
zNAB)! ( 1

2
zNBA)!

(3)

where the first and second terms in the denominator refer to the numbers of A–A and

B–B bonds respectively, and the third and fourth terms the numbers of A–B and B–A

pairs respectively. We note also that this not an equality because the various pairs are

not independent, as illustrated in (Fig. 1). Another way of stating this is to say that

the distribution of pairs is not random. Guggenheim addressed this problem by using

a normalisation factor such that the summation of all possible degeneracies equals the

total number of possible configurations as follows.



Fig. 1: Diagram showing why pairs of atoms cannot be distributed

at random on lattice sites (Lupis, 1983). Once the bonds connecting

the coordinates (i, i + 1), (i + 1, i + 2), (i + 2, i + 3) are made as

illustrated, the final bond connecting (i, i+3) is necessarily occupied

by a pair AB.

Suppose that we identify with an asterisk, the number of arrangements of pairs

of atoms possible in a random solution, then from the proportionality in equation 3,

we see that
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( 1
2
zN)!

( 1
2
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AB ])! (1
2
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AB ])! (1
2
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2
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(4)

This again will overestimate the number of possibilities (Fig. 1), but for a random

solution we know already that

g∗ =
N !

NA! NB !
. (5)

It follows that we can normalize gNAB
as
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=
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×
N !
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With this, the partition function Ω is defined explicitly and the problem is in principle

solved. However, it is usual to first simplify by assuming that the sum in equation 2

can be replaced by its maximum value. This is because the thermodynamic properties

that follow from the partition function depend on its logarithm, in which case the



use of the maximum is a good approximation. The equilibrium number Ne
AB of A–B

bonds may then be obtained by setting ∂ ln{Ω}/∂NAB = 0 (Christian, 1975; Lupis,

1983):

Ne
AB =

2Nzx(1 − x)

βq + 1
(7)

with βq being the positive root of the equation

β2
q − (1 − 2x) = 4x(1 − x) exp{2ω/kT},

so that

Ne
AB =

2Nzx(1 − x)

[1 − 2x + 4x(1 − x) exp{2ω/kT}]
1

2 + 1

≡
zN

2(exp{2ω/kT} − 1)

[
−1 + [1 + 4x(1 − x)(exp{2ω/kT} − 1)]

1

2

]
(8)

The percentage of the different pairs are plotted in Fig. 2. Equation 8 obviously

corresponds to the regular solution model if βq = 1 with a random arrangement of

atoms. As expected, the number of unlike pairs is reduced when clustering is favoured,

and increased when ordering is favoured.

Fig. 2: Calculated percentages of pairs for the quasi–chemical model

with x = (1 − x) = 0.5. The result is independent of z.



The free energy of the assembly is

G = F = −kT ln{Ω} = UNe

AB

− kT ln gNe

AB

(9)

so that the free energy of mixing per mole becomes

∆GM = zNe
ABω − NkT ln gNe

AB

=
2zωNx(1 − x)

βq + 1
︸ ︷︷ ︸

molar enthalpy of mixing

−RT ln gNe

AB
(10)

The second term on the right–hand side has the contribution from the configurational

entropy of mixing. By substituting for gNe

AB

, and with considerable manipulation,

Christian has shown that this can be written in terms of βq so that the molar free

energy of mixing becomes:

∆GM =
2zωNx(1 − x)

βq + 1

+ RT
[
(1 − x) ln{1 − x} + x ln{x}

]

+
1

2
RTz

{

(1 − x) ln
βq + 1 − 2x

(1 − x)(βq + 1)
+ x ln

βq − 1 + 2x

x(βq + 1)

}
(11)

The second term in this equation is the usual contribution from the configurational

entropy of mixing in a random solution, whereas the third term can be regarded as a

quasichemical correction for the entropy of mixing since the atoms are not randomly

distributed.

It is not possible to give explicit expressions for the chemical potential or activity

coefficient since βq is a function of concentration. Approximations using series expan-

sions are possible but the resulting equations are not as easy to interpret physically as

the corresponding equations for the ideal or regular solution models.

The expressions in the quasi–chemical model (or first approximation) reduce to

those of the regular solution (or zeroth approximation) model when βq = 1. Although

a better model has been obtained, the first approximation relies on the absence of

interference between atom–pairs. However, each atom in a pair belongs to several

pairs so that better approximations can be obtained by considering larger clusters

of atoms in the calculation. Such calculations are known as the “cluster variation”



method. The improvements obtained with these higher approximations are usually

rather small though there are cases where pairwise interactions simply will not do.

Finally, it is worth emphasising that although the quasi–chemical model has an

excess entropy, this comes as a correction to the configurational entropy. Furthermore,

the excess entropy from this model is always negative; there is more disorder in a

random solution than in one which is biassed. Therefore, the configurational entropy

from the quasi–chemical model is always less than expected from an ideal solution.

Thermal entropy or other contributions such as magnetic or electronic are additional

contributions.

The procedure in the development of the quasi–chemical models is illustrated in

Fig. 3.
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Fig. 3: The steps involved in the construction of a quasichemical

solution model.


