
λ

x

C     C+δC    

C δC

Materials Science & Metallurgy Master of Philosophy, Materials Modelling,

Course MP6, Kinetics and Microstructure Modelling, H. K. D. H. Bhadeshia

Lecture 3: Introduction to Diffusion

Mass transport in a gas or liquid generally involves the flow of fluid
(e.g. convection currents) although atoms also diffuse. Solids on the
other hand, can support shear stresses and hence do not flow except by
diffusion involving the jumping of atoms on a fixed network of sites.

Assume that such jumps can somehow be achieved in the solid state,
with a frequency ν with each jump over a distance λ.

For random jumps, the root mean square distance is

x = λ
√

n where n is the number of jumps

= λ
√

νt where t is the time

diffusion distance ∝
√

t

Diffusion in a Uniform Concentration Gradient

Fig. 1: Diffusion Gradient



Concentration of solute, C, number m−3

Each plane has Cλ atoms m−2 (Fig. 1)

δC = λ

{
∂C

∂x

}

Atomic flux, J , atoms m−2 s−1

JL→R =
1

6
νCλ

JR→L =
1

6
ν(C + δC)λ

Therefore, the net flux along x is given by

Jnet = −1

6
ν δC λ

= −1

6
ν λ2

{
∂C

∂x

}

≡ −D

{
∂C

∂x

}

This is Fick’s first law where the constant of proportionality is called the
diffusion coefficient in m2 s−1. Fick’s first law applies to steady state flux
in a uniform concentration gradient. Thus, our equation for the mean
diffusion distance can now be expressed in terms of the diffusivity as

x = λ
√

νt with D =
1

6
νλ2 giving x =

√
6Dt '

√
Dt

Non–Uniform Concentration Gradients

Suppose that the concentration gradient is not uniform (Fig. 2).
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Fig. 2: Non–uniform concentration gradient

In the time interval δt, the concentration changes δC

δCδx = (Flux in – Flux out)δt

∂C

∂t
= D

∂2C

∂x2

assuming that the diffusivity is independent of the concentration. This
is Fick’s second law of diffusion.

This is amenable to numerical solutions for the general case but
there are a couple of interesting analytical solutions for particular bound-
ary conditions. For a case where a fixed quantity of solute is plated onto
a semi–infinite bar (Fig. 3),

boundary conditions:

∫
∞

0

C{x, t}dx = B

and C{x, t = 0} = 0

C{x, t} =
B√
πDt

exp

{−x2

4Dt

}

Now imagine that we create the diffusion couple illustrated in Fig. 4,
by stacking an infinite set of thin sources on the end of one of the bars.
Diffusion can thus be treated by taking a whole set of the exponential
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Fig. 3: Exponential solution. Note how the curvature

changes with time.

functions obtained above, each slightly displaced along the x axis, and
summing (integrating) up their individual effects. The integral is in fact
the error function

erf{x} =
2√
π

∫ x

0

exp{−u2}du

so the solution to the diffusion equation is

boundary conditions: C{x = 0, t} = Cs

and C{x, t = 0} = C0

C{x, t} = Cs − (Cs − C0)erf

{
x

2
√

Dt

}

This solution can be used in many circumstances where the surface
concentration is maintained constant, for example in the carburisation
or decarburisation processes (the concentration profiles would be the
same as in Fig. 4, but with only one half of the couple illustrated). The
solutions described here apply also to the diffusion of heat.

Mechanism of Diffusion

Atoms in the solid–state migrate by jumping into vacancies (Fig. 5).
The vacancies may be interstitial or in substitutional sites. There is,
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Fig. 4: The error function solution. Notice that the

“surface” concentration remains fixed.

Fig. 5: Mechanism of interstitial and substitutional

diffusion.

nevertheless, a barrier to the motion of the atoms because the motion
is associated with a transient distortion of the lattice.

Assuming that the atom attempts jumps at a frequency ν0, the
frequency of successful jumps is given by

ν = ν0 exp

{

−G∗

kT

}

≡ ν0 exp

{
S∗

k

}

︸ ︷︷ ︸

independent of T

× exp

{

−H∗

kT

}

where k and T are the Boltzmann constant and the absolute tempera-



ture respectively, and H∗ and S∗ the activation enthalpy and activation
entropy respectively. Since

D ∝ ν we find D = D0 exp

{

−H∗

kT

}

A plot of the logarithm of D versus 1/T should therefore give a straight
line (Fig. 6), the slope of which is −H∗/k. Note that H∗ is frequently
called the activation energy for diffusion and is often designated Q.

Fig. 6: Typical self–diffusion coefficients for pure

metals and for carbon in ferritic iron. The uppermost

diffusivity for each metal is at its melting temperature.

The activation enthalpy of diffusion can be separated into two com-
ponents, one the enthalpy of migration (due to distortions) and the en-
thalpy of formation of a vacancy in an adjacent site. After all, for the
atom to jump it is necessary to have a vacant site; the equilibrium con-
centration of vacancies can be very small in solids. Since there are many
more interstitial vacancies, and since most interstitial sites are vacant,
interstitial atoms diffuse far more rapidly than substitutional solutes.

Kirkendall Effect

Diffusion is at first sight difficult to appreciate for the solid state. A
number of mechanisms have been proposed historically. This includes a
variety of ring mechanisms where atoms simply swap positions, but con-
troversy remained because the strain energies associated with such swaps
made the theories uncertain. One possibility is that diffusion occurs by



atoms jumping into vacancies. But the equilibrium concentration of va-
cancies is typically 10−6, which is very small. The theory was therefore
not generally accepted until an elegant experiment by Smigelskas and
Kirkendall (Fig. 7).

Fig. 7: Diffusion couple with markers

The experiment applies to solids as well as cible liquids. Consider
a couple made from A and B. If the diffusion fluxes of the two elements
are different (|JA| > |JB |) then there will be a net flow of matter past the
inert markers, causing the couple to shift bodily relative to the markers.
This can only happen if diffusion is by a vacancy mechanism.

An observer located at the markers will see not only a change in
concentration due to intrinsic diffusion, but also because of the Kirk-
endall flow of matter past the markers. The net effect is described by
the usual Fick’s laws, but with an interdiffusion coefficient D which is
a weighted average of the two intrinsic diffusion coefficients:

D = XBDA + XADB

where X represents a mole fraction. It is the interdiffusion coefficient
that is measured in most experiments.

Structure Sensitive Diffusion

Crystals may contain nonequilibrium concentrations of defects such
as vacancies, dislocations and grain boundaries. These may provide easy
diffusion paths through an otherwise perfect structure. Thus, the grain
boundary diffusion coefficient Dgb is expected to be much greater than
the diffusion coefficient associated with the perfect structure, DP .
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Fig. 8: Idealised grain

Assume a cylindrical grain. On a cross section, the area presented
by a boundary is 2πrδ where δ is the thickness of the boundary. Note
that the boundary is shared between two adjacent grains so the thickness
associated with one grain is 1

2
δ. The ratio of the areas of grain boundary

to grain is therefore

ratio of areas =
1

2
× 2πrδ

πr2
=

δ

r
=

2δ

d

where d is the grain diameter (Fig. 8).
For a unit area, the overall flux is the sum of that through the

lattice and that through the boundary:

J ' JP + Jgb

2δ

d

so that Dmeasured = DP + Dgb

2δ

d

Note that although diffusion through the boundary is much faster, the
fraction of the sample which is the grain boundary phase is small. Con-
sequently, grain boundary or defect diffusion in general is only of im-
portance at low temperatures where DP ¿ Dgb (Fig. 9).

Thermodynamics of diffusion

Fick’s first law is empirical in that it assumes a proportionality
between the diffusion flux and the concentration gradient. However,
diffusion occurs so as to minimise the free energy. It should therefore
be driven by a gradient of free energy. But how do we represent the
gradient in the free energy of a particular solute?
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Fig. 9: Structure sensitive diffusion. The dashed line

will in practice be curved.

Diffusion in a Chemical Potential Gradient

Fick’s laws are strictly empirical. Diffusion is driven by gradients
of free energy rather than of chemical concentration:

JA = −CAMA

∂µA

∂x
so that DA = CAMA

∂µA

∂CA

where the proportionality constant MA is known as the mobility of A.
In this equation, the diffusion coefficient is related to the mobility by
comparison with Fick’s first law. The chemical potential is here de-
fined as the free energy per mole of A atoms; it is necessary therefore
to multiply by the concentration CA to obtain the actual free energy
gradient.

The relationship is remarkable: if ∂µA/∂CA > 0, then the diffusion
coefficient is positive and the chemical potential gradient is along the
same direction as the concentration gradient. However, if ∂µA/∂CA < 0
then the diffusion will occur against a concentration gradient!


