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Lecture 8: Growth Morphologies

Geometry of Solidification

Fig. 1 shows the grain structures possible when molten metal is poured into a cold

metal mould. The chill zone contains fine crystals nucleated at the mould surface.

There is then selective growth into the liquid as heat is extracted from the mould, i.e.

crystals with their fast–growth directions parallel to that of heat flow grow rapidly

and stifle others. If the liquid in the centre of the mould is undercooled sufficiently,

grains may nucleate and grow without contact with any surface. Such grains grow to

approximately equal dimensions in all directions, i.e. are equiaxed.

Fig. 1: Geometry of solidification

Equiaxed growth in a pure metal can show morphological instabilities, i.e. thermal

dendrites (Fig. 2). This is because a small perturbation at the interface ends up in even

more supercooled liquid so the interface becomes unstable. Dendrites have preferred

growth directions relative to their crystal structure.

Solidification of Alloys

Solute is partitioned into the liquid ahead of the solidification front. This causes

a corresponding variation in the liquidus temperature (the temperature below which



Fig. 2: Thermal dendrite formation when the temperature gradient

in the liquid is negative.

freezing begins)†. There is, however, a positive temperature gradient in the liquid,

giving rise to a supercooled zone of liquid ahead of the interface (Fig. 3). This is called

constitutional supercooling because it is caused by composition changes.

A small perturbation on the interface will therefore expand into a supercooled

liquid. This gives rise to dendrites.

Fig. 3: Diagram illustrating constitutional supercooling.

It follows that a supercooled zone only occurs when the liquidus–temperature (T
L
)

† The liquidus phase boundary defines the temperature below which solidification begins under

equilibrium conditions
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gradient at the interface is larger than the temperature gradient:
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It is very difficult to avoid constitutional supercooling in practice because the velocity

required to avoid it is very small indeed. Directional solidification with a planar front

is possible only at low growth rates, for example in the production of silicon single

crystals. In most cases the interface is unstable (Fig. 4):

Fig. 4: Cells and dendrites. Cells form when the size of the super-

cooled zone is small and dendrites when the size is large.

Solid–State Transformations

The atomic arrangement in a crystal can be altered either by breaking all the

bonds and rearranging the atoms into an alternative pattern (reconstructive trans-

formation), or by homogeneously deforming the original pattern into a new crystal

structure (displacive transformation), Fig. 5.

In the displacive mechanism the change in crystal structure also alters the macro-

scopic shape of the sample when the latter is not constrained. The shape deformation

during constrained transformation is accommodated by a combination of elastic and

plastic strains in the surrounding matrix. The product phase grows in the form of thin

plates to minimise the strains. The atoms are displaced into their new positions in a

coordinated motion. Displacive transformations can therefore occur at temperatures

where diffusion is inconceivable within the time scale of the experiment. Some solutes

may be forced into the product phase, a phenomenon known as solute trapping. Both

the trapping of atoms and the strains make displacive transformations less favourable

from a thermodynamic point of view.



Fig. 5: The main mechanisms of transformation. The parent crys-

tal contains two kinds of atoms. The figures on the right represent

partially transformed samples with the parent and product unit cells

outlined in bold. The transformations are unconstrained in this illus-

tration.

Fig. 6 shows how the shape of the product phase changes when the transformation

is constrained, because a thin–plate then minimises the strain energy.

Fig. 6: The effect of strain energy on the morphology of the trans-

formed phase during displacive transformation involving shear defor-

mation.



It is the diffusion of atoms that leads to the new crystal structure during a re-

constructive transformation. The flow of matter is sufficient to avoid any shear com-

ponents of the shape deformation, leaving only the effects of volume change. This is

illustrated phenomenologically in Fig. 7, where displacive transformation is followed

by diffusion, which eliminates the shear. This reconstructive diffusion is necessary even

when transformation occurs in a pure element. In alloys, the diffusion process may

also lead to the redistribution of solutes between the phases in a manner consistent

with a reduction in the overall free energy.

Virtually all solid–state phase transformations can be discussed in the context of

these two mechanisms.

Fig. 7: A phenomenological interpretation of reconstructive transfor-

mation. (a) Parent phase; (b) product phase generated by a homo-

geneous deformation of the parent phase. The arrow shows the mass

transport that is necessary in order to eliminate the shear component

of the shape deformation; (c) shape of the product phase after the

reconstructive–diffusion has eliminated the shear component of the

shape deformation.

Equilibrium Shape

The equilibrium shape of a particle is frequently determined by the minimisa-

tion of interface energy. If the interface energy does not depend on the orientation of

the boundary, then the shape which gives the minimum surface to volume ratio is a



sphere (Fig. 8a). In crystalline materials the interface energy is always dependent on

the orientation of the interface. The latter is defined by its normal. The orientation

dependence of the interface energy can be represented by a radial vector whose magni-

tude is proportional to the energy. This is the so–called gamma-plot. The equilibrium

shape can then be found by drawing surfaces normal to the cusps in the gamma–plot

as illustrated in Fig. 8b.

Fig. 8: (a) Equilibrium shape when the interface energy is isotropic.

(b) Equilibrium shape when the interface energy varies with the orien-

tation of the boundary. The arrow shows the plot of interface energy

(proportional to radial distance from the centre) as a function of ori-

entation of the interface plane (defined by the plane–normal which is

parallel to the radial vector on the plot).


