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Isothermal Transformation

To model transformation it is obviously necessary to calculate the nucleation and

growth rates, but an estimation of the volume fraction requires impingement between

particles to be taken into account.

Fig. 1: An illustration of the concept of extended volume. Two

precipitate particles have nucleated together and grown to a finite

size in the time t. New regions c and d are formed as the original

particles grow, but a & b are new particles, of which b has formed in

a region which is already transformed.

This is done using the extended volume concept of Kolmogorov, Johnson, Mehl

and Avrami. Referring to Fig. 1, suppose that two particles exist at time t; a small

interval δt later, new regions marked a, b, c & d are formed assuming that they are

able to grow unrestricted in extended space whether or not the region into which they

grow is already transformed. However, only those components of a, b, c & d which lie

in previously untransformed matrix can contribute to a change in the real volume of

the product phase (α) :
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where it is assumed that the microstructure develops at random. The subscript e refers

to extended volume, V α is the volume of α and V is the total volume. Multiplying the



change in extended volume by the probability of finding untransformed regions has

the effect of excluding regions such as b, which clearly cannot contribute to the real

change in volume of the product. For a random distribution of precipitated particles,

this equation can easily be integrated to obtain the real volume fraction,
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The extended volume V α
e

is straightforward to calculate using nucleation and

growth models and neglecting completely any impingement effects. Consider a simple

case where the α grows isotropically at a constant rate G and where the nucleation

rate per unit volume, I
V

. The volume of a particle nucleated at time t = τ (Fig. 2) is

given by
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The change in extended volume over the interval τ and τ + dτ is
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On substituting into equation 1 and writing ξ = V α/V , we get
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Fig. 2: An illustration of the incubation time τ for each particle.



This equation has been derived for the specific assumptions of random nucleation,

a constant nucleation rate and a constant growth rate. There are different possibilities

but they often reduce to the general form:

ξ = 1 − exp{−k
A
tn} (3)

where k
A

and n characterise the reaction as a function of time, temperature and other

variables. The values of k
A

and n can be obtained from experimental data by plotting

ln(− ln{1 − ξ}) versus ln{t}. The specific values of k
A

and n depend on the nature of

nucleation and growth. Clearly, a constant nucleation and growth rate leads to a time

exponent n = 4, but if it is assumed that the particles all begin growth instantaneously

from a fixed number density of sites (i.e. nucleation is not needed) the n = 3 when

the growth rate is constant. There are other scenarios and the values of the Avrami

parameters are not necessarily unambiguous in the sense that the same exponent can

represent two different mechanisms.

The form of equation 3 is illustrated in Fig. 3. Note that the effect of tempera-

ture is to alter the thermodynamic driving force for transformation, to alter diffusion

coefficients and to influence any other thermally activated processes. The effect of

manganese is via its influence on the stability of the parent and product phases.

Fig. 3: The calculated influence of (a) transformation temperature

and (b) manganese concentration on the kinetics of the bainite reac-

tion (Singh, 1998). Bainite is a particular kind of solid–state phase

transformation that occurs in steels.



The results of many isothermal transformation curves such as the ones illustrated

in Fig. 3 can be plotted on at time–temperature–transformation diagram as illustrated

in Fig. 4. The curves typically have a C shape because the driving force for transfor-

mation is small at high temperatures whereas the diffusion coefficient is small at low

temperatures. There is an optimum combination of these two parameters at interme-

diate temperatures, giving a maximum in the rate of reaction. The curve marked start

corresponds to a detectable limit of transformation (e.g. 5%), and that marked finish

corresponds to say 95% transformation.

Fig. 4: A time–temperature–transformation (TTT) diagram.


