Answer Sheet 2 on Alloys

- 1. Widmanstätten ferrite plates observed optically consist of a pair of selfaccommodating plates which grow cooperatively so that their shape deformations approximately cancel. Hence can form at low undercoolings.
- 2. Assume that the plates grow right across austenite grains and that all the driving force is used up in strain energy.

$$E = \frac{c}{r}\mu(s^2 + \delta^2)$$

where E is the strain energy per unit volume, μ is the shear modulus of the austenite, c is the thickness of the martensite plate, r is the length of the martensite plate and, s and δ are the shear and dilatational strains of the shape deformation of martensite. r is set to the austenite grain size since the plates are limited only by the austenite grain boundaries, giving 2.46×10^{-6} and 8.18×10^{-6} m as the answers.

- 3. Combination of two invariant-plane strains is equivalent to an invariant-line strain, with the invariant-line at the intersection of the two invariant-planes, i.e. [1 1 0].
- 4. The table below assumes a metal with a cubic lattice.

	Annealing	Mechanical	Martensite
Shape change	none	shear	invariant–plane strain
Shear strain	—	$\frac{1}{\sqrt{2}}$	$\simeq 0.25$
Dilatational strain	_		$\simeq 0.03$ in steel
Density change	_	_	yes
Crystal structure change	—	_	yes
Morphology	blocky	lenticular	lenticular

Part IIa, b Course C9, H. K. D. H. Bhadeshia