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NOMENCLATURE

E Young’s modulus

TiH2  Titanium hydride

Ni (CO) 4  Nickel carbonyl

CVD Chemical Vapour Deposition

K Thermal conductivity

Q Heat flow in unit time

I Current

V Potentional difference

RTH Thermal resistance of conductor

σsb Stefan’s constant

T4 Temperature difference

K*  Total thermal conductivity

Ke Effective thermal conductivity

Am Area of cross section of foam

Lm Height of foam

ε Porosity

K1 Thermal conductivity of material 1

K2 Thermal conductivity of material 2

Q1 Heat flow in material 1

Q Heat flow in material 2

V1 Volume fraction of material 1

V2 Volume fraction of material 2

L1 Height of material 1

L2 Height of material 2

r length of cubical nodes

L length of ligament

a radius of cross section of ligament

P pressure

γ Surface energy

Cvm molar heat capacity at constant volume

λm Mean free path

f frequency



λ wavelength

SIL Sound intensity level

SPL Sound power level

α Sound absorption coefficient

ρ0 air density

ω Angular frequency

ω1 undamped frequency

X amplitude

x displacement of base

y deflection of mass

m1 mass per unit area



OBJECTIVE

Metallic foams have now been researched for many decades. However, the Defence

Evaluation and Research Agency is interested in very thin metallic foams containing

closed-cell pores. The fraction of porosity in these sheets of foams is at the moment

about 0.5 but the intention is to increase the fraction to 0.8 or higher. A number of

questions arose during research on these foams:

1) How does the thermal conductivity and noise attenuation vary as a function of

    porosity for these thin sheets of foams?

2) Is there any pore size dependence of these properties?

A search of the literature revealed considerable work on the modelling of thermal

conductivity and noise attenuation but not specifically for the fraction of interest nor

anything about pore size dependence. A solution to this problem was the aim of this

research.

The research begins with an introduction of the many ways of manufacturing metallic

foams containing large fractions of porosity and their applications. Such materials in

principle combine good mechanical properties with a reduction in weight.

It then explains the thermal conductivity of metallic foams, and summarizes previous

models and their shortcomings. To overcome the shortcomings a new, simple-cube

model was created and the thermal conductivity was calculated as a function of

porosity.  It showed that the thermal conductivities could be estimated for any level of

porosity.  The size dependency was also investigated using two smaller cubes within

the cube model. A sphere model was also developed to see if shape could affect

thermal conductivity, but the thermal conductivity could then only be calculated for

small fractions due to stereological effects. The effect of gas pressure in the spheres

on thermal conductivity was also investigated but it showed that the pressure is

independent of thermal conductivity. The work confirmed no effect of pore size on

thermal conductivity.



Finally the nature of sound, its properties and different mechanisms of sound

attenuation were briefly described. Previous models for measuring sound absorption

were summarized and a model was applied to study sound absorption as a function of

frequency.



1. METALLIC FOAMS

Metal foams are similar to any other foam (i.e. bath foam, aero chocolate) but recently

there has been considerable interest in their properties.  Typically about 80-90% of the

structure of a modern metallic foam is made of pores, which can be connected

together giving an open cell foam or isolated giving closed cell foam made of separate

cells which trap gas inside the metal Figure 1. Aluminium foams are important due to

their high strength and stiffness for a given weight.

     

Fig 1a       Fig 1b

Figure 1(a) Scanning electron micrograph (SEM) of an open-cell aluminium foam

from DOUCEL (b) X-ray tomography of a closed-cell aluminium produced by a

continuous process of gas injection to a viscous melt [1].

1.1 CHARACTERISING THE PROPERTIES OF METALLIC FOAMS

High porosity metallic foams are characterised by the morphology of the porous cells

(cell geometry, open or closed), cell topology, relative density, cell size, cell shape,

properties of the cell wall and the degree of anisotropy.

The mechanical properties of open and closed cell foams differ significantly. The

linear elastic response in an open-cell foam is due to the bending of the cell walls. In a

closed-cell foam the cell walls stretch and the air or other gas within the cell is

compressed.



The expressions for modulus, elastic, plastic and brittle collapse stresses, the fracture

toughness and the strain at which densification occurs can be derived by examining

the way in which cell edges respond to stresses. This gives a good description of the

behaviour of open cell foams. For closed cell foams the deformation of the cell faces

as well as the cell edges and the response of the fluid (usually gas) within the cells

must be included to give a complete description of the foam [2].

1.2 PRODUCTION OF FOAMS

There are a number of processing routes available for the manufacture of metal foams,

including bubbling gas through molten alloys, stirring a foaming agent through the

melt, consolidation of metal powders with a particulate foaming agent, and pressure

infiltration of the molten metal into a wax or polymer-foam precursor.

Each method can be used to create a porous material with a limited range of relative

densities and cell sizes. Each production method has its own structure, densities and

imperfections. These imperfections can be variations in cell-walls thickness or non-

uniform cell shape. The structures can be characterised using optical microscopy, X-

ray tomography, and scanning electron microscopy.

1.2.1 From Melts

Metallic melts can be foamed in one of three ways: by injecting gas into the liquid

metal from an external source, by causing in-situ gas formation in the liquid using

gas-releasing agents, or by causing the precipitation of gas which was previously

dissolved in the liquid.

The simplest method is to bubble air into the bottom of a vat of molten aluminium and

cool the bubbles that form at the top [3]. The metal needs fine ceramic particles in it

to make it viscous or the air would just escape at the top of the surface without

foaming bubbles. This can create closed-cell foams 1 m wide to 0.2 m thick slabs with

diameters between 5 and 20 mm. ALCAN in Canada supply foamed aluminium using

this process. The relative densities of the foam are between 0.03-0.1. The process is

shown in Figure 2.



                     

Figure 2 Schematic diagram of the manufacture of aluminium foam by melt gas

injection method [3].

The Shinko Wire Company in Japan first invented a process, which was based on the

mixing of titanium hydride powder into the molten aluminium to generate hydrogen

[4]. They developed aluminium foam with the trade name Alporas. This method

produced better foams, which have more uniform pore sizes by using a solid foaming

agent, which can be mixed into the aluminium before giving off a gas rather than just

adding the gas directly. This gives control of the location and size of the pores. The

cell size can be varied from 0.5 to 5 mm by changing the TiH2 content and the

foaming and cooling conditions. The relative densities of the foam can vary from 0.2

to as low as 0.07, Figure 3.

Using this process the entire volume is foamed at once, which then gives finer pores

and a more regular structure. In the melt gas injection method the viscosity of the

molten aluminium has to be increased by mixing powders and fibres but in the gas

releasing particle decomposition method, calcium can be added to increase viscosity

[4].

Figure 3 The process steps in the production of aluminium foams by gas releasing particle

decomposition in the melt. (Alporas process) [4].



An alternative way to form metallic melts is from a casting technique for foam open-

cell foams. It is thought that ERG manufactures DUOCELL in this way [5].  A wide

range of sizes of great uniformity can be obtained. This method is called infiltration,

where some sort of solid mould of pore shapes is made and then molten metal is

poured followed by removal of the mould. For example, an open cell polymer

template with the desired cell size and relative density is used. This is then coated

with a mould casting slurry (ceramic powder), which is then dried and embedded in

sand. The mould is then baked to harden the casting material and to decompose the

polymer template. Subsequently the mould is filled with a metal alloy and allowed to

cool. After cooling the mould materials are removed leaving the metal foam

equivalent to the original polymer foam, Figure 4. There are other mould materials,

which can be used, for example, plaster or plastics foam. This gives highly uniform

open cell foam structures, but the disadvantage is that the procedure is expensive and

complicated.

                       

Figure 4 Investment casting method to manufacture open cell foams (DUOCEL

process)[5].



1.2.2 POWDERS

Metal foams can be made from the metal powders (Al and its alloys) and foaming

agents (TiH2,ZrH). The metal and foaming agents are blended and cold-compacted.

Compaction methods include uniaxial compression, extrusion or powder rolling.  The

foaming agent is distributed uniformly in the metal matrix, Figure 5 [6].

Figure 5 The sequence of powder metallurgy steps to form foams by gas releasing

particles in semi-solids [6].

Extrusion can be used to produce a bar or plate and also helps to break the oxide films

at the surfaces of the metal powders, thereby facilitating consolidation. The product is

a precursor material not fully dense and after chopping into small pieces, is placed

inside a sealed split-mould. This can then get converted into foam by heating at a

temperature at which the alloy is partially liquid, with evolving gas converting the

assembly into foam. For example, titanium hydride when used as the foaming agent,

decomposes creating voids containing hydrogen at high pressure. These expand by

semi-solid flow and create foam that fills the mould. The relative densities achieved

from this process can be 0.08 and the shape depends on that of the mould. The foam

has a closed-cell structure with pore diameters in the range 1-5 mm. This process is

called baking, Figure 5 [6].



1.2.3 DEPOSITION

In this process, an open-cell polymer foam is used on to which metals are deposited

by chemical vapour deposition (CVD), by evaporation or by electro-deposition. For

example, nickel is deposited by the decomposition of nickel carbonyl Ni(CO4). The

polymer foam is placed in a CVD reactor where nickel carbonyl is introduced. This

decomposes into nickel and carbon dioxide when heated to 100°C and coats all the

heated surfaces of the polymer foam. After all the metal has been deposited on to the

polymer foam, the metal-coated polymer is removed from the CVD reactor and the

polymer burnt out by heating in the air, to leave a cellular structure with hollow

ligaments. A sintering step can be used to densify the ligaments. The pore size can be

varied over a wide range. It is possible to produce pore sizes of 100-300 µm diameter

range. The lowest densities available are 0.02-0.05 Figure 6 [7].

Figure 6 Schematic steps of CVD process used to create open-cell nickel foams [7].

1.3 APPLICATION OF METAL FOAMS

The process described can be used to create porous materials with a range of densities

and cell sizes. The structures formed can contain either open or closed-cells. Closed

cell foam structures are used mainly for energy absorption applications whilst the

open-cell foams are often used for thermal management.

No single property of metallic foam is particularly exceptional - individual material

properties of metal foams are available in numerous other materials. Metal foams in

general, and aluminium foam in particular, do however, possess a unique combination



of properties not shown by any other material - notably high strength, low density,

high melting point, good acoustic absorption, and the ability to absorb large amounts

of energy at a low stress when compressed in any compressed in any direction.

1.3.1 Structural

Foams basically combine relatively high stiffness with a lower density than their

parent material. It is important to note that, if only the strength is considered, foams

often have a similar or slightly worse performance than solid material of the same

weight. The advantage of foams becomes apparent when bending stresses are

considered as a function of weight. The mass distribution of cellular structures

increases the overall moment of inertia of the material, giving a far higher specific

bending stiffness and strength than for the corresponding weight of bulk metal. This

makes foams useful as high-strength, low-density load-bearing components in

automotive and aerospace applications. This could be in the form of direct load-

bearing components, but most use are in bonded composites, where foam is used as a

central element encased in an outer metal sheet. Compared with conventional

honeycomb materials, these are easier to mass-produce, and have increased resistance

to shear due to the isotropic nature of foams [8].

Some of the production methods allow the filling of irregular moulds or shapes with

foam - for example to make complex shapes, or to fill beams or pipe structures with

foam, to provide increased rigidity without significantly increasing the weight.

Compared with solid metal components, structures produced using foam cores have

been shown to be significantly lighter, while offering notably increased structural

rigidity [8].



Figure 7 Metal foam of high stiffness and low-density ideal for sandwich construction

[9].

1.3.2 Heat Exchangers

The corrosion resistance, combined with large surface area and a cell wall material

with high thermal conductivity, makes open cell foams ideal for use as heat

exchanging materials. Closed cells have a much lower thermal conductivity, which

makes them good for thermal shielding [10].

1.3.3 Impact

Another category of applications centres on the energy-absorbing properties of metal

foams. When compressed, foams show only a small elastic deformation before the

start of plastic collapse. In most foams, this collapse involves extensive plastic

deformation of the cell walls in a localised band of failed cells, which gradually

propagates throughout the material at a low (and almost constant) stress. Dislocation

movement in the metal means that a large amount of energy can be absorbed without

the stress exceeding a critical value. Because of the isotropic structure of the foam,

uniform deformation and energy absorption is possible for any direction of

compression. This opens up applications such as a light, cheap, shock-absorbing

material in the front body of cars or trains, to protect the occupants in the event of a

collision. Figure 8 shows a good compact absorber for automobile bumpers [11].



Metal foams are thus attractive in terms of the amount of plastic deformation they can

undergo per unit mass, since the cell walls are relatively unconstrained. In practice,

premature structural failure may prevent this potential from being realised. Foams,

which exhibit sufficiently ductile local collapse, can be used as energy absorbing

blocks to protect the occupants of cars during impact, as a blast protection material, or

as temperature-resistant packaging for materials [11].

Figure 8 Good impact absorbers good for automobile bumpers [9].

1.3.4 Corrosion-resistant and high-temperature filters

Aluminium has good resistance to oxidation and many forms of chemical attack.

Open-cell foams with small pore sizes can thus be used as high-temperature or

chemically resistant filter materials. Liquid fuel containers could be part-filled with

open-cell foams, so that in the event of breakage, flammable materials would at worst

seep out gradually and burn on the surface of a block, rather than spilling over a large

area before catching fire.

Metal foams are excellent in arresting flames in environments like long pipes and

ventilating enclosures. They are both fire proof and highly permeable. They can also

be used in blast protection applications [12].

1.3.5 Acoustic Applications

The frequency of resonance depends on the ratio of elastic modulus to density as these

can be varied independently, foams can be used to eliminate certain frequencies. The

damping capacity of foamed aluminium has been shown to be an order of magnitude

higher than that of the bulk metal. Foams have also been used as sound proofing



materials. Within porous structures, sound is attenuated by vibration and friction

losses as gas flows between cells during propagation repeated reflections within the

cell structure gives rise to long paths were full absorption is possible. The acoustic

properties of the metal foams can be used where sound absorption is vital i.e. sides of

roads to reduce traffic noise [13].

2. THERMAL CONDUCTIVITY

Thermal conductivity can be considered using a bar with one end of the bar at

temperature T1 and the other end at a lower constant temperature T2.  Heat is



conducted from the hotter to the colder end at a steady rate as the sides are completely

insulated.  The heat energy passing through any position is the same within the bar

[14], Figure 9.

                               T1                            heat flow                       T2

L

Figure 9 Heat flow along a uniform insulated bar [14]

The temperature gradient at any position can be defined as the change of temperature

per unit distance along the bar:

T1 –T2/L (2)

The heat flow along an insulated bar depends on (1) the temperature gradient of the

bar, (2) the area of cross section of the bar, (3) material of the bar.

As heat flow is proportional to the temperature gradient and the area of cross section,

the equation for heat flow in terms of a constant proportionality K is called thermal

conductivity of the material, is [14]

Q =K A (T1 –T2)/L  (2.1)

where Q is the heat flux (the amount of heat flowing per unit time)

The thermal conductivity K can also be defined as: The heat flux Q (the amount of

heat flowing across a unit area per unit time), induced by the temperature gradient

dT/dx.  For one-dimensional heat flow it is defined as:

Q/A = K dT /dx  (2.2)

The units of thermal conductivity are J m-1 s-1 K-1.  As J s-1 = Watt (W) so the units can

also be W m-1 K-1 [14].

2.1 THERMAL RESISTANCE

The equation for K is similar to I=V/R in electrical conduction where I is the current,

R is the resistance and V is the voltage. Heat flow requires a temperature difference

whereas electric current requires a potentional difference. To calculate heat flow we



use Q =KA (T1 –T2)/L.  Q and I  are both flow quantities produced by (T1 –T2) and V

respectively. So the quantity KA/L is the thermal equivalent of 1/R. The thermal

resistance of a conductor can be defined by [15]:

RTH = L/KA  (2.3)

where L conductor length, A = Area of cross-section, K= thermal conductivity.

2.1.1 Thermal Conductors In Series

A series circuit is one in which resistors are arranged in a chain, so the current has

only one path to take. The current is the same through each resistor. The total

resistance of the circuit is found by simply adding up the resistance values of the

individual resistors by, [15] Figure 10

Equivalent resistance of resistors in series: R = R1 + R2 + R3  (2.4)

Figure 10 Equivalent resistances of resistors in series R1 + R2 + R3, currents I and

voltage V [15].

When two or more materials are in series contact so heat energy passes through one

and then through the next. The energy flux passing through them is the same. Using

thermal resistances we can treat thermal conductors in series just as we treat electrical

conductors in series. This is the thermal resistance series law, which can be used to

determine the effective thermal conductivity in porous materials. (see appendix  2.3.1

for the derivation of thermal conductors in  series ).

2.1.2 Thermal conductors in parallel

A parallel circuit is a circuit in which the resistors are arranged with their heads

connected together, and their tails connected together. The current in a parallel circuit



breaks up, with some flowing along each parallel branch and re-combines when the

branches meet again. The voltage across each resistor in parallel is the same [15].

The total resistance of a set of resistors in parallel is found by adding up the

reciprocals of the resistance values, and then taking the reciprocal of the total, [15]

Figure 11.

Equivalent resistance of resistors in parallel: 1/R = 1/R1 + 1/R2 + 1/R3  (2.5)

Figure 11 Equivalent resistances of resistors in parallel R1 + R2 + R3, currents I1 + I2

+ I 3 and voltage V [15].

When two or more materials, are in contact so that, they are parallel to each other.

The temperature gradient is identical for all paths of heat flow. Thermal conductors in

parallel can be treated just as we treat electrical conductors in parallel (see appendix

(2.3.2) for the derivation of thermal conductors in parallel).

2.2 Thermal conductivity in Foams

The thermal conductivity of foam can be considered as having four contributions (1)

conduction through the solid (2) conduction through gas (3) convection within the

cells (4) radiation through the cell walls and across the cell voids.  Each contribution

is explained in detail below.

2.2.1 Conduction in solid phases

Conduction is the flow of heat through a body in response to a temperature gradient.

In a porous material, heat transported by this mechanism is reduced due to the

introduction of thermal resistances.  Where the cross sectional area of the solid is

reduced the heat flow will encounter resistance.  Thus the heat transported by



conduction in the solid maybe reduced by decreasing the volume fraction of the solid

present.  Further reductions can be possible if the cells have tortuous shapes [16].

2.2.2 Conduction in gas phase

Heat transfer in stagnant (non-convecting) gas is usually very slow.  However, in low-

density thermal insulation materials, where other heat transport mechanisms are

suppressed it can be a significant factor.

Many high performance insulation materials are evacuated, and others use the low

conductivity of gases to fill pores; although these methods reduce heat flow they are

only worthwhile at low temperatures where radiation does not play a significant part

[16].

2.2.3 Convection

Convection occurs because of hot fluid rising to displace cold fluid. Convection is

produced when any fluid is heated because hot fluid has a lower density than cold

fluid, due to thermal expansion. So hot fluid is pushed upwards by the surrounding

cold fluid causing convection currents. There are two types of convection currents,

which can occur, free and forced convection.

In free-convection, this motion is commonly caused by local density differences

(which could rise from temperature differences) resulting in buoyancy forces due to

gravity.  Forced convection is possible where an external agent induces the motion of

the gas [17].  This occurs in metallic foams used as heat exchanger but not in

insulating foam.  Skochdopole [18] determined the effect of free convection in

polymer foams by experimental investigations that measured heat transport through

the foam as a function of cell size, initially with foam heated on the upper surface and

then on the underside.  The measured conductivity of top and bottom heating was

found to converge for cells below 4 m m  diameter, so convection was negligible in

foams with size cells below 4 m m  [18].

2.2.4 Radiation



Heat is also transferred by of electromagnetic radiation.  Stefan’s Law describes the

heat flux passing by radiation from one surface to one at lower temperature with

vacuum in between them, [19].

Q = σsb T
4 (2.6)

Where σsb is Stefan’s constant and T is the temperature difference.

2.2.5 Combination of mechanisms

The overall conduction can be determined by combining the thermal transport

mechanisms by simple addition,

K*  = Ks + Kg + Kc + Kr  (2.7)

where Ks is the contribution of thermal conductivity from conduction through the

solid, Kg is that from the gas, Kc is the thermal conductivity due to convective

processes and Kr is the contribution from radiation [20].

The total thermal conductivity changes with density.  For closed-cell foams at

minimum relative density of 0.03 and 0.07 the conductivity is little larger than air

contained in the cells.  The way to reduce it further is by replacing air with a gas of

lower thermal conductivity such as trichlorofluoromethane CCl3F.  The heats transfer

through the cells happens with half through the gas and half through the solid and

radiation [20].

Heat transfer increases with cell size.  This is because radiation is reflected less often

in foam with large cells and partly because for cells more than 10 mm or so in

diameter then cell starts to convect [20].

Other factors like the fraction of open cells, affect heat transfer too but to a lesser

extent. Temperature is another factor, which can affect thermal conductivity.  Thermal

conductivity through solids and gases decrease, as the temperature decreases.



Radiation also becomes less effective at low temperatures.  Thus the heat transfer in

foams decreases steeply with decreasing temperature [20].

2.3 PREVIOUS MODELS OF THERMAL CONDUCTIVITY

2.3.1 Calmidi and Mahajan Model

Calmidi and Mahajan investigated the effective thermal conductivity Ke of high

porosity fibrous metal foams experimentally and derived an empirical correlation

[21].

The experiment used an open cell structure with dodecahedron like cells, which had

12- 14 pentagonal or hexagonal faces. The edges of the cells were composed of fibers.

The matrix was aluminum alloy T-6201, which had a thermal conductivity of

2 1 8 W m 1 K - 1 . The metal foam was brazed with two aluminum plates. Thermocouples

were attached at different distances. The surfaces were insulated by using Styrofoam.

The bottom was cooled using a tank with cool flowing water. The direction of heat

flow was from the top to the bottom and all the sides were insulated so the heat

flowed in one direction [21].

If Q was the net heat flux through the top,

Q = Ke Am∆T/Lm  (2.8)

where Ke is the effective thermal conductivity, Am was the area of cross section of the

foam and Lm was the height of the foam. The experiments involved using air and

water as the fluid phases. There were a few sources of error in the measurements of

the thermal conductivity mainly due to the heat loss in thermocouples and the

insulating Styrofoam [21].

Based on the experimental data, an empirical correlation was developed, [21].

Ke / Kf = Ks (1-ε) nA / Kf + ε  (2.9)

where ε is the porosity and Ks and Kf are the thermal conductivities of the solids and

fluid respectively.  The best fit was when n = 0.793 with the value of A being 0.181



for air and 0.195 for water. The maximum errors were found to be 6.9 and 7.5 percent

respectively.

In order to develop a theory, Calamidi and Mahajan assumed two-dimensional foam

consisting of an array of hexagons, Figure 12 [21]. The hexagons were intended to

represent the metal ‘shell’ of the foam and the nodes within the hexagonal network

were represented as squares. In this honeycomb shape, the thickness and length of the

ligaments joining the nodes and the length of the edge of the square node was

adjustable.  As the structure was periodic, a unit cell could be defined on which the

analysis could be focused.  Heat flow was assumed to be one direction-dimensional.

Uni t cell

Figure 12 The hexagonal structure of the metal foam matrix [21].

 To achieve effective thermal conductivity Ke they needed to:

(1) Identify the unit cell in the structure, the repetition of which generates within the

     whole foam.

(2) Divide each unit cell into convenient layers 1, 2 and 3, Figure 13.



Figure 13 Unit cell representation of the hexagonal structure [21].

(3) Needed to calculate the thermal conductivity of each layer 1, 2 and 3 in the unit

cell, using the parallel law of thermal resistance which correspond to KL1, KL2 and

KL3. (see appendix 2.3.1 for derivation for thermal conductors in parallel), giving:

KL1 = K1V1+ K2V2 (2.10)

    where K1 and K2 were thermal conductivities and V1 and V2 were the volume

fraction of materials 1 and 2 (i.e. solid and fluid) respectively.

(4) Needed to sum the conductivities in each of the layers using series law of thermal

resistance, (see appendix 2.3.2 for derivation for thermal conductors in series)

giving :

Ke = (L1+ L2)  / L1/ KL1+ L2/ KL2 (2.11)
       where L1 and L2 are the lengths of materials 1 and 2 (i.e. solid and fluid).

2.3.2 Tetrakiadechedron Model

 The Calamidi and Mahajan model of calculating the effective thermal conductivity is

simple but very powerful and has been shown to give good results. To make the

method more sophisticated Boomsma and Poulikakos determined the thermal

conductivity in a three-dimensional foam structure assuming a tetrakiadechedron

shape, Figure 14.



Figure 14 The tetrakaidecahedron modelled by cubical nodes and cylindrical

ligaments with the unit cell as a solid block [22].

This model consisted of cubical nodes and cylindrical ligaments.  The labelled cubical

nodes (1-4) in Figure 14 are represented in Figure 15.  The length of each cubical

node was r while the length L defined the cylindrical ligament of radius a, Figure 15.

L

2L
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LD=r/2

= a

1

2 3

4

Figure 15 (a)The components of the foam network of the tetrakaidecahedron

represented geometrically by cubical nodes and cylindrical ligaments(b)This shows

the unit cell of the tetratkaidecahedron  [22].

The unit cell given in Figure 15 was divided into convenient layers LA, LB, LC and

LD of lengths a, r/2 –a, 0.707L –r and r/2 respectively.  From the lengths of LA, LB,

LC and LD the total volume of each section VA, VB, VC and VD was calculated by

multiplying with the unit cells area (2L2) giving



VA = 2aL2 VC = 2(1/2L√2 – r) L2

VB = (r - 2a) L2 VD = r L2

Then the volume occupied by the solid for each layer was to calculated giving

VAS = ar2 VBS= r 3/2 - ar2

VCS= L√2/2πa2 - rπa2 VDS= r 3/4

From the volume fractions of each section, the effective thermal conductivity could be

calculated for each layer using the parallel law of thermal conductors giving [15]

KA = (K1 VAS+ K2 (VA- VAS))/VA (2.12)

where K1 and K2 are the thermal conductivities for two different materials in this case

its Aluminium (K1=  2 1 8 W m - 1 K - 1 ) used as the solid and air is used as the fluid

(K2= 0 . 0 2 6 5  W m - 1 K - 1 ) . 

The total thermal conductivity for the representative section can be calculated from

the law of thermal conductors in series, giving [15]

Keff= LA+LB+LC+LD/(LA/KA+LB/KB+LC/KC+LD/KD) (2.13)



3. MODEL DEVELOPMENTS FOR THERMAL CONDUCTIVITY

The tetrakaidecahedron model was not a very good model as it could only calculate

the thermal conductivity for high porosity media (porosities greater than 0.9), and it

had no facility for the pore size dependency. There was also a geometrical limit to the

lengths of the ligaments at r =0.35 after which the results become invalid. Apart from

this it had a complicated structure.

3.1 The Cube Models

Due to the downfalls of the tetrakiadecahedron model, it was decided to create a new

model assuming a cuboidal pore in a cube.  The method used was similar to the

tetrakaidecahedron model but with a cube was instead of the tetrakaidecahedron,

Figure 16.
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Figure 16 The cube model containing a smaller cube representing a pore size with

edge R.

Initially a large cube was used with dimensions 1x 1x1 metre as shown in Figure 16.

The large cube of unit dimensions contained a smaller cube of length R to represent

the pore.  The large cube was then defined in three layers A, B and C of heights as LA,

LB and LC respectively. It is easy to show that LA, LB and LC are 1-R/2, R and 1-R/2

respectively. The volume of each section was VA, VB and VC  was given by 1-R/2, R

and 1-R/2 respectively. The corresponding volume fractions, VAS, VBS, and VCS were

therefore 1-R/2, R – R3 and 1-R/2 respectively.

Similar to previous models, the thermal conductivity (KA, KB , KC ) of each layer  (A,

B and C) respectively could be calculated using the law of parallel thermal conductors



KA = (K1 VAS+ K2 (VA- VAS))/VA (3.1)

where K1 and K2 are the thermal conductivities for two different materials in this case

was Aluminuim (K1=  2 1 8 W m - 1 K - 1 ) used as the solid and air is used as the fluid

(K2= 0 . 0 2 6 5  W m - 1 K - 1 ) [ 2 1 ] . 

The effective thermal conductivity was obtained from the law of series thermal

conductors [21]

Keff= LA+LB+LC/(LA/KA+LB/KB+LC/KC) (3.2)

In order to determine whether the pore size has an effect on thermal conductivity, the

single cuboidal pore was replaced with two smaller cubes with the same total volume

as the single cube. Each of the smaller cubes had an edge length 0.7937R where R is

the edge length of the single cube pore, (0.7937 is derived by dividing the volume of

the larger cube R by 2 as there were two  equivalent volumes of smaller cubes  and

then calculating the edge length).
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LC0.793 7R0.793 7R

Figure 17 The cube model containing two smaller cubes representing pore sizes with

edge 0.7937R

2.3.2 The Sphere Model

An alternative approach was using a sphere in a cube model. This was to determine if

the shape of pore has any effect on thermal conductivity, and also wanted to

determine what effect gas pressure would have on thermal conductivity. The



calculations were similar to those described above using the volume of a sphere (4/3

πR3), Figure 14. The cube was then defined in three sections A, B and C. The height

of each section was calculated, as section LA=1-2R/2, LB=2R and LC=1-2R/2. The

volume of each section was therefore VA= 1-2R/2, VB =2R and VC=1-2R/2 and the

corresponding volume fractions of solid are 1-2R/2, 2R–4/3 πR3 and 1-2R/2

respectively.

Similar to previous models, the thermal conductivity of each layer (KA, KB, KC) was

calculated using the law of thermal conductors in parallel giving (see appendix 2.3.1

for derivation)

KA = (K1 VAS+ K2 (VA- VAS))/VA (3.1)

where K1 and K2 are the thermal conductivities for two different materials in this case

its Aluminuim (K1=  2 1 8 W m - 1 K - 1 ) used as the solid and air is used as the fluid

(K2= 0 . 0 2 6 5  W m - 1 K - 1 ) . 

The effective thermal conductivity (Keff) was obtained from the law of thermal

conductor in series (see appendix 2.3.1 for derivation)

Keff= LA+LB+LC/(LA/KA+LB/KB+LC/KC)  (3.2)
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Figure 18 The sphere model of a unit cube sphere of diameter 2R inside.



4. RESULTS AND DISCUSSION.

FORTRAN programs were written for the thermal conductivity of the

tetrakaidecahedron, cube models and sphere models (see appendix for details of the

FORTRAN programs tetramodel.f, cube1.f, cube2.f, sphere1.f and sphere2.f).

The tetrakaidecahedron model was not a very good model as it could only calculate

the thermal conductivity for high porosity media (porosities greater than 0.9), and it

had no facility for the pore size dependency. Apart from this it also has a complicated

structure. There was a geometrical limit to the length of the ligaments at r>0.35 after

which the results became invalid.

Due to the downfalls of the tetrakiadecahedron model, a simple 3-dimensional cube

model was developed and the thermal conductivity was calculated.  The theory behind

the model was similar to the tetrakaidecahedron model but with a cube as the unit cell.

By varying the edge length R of the cuboidal pore, the thermal conductivity could be

measured for all values of porosity. The values of thermal conductivity thus obtained

were plotted as a function of porosity. Similarly for the cube with two smaller cubes

(cube 2) the values of thermal conductivity obtained were plotted as a function of

porosity, Figure 19.

Figure 19 Thermal conductivity of the cube 1 and cube 2 where cube 1 is the

cube model with one small cube and cube 2 is the cube with two smaller cubes

as a function of porosity

The two plots didn’t show any important differences indicating that the effect of pore

size at low porositieshas no significant effect on thermal conductivity but for cube 2



there was a limit when R = 0.8 (porosity = 0.61) at which both the pores start to

overlap and a invalid value is obtained, Figure 19.

However, when the tetrakiadecahedron model and cube models were compared, it

was found that the tetrakiadecaherdron model offers no advantage over the simple

cube model, Figure 20.  Therefore, the cube models could be used instead of the

tetrakiadecahedron model and the thermal conductivity could be calculated for all

porosities.

Figure 20 Comparison of the thermal conductivity of the tetrakiadecahedron and cube model

as a function of porosity

From the sphere model it was intended to determine how shape could affect thermal

conductivity. The sphere model showed, it also had a limit for which the thermal

conductivity could be calculated and that was when R = 0.5, otherwise the values

become invalid because then the sphere then exceeds the bounds of the cube.

The effect of pore size dependency was also considered using two small spheres of

radius R (sphere 2) and the thermal conductivity was measured. It showed that when

R > 0.43 the spheres start to overlap.



Figure 21 Thermal conductivity of the sphere 1 and sphere 2 where sphere 1

is the sphere model with one small sphere and sphere 2 is the sphere with two

smaller spheres as a function of porosity

The cube and sphere models were also compared and showed that the effect of shape

does not have much effect on the thermal conductivity. The limits for the sphere cube

are much less as compared to the cube model. So cube model is the best option to

measure thermal conductivity.

Figure 22 Comparison of the thermal conductivity of the sphere 1 and cube 1 model

as a function of porosity



Now from the sphere model we could also determine what effect gas would have

when put in the spheres.

Initially, this can be determined by focusing on the influence of the effect of pressure

with pore size. The pressure of the sphere depends on the pressure (P) inside the

sphere and the pressure outside the sphere, which is the surface energy (γ) and can be

given by

πR2P = 2πRγ (4.1)

P = 2γ/R (4.2)

where R is the radius of the sphere. The above equation shows that pressure is

inversely proportional to the pore size. Thus, the smaller the sphere the higher the

pressure.

From [23] it showed that thermal conductivity was independent of pressure. The

thermal conductivity of a perfect gas is given

K = 1/3 λcCV,m[A] (4.3)

where CV, m is the molar heat capacity at constant volume, the molar concentration

[A]  and λ is the mean free path.

 Because each molecule carries an average energy because λ is inversely proportional

to the pressure and hence inversely proportional to the molar concentration of the gas,

it shows that thermal conductivity is independent of pressure. The physical reason for

this independence is that thermal conductivity can be expected to be large when many

molecules are allowed to transport the energy but the presence of so many molecules

limits their mean free path. So the energy cannot carry the energy over a great

distance, and thus the effects balance [23].  Therefore, this effect confirms that sphere

pore size has no effect on thermal conductivity.




