Appendix A

Estimation of Mechanical Properties
of C—Mn Weld Metals, Avoiding
Systematic Errors

In Chapters 4 and 5 essential mechanical properties of ferritic steel welds were modelled using
neural network technique within a Bayesian framework. The data were collected from the
published literature. As such the data originated from many different laboratories and possibly
contained a variety of sources of experimental errors. By contrast, the data exploited here
were on carbon-manganese and low—alloy steel welds from a single source (Evans [54]). It
should therefore be possible to avoid unspecified systematic errors of the kind associated with a

particular laboratory.

A.1 The Electrode Production

To study the effect of an element on the mechanical properties of weld metal requires high purity
electrodes with accurate compositional control. It is very difficult to reproducibly maintain the
transfer of alloying elements with conventional electrodes. The data used in the present work
came from electrodes are specially manufactured with great care to detail. Rimmed steel with an
average chemical composition shown in Table A.1 was selected as the core wire of an electrode.
The flux contains 25% iron powder is selected and systematically mixed with other minerals to
add microalloying elements which are to be studied and to keep some alloying elements such as
Al, B, Nb, V and Ti below 0.0005 wt% in the final weld metal [2]. The multirun weld metal

was made with three passes per layer, keeping dilution with the base metal to a minimum.

A.2 The Database

Around 720 individual experimental data of carbon—manganese multipass steel welds were

compiled. The process used was shielded (manual) metal arc welding. The heat input was
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Element

Carbon (wt%) 0.07
Manganese (wt%) 0.50
Silicon (wt%) 0.008
Sulphur (wt%) 0.006
Phosphorus (wt%) | 0.008
Titanium (p.p.m.) 4
Boron (p.p.m.) 2
Aluminum (p.p.m.) 15
Nitrogen (p.p.m.) 25
Oxygen (p.p.m.) 200
Chromium (wt%) 0.02
Nickel (wt%) 0.03

Molybdenum (wt%) | 0.003
Vanadium (p.p.m.) 5
Copper (wt%) 0.02
Niobium (p.p.m.) 5

Table A.1: The average chemical composition of the core wire used to manufacture the electrode
used in the present study. ‘p.p.m.” corresponds to parts per million.

1.0 kJ mm~! and the interpass temperature was 200°C. With the exception of the Charpy
impact toughness test samples, all of the other weld samples were given hydrogen removal heat
treatments (200°C for 14 h). All these experiments were done under identical conditions and
data were measured by Evans [54]. The chosen input variables are tabulated in Table A.2; other
variables such as heat input did not vary and hence were not included in the analysis. The
input set was identical for all six models yield strength (YS), ultimate tensile strength (UTS),
elongation, reduction in area and the Charpy impact toughness transition temperature at 100 J
(T1003) and 28 J (Togy). Table A.2 shows the range, mean and standard deviation of all variables
involved in model development.

The data distribution of each individual element with respect to yield strength are graphically
represented in Figs A.1 and A.2. The output parameters UTS, elongation, reduction in area,
T1p03 and Togy were plotted against YS in Fig. A.2. As discussed in Section 5.1.1, it was found
that the difference in UTS and YS is constant. The higher strength welds will have a lower
ductility. This can be found in elongation and reduction in area plots (Fig. A.2); it can be seen

that the increase in yield strength leads to reduction in ductility.
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Input element Minimum | Maximum | Mean | Standard deviation
Carbon (wt%) 0.035 0.152 0.071 0.012
Manganese (wt%) 0.23 2.10 1.27 0.40
Silicon (wt%) 0.01 1.11 0.348 0.112
Sulphur (wt%) 0.003 0.046 0.0065 0.003
Phosphorus (wt%) 0.003 0.040 0.008 0.0027
Titanium (p.p.m.) 2.0 1000 105.7 142.62
Boron (p.p.m.) 1.0 200.0 16.5 39.4
Aluminum (p.p.m.) 1.0 680.0 38.7 108.0
Nitrogen (p.p.m.) 35.0 270.0 92.9 474
Oxygen (p.p.m.) 217.0 1180.0 398.1 90.1
Chromium (wt%) 0.03 3.5 0.166 0.50
Nickel (wt%) 0.03 5.48 0.34 1.05
Molybdenum (wt%) 0.005 1.16 0.068 0.228
Vanadium (p.p.m.) 3.0 2873.0 60.93 270.3
Copper (wt%) 0.02 2.04 0.076 0.251
Niobium (p.p.m.) 3.0 980.0 23.8 98.2
Yield strength (MPa) 350 1026 517.0 89.8
Ultimate tensile strength (MPa) 404 1123 588.9 90.0
Elongation (%) 10.5 35.8 25.6 3.9
Reduction in area (%) 21 87.8 75.3 5.3
Temperature (T1005) at 100 J (°C) -89 45 -42.0 23.3
Temperature (T2s5) at 28 J (°C) -114 53 -67.3 20.9

Table A.2: The weld metal chemical composition used as input parameters and output variables
to develop models. ‘p.p.m.’ corresponds to parts per million.

A.3 The Models

Six individual committee models for YS, UTS, elongation, reduction in area, Tigg; and Tagjy
were developed. The committee model development procedure is similar for all these mechanical
properties (Chapter 3). As the number of hidden units increases, the perceived level of noise
o, reduces, Fig A.3. Tt is interesting to note that the noise level is much lower than that of
the levels found in the previously developed models (Chapter 4 and 5). This is because of the
database comes from a single source. The other characteristics (log predictive error and test
error) are shown in Fig. A.3. The details of the development of the neural network models are

excluded for clarity, the procedure used is explained in Chapter 3.

A.4 The Analysis

The relevant input variables used to study the trends are shown in Table A.3. When the carbon

concentration in weld metal is increased from 0.01 wt% to 0.07 wt%, there is an improvement
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Input variable

Carbon (wt%) 0.07
Manganese (wt%) 1.50
Silicon (wt%) 0.50
Sulphur (wt%) 0.006

Phosphorus (wt%) | 0.008
Titanium (p.p.m.) 2.0
Boron (p.p.m.) 1.0
Aluminum (p.p.m.) | 1.0
Nitrogen (p.p.m.) 80.0
Oxygen (p.p.m.) 300.0
Chromium (wt%) 0.03
Nickel (wt%) 0.03
Molybdenum (wt%) | 0.005
Vanadium (p.p.m.) 3.0
Copper (wt%) 0.02
Niobium (p.p.m.) 3.0

Table A.3: Relevant inputs used to analyse mechanical properties of carbon—manganese weld
metal. ‘p.p.m.” corresponds to parts per million.

in mechanical properties, this is due to an initial improvement in microstructure [144]. In
this range carbon promotes desirable acicular ferrite microstructure content at the expense of
allotriomorphic ferrite and Widmanstatten ferrite. At higher carbon levels there is a decrease
in toughness due to an increase in strength without improvement in microstructure. The effect
of increasing carbon content is shown in Fig. A.13, as expected, carbon increases the strength
and decreases the ductility of the weld metal. The amount of increase depends on other acicular
ferrite promoting alloying elements such as manganese, molybdenum, nickel and chromium.
Fig. A.14 shows that manganese improves toughness in the initial stages by decreasing the
transition temperature, as well as increasing strength. The combined effects of carbon and
manganese are shown in Fig. A.15. It is interesting to note that there is a gradual decrease
in toughness and then an increase with increasing in carbon and manganese content. This is
because, that at higher carbon and manganese levels, the acicular ferrite fraction increases, this
is shown in Table A.4. These calculations were done using a published semi—empirical model [90],
which enables us to calculate microstructural fractions in multirun welds. Here it can be noticed
that the acicular ferrite and bainite microstructural fractions increased from 0.31 to 0.72 as the
carbon content changed from 0.04 wt% to 0.14 wt% in 2.0 wt% manganese weld metal, even

though there was an increase in strength. On the other hand, in 0.5 wt% manganese the amount

167



of acicular ferrite and bainitic microstructure is less than in 2.0 wt% manganese.

Carbon | Manganese | Allotriomorphic | Widmanstatten | Acicular ferrite | Yield strength
(wt%) (wt%) ferrite ferrite and Bainite (MPa)
0.04 0.5 0.73 0.19 0.08 397
0.14 0.5 0.30 0.11 0.52 440
0.04 2.0 0.41 0.27 0.31 523
0.14 2.0 0.14 0.03 0.72 587

Table A.4: The microstructural fractions in carbon-manganese weld metal calculated using
physical model [90].

It is well known fact that nickel improves low temperature toughness by increasing the stack-
ing fault energy and making flow of dislocations easier, thereby discouraging cleavage fracture.
In Section 5.2 it was found that nickel improves low-temperature toughness at lower manganese
concentrations only. This was predicted by this model, Fig. A.16 shows that at lower manganese
levels both the strength and toughness are increasing. When comparing the effect of nickel in
0.5 wt% and 1.5 wt% manganese welds (Fig. A.17) at the same strength, an increase in nickel
concentration causes deterioration in toughness at higher manganese contents, whereas at lower
manganese content it improves toughness.

A comparative analysis was done between the predictions made by a previously Charpy
impact toughness model (Section 5.2) and the present carbon-manganese models. Figs A.18
and A.19 show that at lower manganese contents nickel is effective in improving the low-
temperature toughness. Here the error bars cannot be compared as their units are different.
This has shown that even though the Charpy impact toughness model was developed on a wide
variety of weld metals, it is able to fit a non-linear function for a particular system of weld
metals without affecting predictions over other classes of weld metals.

In weld metal, titanium forms oxides and protects boron (if added) from atmospheric oxy-
gen [145, 95]. These oxides act as nucleation sites for the formation of acicular ferrite. Titanium
being a strong carbide former, increases the strength by precipitation hardening. Fig. A.20
shows the expected trends, toughness was improved with initial small additions of titanium.

Oxygen forms oxide inclusions in weld metal, at low levels of oxygen in weld metal these
inclusions are beneficial in promoting acicular ferrite in the presence of oxide forming elements
such as titanium. At higher levels of oxygen, the increased density of oxides assists fast propaga-
tion of cracks, thereby reducing the overall ductility. Acicular ferrite microstructure offers more
resistance to crack propagation, therefore the crack has to travel a greater distance before it
reaches the critical length which leads to fracture. The effect of titanium in presence of varying

amounts of oxygen is shown in Fig. A.21. Initial small additions of titanium promote acicular

168



ferrite, thus increasing toughness.
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Figure A.1: The data distribution plotted against yield strength. ‘p.p.m.” corresponds to parts
per million by weight.
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Figure A.5: Characteristics of the ultimate tensile strength, elongation and reduction in area

models.
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Figure A.8: The perceived significance o,, values of ultimate tensile strength committee models
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Figure A.20: Calculated mechanical properties of welds with respect to change in titanium
content in weld metal. The contour plot curves represents impact toughness in J.
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Appendix B

Design of Novel Weld Metals

A variety of commercial and experimental weld metals have been designed using the models
developed in the present work. This appendix shows two examples of alloys developed using the

models described in the thesis.

B.1 New Weld Design in Nippon Steel

The Nippon Steel Welding Company was able to develop novel high strength welding alloys
in response to customer demands, by calculating the effect of molybdenum on the strength of
welds and without doing any prior experiments. Kazutoshi Ichikawa (Nippon Steel, Japan) had
the task to develop weld metal for the manual metal arc welding (MMAW) and submerged arc
welding (SAW) processes for thick plates (upto 80 mm).

He demonstrated first that the models could predict the ultimate tensile strength of existing
alloys already marketed by his company to great accuracy, Fig. B.1. He needed to raise the
UTS to around 750 MPa so he chose to increase the molybdenum to 0.6 wt%. When the
actual weld was made, (Table B.1) and the results matched predictions. Thus Nippon Steel
Welding Products and Engineering Co. Ltd. was then able to commercialise and patent the

new electrode.

B.2 Further Applications

Scientists at ESAB AB (Sweden) have been searching for strong and tough weld metals for
submarine applications. Marimuthu [146] had designed welds for this purpose using the models
described in this thesis. The expected and actual results are tabulated in Table B.2. It is
heartening to find that the models are able to extrapolate to 9 wt% nickel even though the
maximum nickel concentration in the database used to create the models is 4.8 wt% (Table 4.1).

As a result of this work, an interaction has been discovered between manganese and nickel

which leads to a remarkable improvement in toughness. This has been demonstrated experi-
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Input variable MMAW
C (wt%) 0.078
Si (wt%) 0.38
Mn (wt%) 1.37
S (wt%) 0.003
P (wt%) 0.011
Ni (wt%) 0.64
Cr (wt%) 0.03
Mo (wt%) 0.57
V (wt%) 0.004
Cu (wt%) 0.012
Co (wt%) 0.0
W (wt%) 0.0
O (p.p.m.) 247
Ti (wt%) 150
B (p.p-m.) <3
Nb (p.p.m.) 30
Heat input(kJ mm ') 1.85
Interpass temperature (°C) 100
Tempering temperature (°C) 20
Tempering time (h) 0.0
Predicted UTS(MPa) 760
Measured UTS (MPa) 771

Table B.1: Comparison between the designed and experimental results of new weld metal de-
signed for Nippon Steels, Japan.

mentally but the details cannot be described here for commercial reasons.

B.3 Software

All the models and programs developed can be accessed on the world wide web;

YS and UTS models:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetalyu-b.html

Elongation and Charpy impact toughness models:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetalec. html

27 J Charpy toughness transition temperature model:
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Figure B.1: Effect of molybdenum on ultimate tensile strength.

http://www.msm.cam.ac.uk/map /neural /programs/weldmetal T27J. html

Temper embrittlement model:

http://www.msm.cam.ac.uk/map/neural /programs/weldmetal Emb. html

Analysis of electron diffraction patterns program:

http://www.msm.cam.ac.uk/map/crystal /programs/crystal2.html
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Input variable Proposed | Actual
C (wt%) 0.030 | 0.030
Si (wt%) 0.29 0.35
Mn (wt%) 2.09 2.18
S (wt%) 0.012 | 0.007
P (wt%) 0.005 | 0.010
Ni (wt%) 7 7.2
Cr (wt%) 0.43 0.34
Mo (wt%) 0.59 0.63
V (wt%) 0.019 0.13
Cu (wt%) 0.03 0.03
Co (wt%) 0.0 0.009
W (wt%) 0.0 0.004
O (p.p-m.) 267 370
Ti (wt%) 0.014 | 0.013
B (p.p.m.) 0.0005 | 0.0006
Nb (p.p.m.) 0.0 10
Heat input(kJ mm ') 1.0 1.14
Interpass temperature (°C) 200 200
Tempering temperature (°C) 250 250
Tempering time (h) 14 14
YS (MPa) 814 £ 179 | 789

Table B.2: Comparison between the proposed and actual properties of C—Mn—Ni weld metal.
‘p.p.m.” corresponds to parts per million by weight.
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