Information Theory, Pattern Recognition and Neural Networks (April 2001)

PART III PHYSICS EXAM 2001

1: Write an essay on one of the following topics.

- (a) Content-addressable memory. [20]
- (b) A critical review of the Metropolis method and Gibbs sampling, emphasising the strengths and weaknesses of these Monte Carlo methods. [20]

2: Answer all four parts.

(a) A binary erasure channel with input x and output y has transition probability matrix:

$$Q = \begin{bmatrix} 1 - q & 0 \\ q & q \\ 0 & 1 - q \end{bmatrix}$$

Find the mutual information I(X;Y) between the input and output for general input distribution $\{p_0, p_1\}$, and show that the capacity of this channel is C = 1 - q bits. [5]

(b) A 'Z channel' has transition probability matrix:

$$Q = \begin{bmatrix} 1 & q \\ 0 & 1 - q \end{bmatrix}$$

Show that, using a (2,1) code, **two** uses of a Z channel can be made to emulate **one** use of an erasure channel, and state the erasure probability of that erasure channel. Hence show that the capacity of the Z channel, C_Z , satisfies $C_Z \geq \frac{1}{2}(1-q)$ bits. [4]

- (c) A (7,4) Hamming code is used to communicate over a binary symmetric channel with noise level f = 0.01. Estimate (to one decimal place) the block error probability of the code. [4]
- (d) A (3,1) code consists of the two codewords $\mathbf{x}^{(1)} = (1,0,0)$ and $\mathbf{x}^{(2)} = (0,0,1)$. A source bit $s \in \{1,2\}$ having probability distribution $\{p_1, p_2\}$ is used to select one of the two codewords for transmission over a binary symmetric channel with noise level f. The received vector is \mathbf{r} . Show that the posterior probability of s given \mathbf{r} can be written in the form

$$P(s=1|\mathbf{r}) = \frac{1}{1 + \exp\left(-w_0 - \sum_{n=1}^{3} w_n r_n\right)},$$

and give expressions for the coefficients $\{w_n\}_{n=1}^3$ and the bias, w_0 . [5]

[2]

Describe, with a diagram, how this optimal decoder can be expressed in terms of a 'neuron'.

3: Answer both parts.

(a) A binary source X emits independent identically distributed symbols with probability distribution $\{f_0, f_1\}$, where $f_1 = 0.01$. Find an optimal uniquely-decodeable symbol code for a string $\mathbf{x} = x_1 x_2 x_3$ of **three** successive samples from this source.

[4]

Estimate (to one decimal place) the factor by which the expected length of this optimal code is greater than the entropy of the three-bit string \mathbf{x} .

[2]

$$[H_2(0.01) \simeq 0.08$$
, where $H_2(x) = x \log_2(1/x) + (1-x) \log_2(1/(1-x))$.

An arithmetic code is used to compress a string of 1000 samples from the source X. Estimate the mean and standard deviation of the length of the compressed file.

[6]

[8]

(b) In an experiment, the measured quantities $\{x_n\}$ come independently from a bi-exponential distribution with mean μ ,

$$P(x|\mu) = \frac{1}{Z} \exp\left(-|x - \mu|\right),\,$$

where Z is the normalizing constant, Z=2. The mean μ is not known. An example of this distribution, with $\mu=1$, is shown below.

Assuming the four datapoints are

what do these data tell us about μ ? Include detailed sketches in your answer. Give a range of plausible values of μ .