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Abstract

As neural networks are extremely useful in recognizing patterns in complex data, Bayesian

neural network analysis has been followed in the present work to reveal the influence of

compositional variations on ferrite content for the austenitic stainless steel base compositions

from the available database and to study the significance of individual elements on ferrite

content in austenitic stainless steel welds based on the optimized neural network model.

Bayesian neural network’s predictions are accompanied by error bars  and the significance of

each input variable is automatically quantified in this type of analysis. Neural network model

based on Bayesian framework for ferrite prediction in austenitic stainless steel welds has

been developed using the database which was used for generating the WRC - 92 diagram.

The Bayesian framework uses a committee of models for generalization rather than a single

model. The  best model was chosen based on minimum in the test error and maximum in the

logarithmic predictive error.  The optimized model can be used for predicting the ferrite

number in austenitic stainless steel welds with a better accuracy than the constitution

diagrams. Using this model,  the influence of variations in the individual elements such as

carbon, manganese, silicon, chromium, nickel, molybdenum, nitrogen, niobium, titanium,

copper, vanadium, and cobalt on the ferrite number in austenitic stainless steel welds has

been determined. It was found that the change in ferrite number is a non-linear function of the
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variation in the concentration of the elements. Elements such as silicon, chromium, nickel,

molybdenum, nitrogen, titanium, and vanadium were found to influence the ferrite number

more significantly than the rest of the elements in austenitic stainless steel welds. Manganese

was found to have less influence on the ferrite number. Titanium was found to influence the

ferrite number more significantly than niobium. This observation is new as WRC - 92

diagram only considered the niobium content in calculating the chromium equivalent.

1. 0 Introduction

The ferrite content in stainless steel welds play an important role in determining the

fabrication and service performance of welded structures. The ability to estimate the ferrite

content accurately has proven very useful in predicting the various properties of stainless

steel welds. A minimum ferrite content is necessary to ensure hot cracking resistance in these

welds1-5, while an upper limit on the delta-ferrite content determines the propensity to

embrittlement due to secondary phases6 (e.g., sigma phase) formed during elevated

temperature service. At cryogenic temperatures, the toughness of the stainless steel weld is

strongly influenced by the ferrite content7 . In duplex austenitic-ferritic stainless steel weld

metals, a lower ferrite limit is specified for stress corrosion cracking resistance while the

upper limit is specified to ensure adequate ductility and toughness4 . Hence, depending on the

service requirement a lower limit and/or an upper limit on ferrite content is generally

specified. During the selection of filler metals the ferrite content is normally estimated from

the constitution diagrams such as the Schaeffler8, DeLong9 and WRC–92 diagrams10. These

constitution diagrams are based on different Creq and Nieq formulae as given in the Table 1.

The coefficients for C and Nb have been increased from 30 and 0.5 in the Schaeffler and

DeLong diagrams to 35 and 0.7, respectively, in the WRC–92 diagram, whereas for N it has

been lowered to 20 from 30 in the DeLong diagram. The WRC – 92 diagram estimates the
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ferrite content to reasonably good accuracy and also provides additional information about

the mode of solidification. In these diagrams, the ferrite contents of various welds had been

measured experimentally by either metallography (Schaeffler) or magnetic methods (DeLong

and WRC–92 ) and are presented as iso-ferrite content maps.

Constitution Diagram Creq and Nieq

Schaeffler Diagram (1949)
Creq = Cr + Mo + 1.5 Si + 0.5 Nb

Nieq = Ni + 30C + 0.5 Mn

DeLong Diagram (1973)
Creq = Cr + Mo + 1.5 Si + 0.5 Nb

Nieq = Ni + 30C + 30 N + 0.5 Mn

WRC–92 Diagram (1992)
Creq = Cr + Mo + 0.7 Nb

Nieq = Ni + 35C + 20N + 0.25 Cu

Table1: Creq and Nieq formulae used for estimating the delta-ferrite content from
constitution diagrams

The ferrite content in stainless steel weldments is controlled by several factors and is the

result of the series of microstructural changes that take place during the welding process11.

Thus, the relationship between the alloy composition and the ferrite content can be quite

complex. Linear expression such as given in the above equations can not be expected to take

into account all the crucial factors. The relative influence of each alloying addition given by

that elements coefficients in the Creq or Ni eq expression is likely to change when there is a

change in the base composition.  In addition, constitution diagrams that rely on simple linear

expressions for the Creq and Nieq  ignore the interactions between the elements.  Hence, the

ferrite content estimated using the constitution diagrams will always be less accurate and will

never be closer to the measured values.
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Kotechi 3 has pointed out that there are number of alloying elements that have not been

considered in the most accurate diagram to date, the WRC – 92 diagram. Elements like

silicon, titanium, tungsten are not given due considerations though they are known to

influence the ferrite content. He also stressed the point that cooling rate effects need to be

considered more thoroughly in these constitution diagrams.

Recent research activities have been focused on studying the effect of various alloying

elements on the ferrite content  and controlling ferrite content by modifying the weld metal

compositions. In another approach for estimating ferrite content (Function Fit model), the

difference in free energy between the ferrite and the austenite was calculated as a function of

composition and this was related to ferrite number. The advantages of this semi-empirical

model12 over the WRC 1992 diagram was that the model considers the effect of other alloying

elements and the ease of extrapolation of the model to higher Creq and Nieq values. The major

limitation of the constitution diagrams in not acounting for the elemental interactions was

overcome by the use of neural networks in predicting ferrite content in stainless steel welds

by Vitek et al13-14. The improvement of accuracy in predicting the ferrite content by the use of

neural networks (feed-forward network  with a back-propagation optimization scheme) has

been clearly brought by their study. The effect of various element additions on the ferrite

content for few base compositions was examined by simply calculating the ferrite number as

a function of composition. However, it was not possible in their analysis for direct

interpretation of the elemental contributions to the final ferrite number.

Other methods and constitution diagrams are continuously being put forward to predict

the ferrite content for a wider range of stainless steel  types. Thus, Prediction and

measurement of ferrite in stainless steel welds remains of scientific interest due to

inaccuracies involved in all the current methods.  In this context, the development of a more
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accurate predictive tools for estimating the effect of various alloying elements on the ferrite

content for different stainless steel welds assumes importance.

The neural network analysis can capture interactions between the inputs because the hidden

units are nonlinear. The training process involves a search for the optimum non-linear

relationship between the inputs and the outputs, and is computer intensive. The outcome of

the training is a set of coefficients (called weights) and a specification of the functions which

in combination with the weights relate the input to the output. Once the network is trained,

estimation of the outputs for any given inputs is very rapid15.

A potential risk associated with neural network analysis is overfitting of the training data. To

avoid overfitting, Mackay16 has developed a Bayesian framework to control the complexity of

the neural network. Main advantages of this method are that it provides meaningful error bars

for the model predictions and also it is possible to identify automatically the input variables

which are important in the non-linear regression. This methodology has proved to be

extremely useful in materials science where properties need to be estimated as a function of  a

vast array of inputs.  In the present study, Bayesian neural network analysis has been applied

to develop a generalized model for predicting ferrite number using data that were used to

generate the WRC – 1992 diagram. Using the generalized model, the effect of individual

elements on the ferrite number for two different base compositions has also been quantified.

The accuracy of the model has also been compared with the other ferrite number (FN)

prediction methods.

2. 0 Database

The data that was used for generating the WRC –1992 diagram have been used in the present

analysis. This database consists of stainless steel SMA (submerged metal arc) weld

compositions and ferrite contents. The data well represented the common 300 -series stainless

steel weld compositions such as 308, 308 L, 309, 309 L, 316, 316 L types. This database was
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collected from the literature4. The aim of the analysis was to model the ferrite number as a

function of chemical composition. The database consists of 924 data lines. For the cases

where the composition values were not available for elements such as Nb, Ti, V, Cu and Co

the values were assumed zero. Table 2 gives the range, mean and standard deviation of the

each composition variable and the output. This simply gives the idea of the range covered and

can not be used to define the range of applicability of the neural network model as the input

variables are expected to interact in neural network analysis. In Bayesian neural network

analysis, size of the error bars define the range of useful applicability of the trained network.

Scatter in the data for each input variable is shown in fig. 1.

Table 2 Range, Mean, standard deviation of the each input variable and the output.

Elements Minimum Maximum Mean Std. Deviation

C

Mn

Si

Cr

Ni

Mo

N

Nb

Ti

Cu

V

Co

Fe

FN

0

0.35

0.03

1.05

4.61

0.01

0.01

0

0

0

0

0

45.59

0

0.2

12.67

6.46

32

33.5

10.7

2.13

0.88

0.33

6.18

0.23

0.69

72.51

98

0.04

1.88

0.53

20.51

11.31

1.42

0.09

0.03

0.02

0.14

0.04

0.03

63.94

12.04

0.0219

1.79

0.35

2.76

2.56

1.64

0.14

0.098

0.028

0.437

0.04

0.046

4.33

17.31

3. 0 Bayesian Neural Network Analysis

The Bayesian neural network analysis has been extensively used for modeling and prediction

of mechanical properties in welds17-20 and alloys21.  The complete description of the method is
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described elsewhere16. The aim of the analysis is to model the ferrite number in stainless steel

welds as a function of composition. The networks employed consists of thirteen input nodes,

xi, representing the thirteen composition variables, a number of hidden nodes, hI, and one

output y. The schematic structure of the network is shown in fig. 2. The single output

represents the ferrite number. Both the input and output variables were normalized within the

range ± 0.5 as follows

50.
xx

xx
x

minmax

min
N −

−
−=

where xN  is the normalized value of x, which has maximum and minimum values given by

xmax and xmin. Eighty neural network models were created using the data. All the models were

trained on a training dataset which consisted of a random selection of half of the data (462)

from the whole dataset. The remaining (462) formed the test dataset which was used to see

how the model generalizes on unseen data. The models differed in terms of the number of the

hidden units and random seeds used to initiate the network. For a given number of hidden

units, five different sets of random seeds were used. The number of hidden units varied from

1 to 16 for the 80 different models.

The outputs are calculated from the inputs as follows: linear functions of the inputs, xj

multiplied by the weights wij   are operated on by a hyperbolic tangent transfer function
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so that each input contributes to every hidden unit where N is the number of input variables.

The bias is designated θ and is analogous to the constant that appears in linear regression.

The transfer from the hidden units to the output is linear, and is given by
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the output y is therefore a non-linear function of xj, the function usually selected being the

hyperbolic tangent because of its flexibility.

The network is completely described if the number of input nodes, output nodes and the

hidden units are known along with all the weights wij  and biases θi. These weights are

determined by training the network which involves the minimization of an objective function.

Bayesian neural network analysis developed by Mackay16  allows the calculation of error bars

representing the uncertainty in the fitting parameters. It is possible to make predictions which

have two components in the error bars – one representing the perceived level of noise in the

output and the second indicating the uncertainty in fitting the data. This second component

which comes from a Bayesian frame work allows the relative probabilities of models of

different complexity to be assessed.  Further it allows us to obtain quantitative error bars

which vary with the position in the input space depending on the uncertainty of fitting the

function in that region of space. Instead of calculating a unique set of weights, a probability

distribution of weights is used to define the fitting uncertainty.  The error bars therefore

become large when data are sparse or locally noisy. In this context, a very useful measure is

the log predictive error (LPE), because the penalty for making a wild prediction is reduced if

that wild prediction is accompanied by appropriately large error bars

( ) ( ) ]2log/yt[
2
1

LPE
2/1n

y

2)n(
y

2)n()n(

n
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Note that larger value of the log predictive error implies a better model. In this method

it is also possible to identify automatically the input variables which are in fact significant in
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influencing the output variable. The input variables which are less significant are down-

weighted in the regression analysis.

3. 1 Characteristics of Bayesian Neural Network Model on Ferrite Number

Characteristics of the model could be seen from the plots shown in fig. 3.  The perceived

level of noise decreases with the increasing complexity i.e the increase in the hidden units

(fig. 3a). The test error goes through a minimum at five units (fig. 3b) and the log predictive

error reaches the maximum at fifteen hidden units (fig. 3c). The error bars throughout the

present work represent the fitting uncertainty estimated from the Bayesian framework.  It is

evident from the plot that there are few outliers in the predicted versus measured ferrite

number for the test dataset (fig. 3f). Each of these outliers was found to represent unique data

not represented in the training dataset. It is possible that a committee of models can make a

more reliable prediction than an individual model. The best models are ranked using the

values of the log predictive errors. Committees are then formed by combining the predictions

of the best L models, where L = 1,2,3…; the size of the  committee is therefore given by the

value of L. A plot of the test error of the committee versus its size gives a minimum which

defines the optimum size of the committee as shown in the (fig. 3d). As seen in the figure the

test error associated with the best single model is clearly greater than that of any of the

committees.  The committee with 38 models was found to have an optimum membership

with the smallest error. The committee was therefore retrained on the entire dataset and used

for predictions. The final comparison between the predicted and measured ferrite number

values for the committee of 38 is shown in fig. 4.  Details of the 38 members of the optimum

committee are given in table. 3.
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Model Hidden units σν
1 15 0.01942
2 14 0.01594
3 7 0.02572
4 12 0.01406
5 7 0.0249
6 5 0.02847
7 11 0.02038
8 7 0.02305
9 16 0.01859
10 3 0.03037
11 10 0.02542
12 8 0.02445
13 6 0.02685
14 9 0.02083
15 6 0.02542
16 8 0.02517
17 10 0.01971
18 15 0.01831
19 13 0.02106
20 10 0.01967
21 14 0.02354
22 4 0.03123
23 8 0.02424
24 4 0.03127
25 11 0.02151
26 12 0.01855
27 11 0.01777
28 13 0.02039
29 1 0.0411
30 1 0.0411
31 1 0.0411
32 1 0.04109
33 1 0.04106
34 5 0.028

35 9 0.01875
36 9 0.02363
37 4 0.0301
38 8 0.01845

Table  3  Hidden units and σν  in optimum Ferrite Number committee model

4.0 Results and Discussions

The comparison between the predicted and measured FN values for the committee of models

is shown in fig. 4a for the complete dataset.  There was excellent agreement between the
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measured and the predicted FN values. The correlation coefficient was determined to be

0.98025.  Fig. 4b shows the comparison between the measured and predicted FN values of

316 LN austenitic stainless steel (our lab data),  which was not used in training during model

creation. The absolute error between the measured and predicted FN for entire dataset (25

nos) was less than 2. This error value is better than the error values reported by other methods

for unseen data. The size of the error bars in fig. 4b are large for few of the data indicating

compositions similar to that have not been used in the training. Figure 5 indicates the

significance σw  of each of the input variable as perceived by the first five best models in

committee. The σw  value represents the extent to which a particular input explains the

variation in the output, rather like a partial correlation coefficient in linear regression

analysis.  The elements Mn and Nb are not significant in influencing the ferrite

number.Influence of Mn on the ferrite number is insignificant for 300 series stainless steels

and this is in agreement with the results reported in the literature 22 which says that variation

in Mn concentration (in the range from 1 to 12%) has almost no effect on the deposited ferrite

number.  Though Nb which is found to be insignificant in the present study finds a place in

the term for calculating the Creq   for the WRC – 1992 diagram. Cr and Ni were found to be

the main elements in influencing the ferrite number.  This is in agreement with the published

literature on ferrite number in stainless steel welds. The other elements to follow are Mo, N,

V, Ti, Cu, Co, Si, C and Fe in that order. As per our model, these elements influence the

ferrite number significantly. However, some of these elements like V, Ti, Co and Si have not

been included in the terms for calculating Nieq and Creq in the WRC – 1992 diagram.

4.1 Comparison of the accuracy of the present model with existing methods

The error distribution (measured FN – Predicted FN) for the Bayesian neural network model

is shown in fig. 6. It can be seen that the absolute error lies within 2.5 for most of the dataset



12

used in the training while in the case of FNN-1999 model it was less than 3 for around 80%

of the dataset used in training14.  The error distributions for our model is symmetrical about

zero implying that model fits the data well.   Also the tail of the error distributions are less

compared to the other methods12,14.  The error distributions are quantified and compared with

that of the FNN-1999 model in table 4. For all the cases, Bayesian neural network model is

better compared to that of the FNN – 1999 model. Vitek et al 14 have reported that FNN –

1999 model is more accurate compared to WRC – 1992 and the Function fit model. Root

mean square error between the measured and the predicted FN values for all the four methods

(Bayesian neural network model, FNN – 1999 model, Function Fit model and WRC – 1992

diagram) are compared in the table 5. These error values represent the quantitative measure

of the degree to which the various models fit the complete dataset on which they were

trained. Bayesian neural network analysis has the lowest error of all the four methods. This

model has an improvement of 43% over the FNN-1999 model and 65% over the WRC –

1992 diagram. From the comparisons of the accuracies of the predictions by different

methods, it is very clear that Bayesian neural network model presented in this work is the

most accurate model for prediction of ferrite number in stainless steel welds.
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Bayesian Neural Network model FNN – 1999 model

Absolute     Number        % of Total
Error         of points                                  

Number    % of  Total
Of points

≤ 1.5 684     74.0% 621 64.6%

≤ 2.5 820     88.7% 764 79.5%

≤ 3.5 864    93.5% 826 86.0%

≤ 4.5 888    96.1% - -

≤ 5.5 900    97.4% - -

≥ 5.5 20      2.16% - -

≥ 9.5 4      0.4% 32 3.3%

Table 4 Comparison of the Errors (experimental – Predicted FN) for the Bayesian Neural
network model and the FNN – 1999 model14 (training database)

Prediction Method RMS Error

Bayesian Neural Network
Model

1.99

FNN – 1999 Back Propagation
Neural Network Model14

3.5

WRC – 199210 5.8

Function Fit Model12 5.6

Table 5 Comparison of the Root Mean Square Errors for complete Training database for
different FN prediction methods

4.2 Composition dependent behaviour

The severe limitation of the WRC – 92 diagram is that the coefficients in the terms for Creq

and Nieq formulae are constant and hence the influence of an individual element on FN is

same irrespective of the change in the base composition. As neural networks can take into

account the interaction between the input variables and their influence over the output
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variable, it would be interesting to study how the change is base compositions affect FN.

This was done with two starting base compositions and then allowing each element to vary

over a limited range adjusting Fe concentration accordingly but holding all other element

concentrations constant. Table 6 gives the base compositions of the two materials for which

the effect of concentration of various elements on the ferrite number has been studied.

Material C Mn Si Cr Ni Mo N Nb Ti Cu V Co Fe

308 L 0.035 0.8 0.4 20.4 10 0.05 0.06 0.07 0.08 0.14 0.09 0.07 67.805

316 L 0.035 0.8 0.9 19.4 11 2.5 0.06 0.07 0.08 0.24 0.09 0.1 64.725

Table 6 : Chemical composition of the two base materials

4.2.1 Application of the generalized model to 308 L austenitic stainless steel weld

The predicted ferrite number vs the variation in the concentration of the individual elements

for 308 L austenitic stainless steel are given in the fig. 7.  The variation was found to be non-

linear. Some of the elements like C, N and Ni are found to decrease the ferrite number with

increasing concentration indicating that they are strong austenite stabilizers. The elements

like Cr, Si and V are found increase the ferrite number with increasing concentration

indicating that they are strong ferrite stabilizers. The variation in the elements like Mn, Mo,

Nb, Cu and Co are found not to influence the ferrite number for this base composition. The

surprising effect is found for Ti which shows a varying effect on ferrite number. This

observation contradicts the observation by Vitek14 who reported the role of Ti as a strong

ferrite stabilizer but for a different base composition. For the present base composition effect

of Ti can be explained as follows: Titanium is expected to tie up with carbon and nitrogen

very effectively in forming carbides or carbonitrides only at stoichiometric compositions23,24.

Other than stoichiometric compositions, titanium is less effective  in forming the carbides or

carbonitrides. So, the strong austenite stablilizers carbon and nitrogen remain in solid solution
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reducing the ferrite number of the stainless steel. However, this should be verified

experimentally.

4.2.2 Application of the model to 316 L austenitic stainless steel weld

The predicted ferrite number vs the variation in the concentration for the individual elements

for 316 L austenitic stainless steel are given in the fig. 8. Variation of ferrite number due to

change in concentration of elements was found to be non-linear.  In the case of 316 L

stainless steel, the elements C, Mn, Ni and N are found to decrease the ferrite number with

increasing concentration indicating that they are strong austenite stabilizers. The elements Cr,

Si and Mo are found to increase the ferrite number with increasing concentration indicating

that they are strong ferrite stabilizers. The elements V, Cu and Co are found to increase the

ferrite number slightly and hence they are weak ferrite stabilizers. There is a change in the

contribution of the individual elements to FN when the base composition is changed. Thus,

the severe limitation of the WRC – 1992 diagram that the Creq and Nieq coefficients do not

change as a function of the alloy composition has been overcome by using neural network

analysis. The role of Cu in its contribution to ferrite number for this base composition is

opposite to its role as projected in the WRC – 1992 diagram.  The variation in the

concentration of the element Nb was found not to influence the ferrite number. Titanium is

agin found to show a varying effect on its influence over the FN.  The effect of Ti on FN is

stronger compared to that of the 308 L stainless steel weld.

5.0 Conclusions

The generalized model for predicting the ferrite number in stainless steel welds using

Bayesian neural network analysis has been developed. The accuracy of the Bayesian neural

network model in predicting ferrite number is better compared to the existing FN prediction

methods. Significance of the individual elements on FN has been quantified. Elements like

manganese and niobium are insignificant in influencing the ferrite number. The study has
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clearly brought out the fact that individual element contributions to FN vary depending on the

base composition and hold a non-linear relationship.  The variations in the concentrations of

silicon, vanadium and titanium is found to significantly influence the ferrite number for the

two base compositions studied.  Titanium shows a varying effect for both the base

compositions considered in the present study.  Based on the present study, it is suggested that

Creq and Nieq formulas used in the WRC – 92 diagram has to be analyzed further in terms of

the elements considered in order to improve the accuracy of prediction of ferrite number for

stainless steel welds.
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8.0 Figure Captions

Fig. 1.  Database values of each input variable vs Ferrite Number
Fig. 2. Schematic diagram of the network structure Showing the input nodes, hidden units

and the output node
Fig. 3.  Characteristics of Ferrite Number model
Fig. 4. Comparison of predicted and measured ferrite number for (a) WRC – 92  database

(924)  which was used in the training   (b)  our lab data (25) not used in the training,
using optimum committee models

Fig. 5.  Perceived significance σw values of the first five ferrite number models for each input
Fig. 6  Error distributions(experimental FN – Predicted FN) for the complete database (924)

used in the training
Fig. 7. Predicted FN vs concentration of the elements for 308 L austenitic stainless steels

weld. The plot shows the variation in the ferrite number when one of the element is
varied and all other concentration are held constant at the 308 L composition except
Fe, which is adjusted to compensate for the varying element concentration

Fig. 8. Predicted FN vs concentration of the elements for 316 L austenitic stainless steels
weld. The plot shows the variation in the ferrite number when one of the element is
varied and all other concentration are held constant at the 316 L composition except
Fe, which is adjusted to compensate for the varying element concentration
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a C; b Mn; c Si; d Cr; e Ni; f Mo; g N; h Nb; i Ti; j Cu; k V; l Co

Fig. 1 Database values of each input variable vs Ferrite Number
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Fig. 2 Schematic diagram of the network structure Showing the input nodes, hidden
units and the output node
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(a) noise vs hidden units ; (b) test error vs hidden units; (c) log predictive error vs hidden

units; (d) test error vs models in committee; (e) predicted vs measured FN (training dataset)

(f) predicted vs measured FN (test dataset)

Fig.  4 Comparison of predicted and measured ferrite number for (a) WRC – 92 data
base (924)  which was used in the training   (b)  our lab data (25) not used in the
training,  using optimum committee models

Fig.  3 Characteristics of Ferrite Number model
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Fig. 5 Perceived significance σw values of the first five ferrite number models
for each input

Fig.6 Error distributions(experimental FN –
Predicted FN) for the complete database (924)
used in the training
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a C; b Mn; c Si; d Cr; e Ni; f Mo; g N; h Nb; i Ti; j Cu; k V; l Co

Fig. 7 Predicted FN vs concentration of the elements for 308 L austenitic stainless
steels weld. The plot shows the variation in the ferrite number when one of
the elements is varied keeping all other concentrations constant for a base
composition of 308 L.
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a C; b Mn; c Si; d Cr; e Ni; f Mo; g N; h Nb; i Ti; j Cu; k V; l Co

Fig. 8 Predicted FN vs concentration of the elements for 316 L austenitic stainless steel
welds. The plot shows the variation in the ferrite number when one of the
elements is varied keeping all other concentrations constant for a base
composition of 316 L.


