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Abstract

Many of the properties of austempered ductile iron depend on the austenite which is retained following the bainite reaction. A
neural network model within a Bayesian framework has been created using published data to model the retained austenite content.
The model allows the quantity of retained austenite to be estimated as a function of the chemical composition and heat treatment
parameters. The computer programs associated with the work have been made freely available (http //www.msm.cam.ac.uk/map/
mapmain.html) © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Austempered ductile iron (ADI) has a microstructure
containing spheroidal graphite embedded in a matrix
which is in general a mixture of bainitic ferrite, austen-
ite and some martensite [1–3]. The bainitic ferrite is
generated by the isothermal transformation of austenite
in the bainite transformation temperature range; this
heat treatment is known as austempering.

The large concentration of silicon typically present in
graphitic cast irons has a key role in the development of
the microstructure of austempered irons. The silicon
hinders the precipitation of carbides during the bainite
transformation [4,5]. The austempering time must en-
sure that the formation of bainitic ferrite adequately
enriches the residual austenite with carbon, allowing
much of it to be retained to room temperature. Unfor-
tunately, prolonged austempering causes the decompo-
sition of the residual austenite into a mixture of
carbides and ferrite [6]. This is detrimental to the
mechanical properties.

The austempering process is therefore conventionally
defined in two stages [7]. The end of the first stage
corresponds to the maximisation of the fraction of
bainitic ferrite and the enrichment of the austenite, the
second with the onset of carbide precipitation. The time
interval between these two stages is the heat treatment
window (Fig. 1). The effect of austempering can be
optimised within the confines of this window: too short
an austempering time leads to an inadequate enrich-
ment of the austenite and hence a lower retained
austenite content. Austempering beyond the commence-
ment of stage II causes carbide precipitation and once
again, a reduction in the retained austenite content. The
extent of the heat treatment window is reduced
by the presence of inevitable solidification-induced
chemical segregation, since the transformations occur at
different times in different regions of the sample. It thus
becomes difficult, if not impossible, to define an ideal
austempering time for the whole of the cast iron com-
ponent.

The problem of designing these cast irons clearly
involves many variables and considerable complexity.
The purpose of the work presented here was to develop
a quantitative model which makes possible the estima-
tion of retained austenite content as a function of all
these variables, using a neural network technique
within a Bayesian framework [8].
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2. The technique

A neural network is a general method of regression
analysis in which a flexible non-linear function is fitted
to experimental data, the details of which have been
reviewed extensively [8–10]. It is nevertheless worth
emphasising some of the features of the particular
method used here, which is due to MacKay [11,12]. The
method, in addition to providing an indication of the
perceived level of noise in the output, gives error bars
representing the uncertainty in the fitting parameters.
The method recognises that there are many functions
which can be fitted or extrapolated into uncertain re-
gions of the input space, without excessively compro-
mising the fit in adjacent regions which are rich in
accurate data. Instead of calculating a unique set of
weights, a probability distribution of sets of weights is
used to define the fitting uncertainty. The error bars
therefore become large when data are sparse or locally
noisy.

The Bayesian framework for neural networks has a
further advantage. The significance of the input vari-
ables is automatically quantified [11,12]. Consequently

the significance, perceived by the model of each input
variable can be compared against metallurgical
experience.

The general form of the model is as follows, with y
representing the output variable and xj the set of inputs.

y=�
i

w ij
(2)hi+� (2),where hi= tan h

��
j

w ij
(1)xj+� i

(1)�.

(1)

The subscript i represents the hidden units (Fig. 2), the
� terms are biases and the weights. Thus, the statement
of Eq. (1) together with the weights and coefficients
defines the function giving the output as a function of
the inputs.

A potential difficulty with the use of powerful regres-
sion methods is the possibility of overfitting data. To
avoid this, the experimental data can be divided into
two sets, a training data set and a test data set. The
model is produced using only the training data. The test
data are then used to check that the model behaves
itself when presented with previously unseen data. The
training process involves a search for the optimum
non-linear relationship between the input and the out-
put data and is computer intensive. Once the network is
trained, estimation of the outputs for any given set of
inputs is very fast.

3. The variables

The analysis is based on published data and is there-
fore limited to quantities that are readily measured and
frequently reported. For example, in order to predict
the quantity of retained austenite it would be ideal to
include the fraction of bainite as an input, but this is
rarely measured in practice. Therefore, a pragmatic set
of variables must be chosen which implicitly contain all
the information needed to estimate the amount of
retained austenite.

The set of inputs (Table 1) therefore included the
detailed chemical composition in wt.%, the austenitisa-
tion temperature in °C and time in min (T� and t�,
respectively), and the austempering temperature and
time (TA and tA, respectively). This is almost all that is
necessary to define the retained austenite volume frac-
tion (V�r). However, due to a lack of appropriate data,
no explicit account can be taken of the incomplete
dissolution of car bides during austenitisation. Failure
to do this should reflect in a greater uncertainty in the
predictions that are made using the trained neural
networks. A total of 1910 experimental data were col-
lected from published literature [13–52] and digitised.
Table 2 shows a selection of ductile iron alloys included
in the database.

In discussing the microstructure, we shall distinguish
between the volume fraction of residual austenite (V�),

Fig. 1. Schematic representation of the development of microstruc-
ture during austempering, together with an illustration of the ‘pro-
cessing window’. Martensite is present only when the sample is cooled
to room temperature before the austempering has been completed.

Fig. 2. The structure of the network.
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Table 1
The variables used to develop the neural network model

Maximum MeanInput element Standard deviationMinimum

3.97Carbon (wt.%) 3.582.3 0.165
Silicon (wt.%) 1.57 3.78 2.57 0.21

1.52Manganese (wt.%) 0.340.01 0.23
0.74 0.160.0 0.17Molybdenuma (wt.%)

0.0Nickela (wt.%) 3.82 0.29 0.53
1.60 0.23Coppera (wt.%) 0.290.0

1050 900800 34Austenitising temperature (°C)
15Austenitising time (min) 240 97 34

455 350 39Austempering temperature (°C) 230
60000 10390.5 5625Austempering time (min)

6.556 3.659Austempering time ln {tA/s} 0.9481.477
2.03 0.414−0.875 0.418ln {−ln {V�}}

a Molybdenum, nickel and copper were frequently not reported in publications since they were not deliberate additions, in which case their
concentrations were set to zero.

Table 2
A selection of alloys intended to illustrate the range covered in the database used to create the neural network model

Mn MoC NiSi Cu V Cr Ti Ref

0.36 0.01 0.07 0.042.54 03.63 0.04 0 [14]
0.20 0.30 0 0.783.67 02.45 0 0 [17]
0.21 0 1.6 1.62.5 03.3 0 0 [16]
0.963.16 02.82 0 0.07 0.02 0 0 [18]
0.57 0.06 0.1 02.33 0.043.56 0 0 [26]
0.53 0.26 1.34 03.66 02.51 0 0 [30]
0.44 0.01 0.06 0.062.52 03.7 0.05 0 [29]

2.443.53 0.5 0.25 0 1.37 0 0 0 [55]
0.25 0.13 0 0.392.81 03.51 0 0 [33]

2.02.5 0.74 0 3.8 0 0 0.02 0 [42]
0.373.3 02.2 0 0 0 0 0 [22]
0.67 0.25 0 0.25 0 0 02.64 [34]3.52

which is the untransformed austenite at the austemper-
ing temperature, and the volume fraction of retained
austenite (V�r) which remains untransformed at ambi-
ent temperature. One approach is to use the neural
network with the austempering time as the input. How-
ever, this is not justified metallurgically since the frac-
tion is not expected to vary linearly with time, but as
the logarithm of time. The evolution of volume fraction
with time in nucleation and growth reactions follows a
sigmoidal behaviour. This is because the bainite reac-
tion associated with the first stage of austempering, and
indeed, the subsequent decomposition of the austenite
in stage two, should both follow an Avrami type equa-
tion with

�=1−exp{−kAtn}, (2)

where � is the fraction of transformation. The detailed
values of the Avrami parameter kA and the time expo-
nent n will depend on many different factors, as re-
viewed by Christian [53]. If � is the fraction of bainitic
ferrite then V�=1−� during stage I, so it is expected
that

ln {− ln {V�}}� ln {tA}. (3)

Interestingly, since it is the residual austenite which
undergoes transformation to carbides and ferrite during
stage II, the relationship implied in Eq. (3) also applies
there.

It follows that it is natural to use ln{− ln{V�}} as
the output parameter in the neural network analysis,
rather than V�r directly. The former is physically
justified on the basis of the Avrami equation, but is
additionally important because V�r and its associated
error calculations become bounded between zero and
one for all positive values of t, as they should be. This
will become apparent later in the paper.

On a similar rationale, the time parameter in the
input set should be ln{tA} rather than tA. However, it is
conceivable that there might be some unknown process
which varies directly with tA so both the logarithmic
time and the time were included as input variables. This
has the advantage of avoiding bias in the inputs; the
method used here has automatic relevance determina-
tion [8] and hence sets the weights associated with an
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irrelevant input to small or zero values should that be
justified.

It is emphasised that unlike linear regression analysis,
the ranges stated in Table 1 cannot be used to define the
range of applicability of the neural network model. This
is because the inputs are in general expected to interact.
We shall see later that it is the Bayesian framework of
our neural network analysis which makes possible the
calculation of error bars whose magnitudes vary with
the position in the input space, which define the range
of useful applicability of the trained network. A visual
impression of the spread of the data is shown in Fig. 3.

4. Analysis

All the variables were normalised within a range of
�0.5 as follows:

xN=
(x−xmin)

(xmax−xmin)
−0.5, (4)

where xN is the normalised value of x, which has the
minimum and maximum values given by xmin and xmax,
respectively. The normalisation is not necessary for the
analysis but facilitates the subsequent comparison of the
significance of each of the variables.

The database was randomised and then partitioned
equally into test and training data sets. The latter was
used to create a large variety of neural networks models
whereas the test data set was used to see how the trained
models generalised on unseen data.

Training involves the derivation of the weights
by the minimisation of the regularised sum of squared
errors �� The complexity of the model is controlled by
the number of hidden nodes, and the values of the
regularisation constants [8], one associated with each
input, one for biases and one for all weights connected
to the output. The inferred noise level �� is expected to
decrease as the number of hidden units (Fig. 4a). The
number of hidden units is set by examining the perfor-
mance of the model on unseen test data. The test set

Fig. 3. The database values of each variable versus the volume fraction in % of retained austenite.
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Fig. 4. (a) �� and (b) test error as a function of the number of hidden units; (c) the test error plotted as a function of the number of models in
a committee of models.

error tends to go through a minimum at an optimum
complexity (Fig. 4b).

It is possible that a committee of models can make a
more reliable prediction than an individual model [54].
The best models are ranked using the values of the test
errors. Committees are then formed by combining the
predictions of the best L models, where L=1, 2, … ; the
size of the committee is therefore given by the value of
L. A plot of the test error of the committee versus its size
L gives a minimum which defines the optimum size of
the committee as shown in Fig. 4(c). The test error for
a committee is calculated according to:

Ten=0.5 �
n

(Y� n− tn)2, where Y� n=
1
L

�
l

yn
(l). (5)

The test error associated with the best single model is
greater than that of any of the committees. However, the
committee with sixteen models was found to have an
optimum membership with the smallest test error (Fig.
4c). Once the optimum committee is chosen, it is re-
trained on the entire dataset without changing the
complexity of each model, with the exception of the
inevitable and relatively small adjustments to the
weights. Fig. 5 shows normalised predicted values versus
experimental values for the best model in the training
and test datasets. The predictions made using the opti-
mum committee of models are illustrated in Fig. 5(c).

Fig. 6 illustrates the significance of each of the input

variables, as perceived by the neural network, in influ-
encing the retained austenite content. The magnitude of
the significance is a measure of the extent to which a
particular input explains the variation in the retained
austenite content. As expected, the austempering time
and temperature, and the austenitisation temperature
feature prominently.

5. Application of the model

The neural network can capture interactions between
the inputs because the functions involved are non-linear.
The nature of these interactions is implicit in the values
of the weights, but the weights are not always easy to
interpret. For example, there may exist more than just
pairwise interactions, in which case the problem be-
comes difficult to visualise from an examination of the
weights. A better method is to actually use the network
to make predictions and to see how these interactions
depend on various combinations of inputs.

Unlike linear regression analysis, the range of appli-
cability of a neural network model cannot be defined in
terms of the range of the data used to create the model.
This is because the network is non-linear so the inputs
will in general be expected to interact. It is the Bayesian
framework of the present method which resolves this
problem because it allows the calculation of error bars
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Fig. 5. Predictions made using the best model, selected as the one having the smallest test error. (a) Training data set. (b) Test data set. (c)
Predictions made on the entire dataset using the optimum committee.

which define the range of useful applicability of the
trained network. The model can therefore be used in
extrapolation given that it indicates appropriately large
uncertainties when knowledge is sparse.

The basic cast iron chosen to study the variations has
the chemical composition

Fe–3.5C–2.8Si–0.25Mn–0.25Mo–0.5Ni

–0.5Cu (wt.%).

According to the literature [55–58] this should have a
low tendency to form intercellular carbides; at the same
time, chemical segregation should not be excessive. The
austemperability is expected to be around 34.3 mm in
diameter, calculated using a relationship due to Lee and
Voigt [59]. Unless otherwise stated, the heat treatment
parameters used are T�=900°C, t�=60 min, TA=
370°C and tA=60 min.

Fig. 7 illustrates the effect of two different austenitis-
ing temperatures on the calculated quantity of retained
austenite. Consistent with the first stage reaction, V�r at
first increases, but then starts to decrease with the onset
of stage II which is connected with carbide precipita-
tion. Calculations like these can easily be used to define
the heat treatment window, which is marked on each of
the plots.

Although the influence of T� will be discussed in
more detail later, Fig. 7(a) shows that for an austenitis-
ing temperature of 900°C, the end of stage I reaction
occurs after approximately 30 min whilst for T�=
950°C (Fig. 7b) it happens after some 50 min. This
behaviour has been explained by several researchers
[60,61]. A decrease in T� accelerates the bainite reaction
kinetics because it leads to a reduction in the equi-
librium carbon concentration of the austenite. Conse-
quently, the amount of austenite that is retained is
reduced, as predicted by the model.

Fig. 6. Model perceived significance of input parameters in the best
five models from the committee trained on the volume fraction of
retained austenite. �w values are presented for each variable.
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Fig. 7. Predictions of volume fraction of retained austenite in % as a functions of austempering time for an alloy Fe–3.5C–2.8Si–0.25Mn–
0.25Mo–0.5Ni–0.5Cu (wt.%), at: (a) T�=900°C; and (b) at T�=950°C.

Fig. 8. Predictions of volume fraction of retained austenite in % as a function of chemical composition (Basic cast iron: Fe–3.5C–2.8Si–0.25Mn–
0.25Mo–0.5Ni–0.5Cu wt.%).

5.1. Carbon

Fig. 8(a) shows that V�r hardly changes as the carbon

concentration of the cast iron (x̄) is increased from 3.1
to 3.7 wt.%. In an ideal Fe–C binary cast iron, there
should be no change in the equilibrium carbon concen-
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tration of the austenite (x�) as the average concentra-
tion x̄ is increased, although there would be an increase
in the fraction of graphite. However, the cast iron
studied is not a binary alloy but contains many other
elements which give the material additional degrees of
freedom according to the phase rule. In such a
multicomponent system, a change in x̄ may in fact alter
x�.

Such effects can be studied using MTDATA which is
a computer program that in combination with the
SGTE database [62] permits the calculation of phase
diagrams in multicomponent, multiphase systems.
Table 3 shows the results of those MTDATA calcula-
tions in our cast iron allowing for just two phases (FCC
and free graphite) at the austenitising temperature. The
results do reveal that the equilibrium value of x� at
900°C remains almost constant, but there is a slight
decrease as x̄ is increased.

The same figure (Fig. 8a) shows that there is a
significant rise in retained austenite beyond 3.6 wt.%.
Although there is little information to support this
behaviour, a possible answer would be that it takes
longer for equilibrium to be reached when x̄ is large.

5.2. Silicon

Silicon levels in excess of 2 wt.% are generally recom-
mended for ductile irons; the silicon promotes graphite
formation but equally importantly, it is essential to
delay the precipitation of cementite. This leads to the
development of the mixed bainitic ferrite and carbon-
enriched austenite microstructure which is so beneficial
to the mechanical properties of ADI [63]. An increase
in the Si concentration from 2.5 to 3.1 wt.% has been
shown to delay the onset of the stage II reaction from
70 min to 4.5 h [58]. This might allow for more bainitic
transformation and consequently more austenite car-
bon enrichment without precipitation of carbide. There-
fore, an increase in retained austenite is expected as is
observed in Fig. 8(b). However, beyond 3.2 wt.% Si,
which seems to be the optimum silicon content, there is
a drop in retained austenite. This might be caused by
the formation of islands of pro-eutectoid ferrite in the
bainite structure as found by Gagne [64] in his experi-
ments for an ADI with 3.7 wt.% Si austenitised at the
same temperature as in Fig. 8(b) (900°C). The eutectoid
temperature for this alloy is around 858°C [64], assum-
ing a homogeneous alloy. However, in practice there
will be some regions where the silicon concentration

could be higher than 3.7 wt.% and eutectoid tempera-
ture near 900°C [64,65].

5.3. Manganese

Manganese is added to ductile iron primarily to
improve its hardenability, but it has a pronounced
tendency to segregate during solidification, thereby
causing the precipitation of complex Fe–Mn carbides
at solidification-cell boundaries [30,58,66].

Fig. 8(c) shows that beyond about 0.7 wt.%, man-
ganese leads to a reduction in the quantity of retained
austenite. This is easily understood because it greatly
retards both the kinetics of the bainite reaction and the
maximum amount of bainite that can form at any
temperature [67], thereby reducing the extent to which
austenite can be enriched with carbon. This, of course,
reduces the stability of the residual austenite to marten-
sitic transformation, causing the decline in V�r.

5.4. Molybdenum, copper and nickel

Molybdenum has a powerful influence on the hard-
enability of ductile irons and so is an essential alloying
element for the production of large components. How-
ever, like manganese, it segregates at cell boundaries
during solidification to form carbides. The use of
molybdenum should thus be limited. The molybdenum
carbides are very stable and hardly dissolve during
austenitisation.

Consistent with experimental data [68], Fig. 8(d)
shows that for concentrations less than 0.5 wt.%,
molybdenum has hardly any effect on the retained
austenite content; the predictions are too uncertain for
larger concentrations.

It has been argued [29,57] that the net effect of
molybdenum is to delay stage II although there are
contradictory reports from BCIRA [69]. The present
model can be used to clarify this. Fig. 9 shows with
considerable certainty that there is no major difference
between irons containing different molybdenum con-
centrations except for very long austempering times,
where the alloy richest in molybdenum is more resistant
to stage II decomposition.

There are contradictory claims about the influence of
copper on the retained austenite content [63,68]. The
present model, which is based on the analysis of a very
large database, shows that copper does indeed stabilise
austenite and hence leads to a greater fraction of re-

Table 3
Carbon content of austenite (x�) at 900°C calculated using MTDATA with SGTE database, for an iron of composition Fe–C–2.8Si–0.25Mn–
0.25Mo–0.5Ni–0.5Cu (wt.%)

3.4 3.73.6 3.8 4.03.93.53.2 3.3C (wt.%) 3.1
0.7826 0.77930.77970.78010.78050.78090.7813x� (wt.%) 0.78180.7830 0.7822
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Fig. 9. Influence of molybdenum on the retained austenite content for
an iron Fe–3.5C–2.8Si–0.25Mn–xMo–0.5Ni–0.5Cu (wt.%).

5.5. Austenitising conditions

The austenitising temperature and time determines
the carbon concentration x� of austenite which is in
equilibrium with the graphite at T�. Austenitisation
must therefore greatly influence the stability of the
austenite, as is evident from Fig. 10(a). A higher T�

corresponds to a larger x�. The effect of austenitisation
time is less significant for t��200 min and the large
error bars associated with longer times indicate a need
for experiments. The effect of t� is small, presumably
because equilibrium is established fairly quickly at these
temperatures.

5.6. Austempering conditions

There are clearly major effects of TA and tA on the
fraction of austenite that is retained at ambient temper-
ature (Fig. 10). The predicted effects are precisely those
expected.

Considering first the effect of austempering tempera-
ture, the fraction of bainite that can form is smallest at
temperatures close to the bainite-start temperature BS

[66]. Consequently, the retained austenite content is
close to zero at high temperatures. It increases as more
bainite is able to form with increasing undercooling
below BS. The maximum arises because of two compet-
itive effects: whereas an increase in the fraction of
bainite raises x�, the bainite also consumes austenite so
that less remains to be retained. Thus, at the lower

tained austenite at concentrations less than 1 wt.%.
Naturally, any element which increases the hardenabil-
ity (e.g. Mn, Ni, Cu) will retard the bainite reaction so
that excessive alloying must eventually lead to a smaller
V�r, as is apparent in Fig. 8(f).

Nickel is usually added to improve hardenability
since copper alone does not provide sufficient harden-
ability to successfully austemper thick castings. How-
ever, as shown in Fig. 8(e) nickel concentrations less
than 2 wt.% does not seem to have any influence on
retained austenite as copper does seem to have. More
experiments are needed for nickel concentrations higher
than 2 wt.%. This is inferred from the large error bars.

Fig. 10. Predictions of volume fraction of retained austenite in % as a function of the heat treatment conditions (Basic cast iron: Fe–3.5C–2.8Si–
0.25Mn–0.25Mo–0.5Ni–0.5Cu wt.%).
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Fig. 11. Predictions of volume fraction of retained austenite in % for
our study’s alloy taking into account segregation of alloying elements
towards nodules of graphite and intercellular area.

temperatures, the latter effect dominates leading to a
fall in the amount of retained austenite.

The effect of the austempering time is straightfor-
ward, that there are the stage I and II phenomena
which lead to the behaviour illustrated in Fig. 10(d).

5.7. Segregation effects

The effect of chemical segregation is illustrated in
Fig. 11, by conducting calculations for typical matrix
compositions in the vicinity of a graphite nodule and
along the midpoint between adjacent nodules.

Notice that the curve which describes the intercellular
region has less stable austenite than that for the vicinity
of the nodules of graphite (Fig. 11). This is expected
since the silicon concentration is the lowest in the
intercellular region and manganese is the highest.

Fig. 12. Contour plots of the volume fraction of retained austenite in % for (Fe–3.5C–2.8Si–0.25Mn–0.25Mo–0.5Cu using T�=900°C, t�=60
min, TA=350°C, tA=60 min. The error bars associated with these predictions have been omitted for the sake of clarity.
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5.8. Contour plots

Fig. 12 shows some contour plots, many of which
enable the selection of conditions for the optimisation
of the fraction of retained austenite by visual inspec-
tion. The effect of manganese is remarkable since as
manganese increases the field of maximum retained
austenite is reduced dramatically as well as shifted
towards longer times, consistent with the previous dis-
cussion about its effect on hardenability.

6. Summary

A neural network model has been developed to en-
able the estimation of the fraction of retained austenite
in austempered ductile cast irons as a function of their
chemical composition (C, Mn, Si, Ni, Mo, Cu), and the
austenitisation and austempering parameters. The
model successfully reproduces many experimentally ob-
served trends. It can be exploited in two ways, first in
the design of cast irons and their heat treatments, but
also to identify whether experiments are needed in the
future. If the model prediction is associated with a large
uncertainty than an experiments can be considered to
be novel and useful.

The computer program associated with this work can
be obtained freely from the Materials Algorithms Pro-
ject Library on: http://www.msm.cam.ac.uk/map/
mapmain.html
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