
      

MASTER OF PHILOSOPHY, Modelling of Materials

Friday 27th April 2001 9 – 12

MODELLING OF MATERIALS (2) – possible Answers

SECTION A

1. (a) Expansion of the potential energy U(r):

U(r) =
∑

i

U1(ri)

︸ ︷︷ ︸
external field

+
∑

i

∑

j

U2(ri, rj)

︸ ︷︷ ︸
pair term

+
∑

i

∑

j

∑

k

U3(ri, rj , rk)

︸ ︷︷ ︸
3–body term

+ . . .

Axilrod–Teller potential improves the bonding in molecular solids –
extends fluctuating dipoles between atom pairs to triplets. Limited,
however, to weakly bonded covalent solids.

(b) Cooling curves, dilatometry, X–ray, metallography, electrical con-
ductivity, free energy curves derived using calorimetry.

(c) A description of the purpose of the program, references to the science
behind the algorithm, statement of the computer language used,
the nature of the compilation where relevant (compiled versions are
sensitive to the version of the compiler and to the operating system),
explanation of the variables including the inputs and outputs, an
example set of inputs and a corresponding example set of outputs,
and the name and address of the originator of the code. The date
and version of the software.
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(d) The program could be written as follows:
integer i,k
real sum, a, fraction
sum=0.0
i=0

do k=1,30
read(*,*) a

if(a .gt. 20.0 .and. a .lt. 40.0)then
sum=sum+a
i=i+1

endif
fraction=real(i)/30

end do
write (*,1) sum, fraction

1 format(2f10.2)
end

(e) Major contribution comes from lattice vibrations; electrons make a
minor contribution because the Pauli exclusion principle prevents all
but a few from participating in the energy absorption process. Fur-
ther contributions may come from magnetic changes or from ordering
effects in general. As an example, the net specific heat capacity at
constant pressure has the components:

CP {T} = CLV

{
TD
T

}
C1 + CeT + CµP {T}

where CLV {TDT } is the Debye specific heat function and TD is the

Debye temperature. The function C1 corrects CLV {TDT } to a specific
heat at constant pressure. Ce is the electronic specific heat coefficient
and CµP the component of the specific heat capacity due to magnetic
effects.



      

Page 3 of 15

(f) Diffusion is at first sight difficult to appreciate for the solid state.
A number of mechanisms have been proposed historically. This in-
cludes a variety of ring mechanisms where atoms simply swap posi-
tions, but controversy remained because the strain energies associ-
ated with such swaps made the theories uncertain. One possibility
is that diffusion occurs by atoms jumping into vacancies. But the
equilibrium concentration of vacancies is typically 10−6, which is
very small. The theory was therefore not generally accepted until
an elegant experiment by Smigelskas and Kirkendall.

The experiment applies to solids as well as immiscible liquids. Con-
sider a couple made from A and B. If the diffusion fluxes of the
two elements are different (|JA| > |JB |) then there will be a net flow
of matter past the inert markers, causing the couple to shift bodily
relative to the markers. This can only happen if diffusion is by a
vacancy mechanism.

(g) The physical reason why the growth rate decreases with time is ap-
parent from the diagram below. Since in this case solute is be-
ing extracted from the matrix as the particle grows, the diffusion
distance ∆x increases in proportion to the particle size x. As a
consequence, the concentration gradient decreases as the precipitate
thickens, causing a reduction in the growth rate.
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(h) The output y in a neural network is represented as a non–linear
function of the inputs xj . The function usually chosen being the
hyperbolic tangent because of its flexibility. The exact shape of the
hyperbolic tangent can be varied by altering the weights (Fig. 1a).
Further degrees of non–linearity can be introduced by combining
several of these hyperbolic tangents (Fig. 1b), so that the neural
network method is able to capture almost arbitrarily non–linear re-
lationship.

Fig. 1: (a) Three different hyperbolic tangent functions; the

“strength” of each depends on the weights. (b) A combina-

tion of two hyperbolic tangents to produce a more complex

model.

A potential difficulty with the use of powerful regression methods is
the possibility of overfitting data (Fig. 2). For example, it is possible
to produce a neural network model for a completely random set of
data. To avoid this difficulty, the experimental data can be divided
into two sets, a training dataset and a test dataset. The model is
produced using only the training data. The test data are then used to
check that the model behaves itself when presented with previously
unseen data.

Fig. 2: A complicated model may overfit the data. In this

case, a linear relationship is all that is justified by the noise

in the data.
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(i) Referring to the diagram below, the solid segments make up the
first block (could be called ‘A’), and the dashed segments the second
block (could be called ‘B’). The two main parameters are:

(i) the segment length a of A and B segments in terms of the
number of monomers;

(ii) The interaction parameter χ (or the interaction energy
EAB between the two types of segments).

One expects a lamellar (sheetlike) structure.

Mean squared end–to–end distance scaling relationship: R2
L ' Nx,

where N is the chain length, and x the scaling exponent.

For a phase separated diblock copolymer one expects the chains to
be stretched out somewhat and therefore x to be larger than 1. (or
a melt x = 1).

(j) Process modelling can improve process speed and quality and re-
duce costs, by providing: a means to explore new designs, reducing
the need for practical trials (e.g. trial changes to shape of extrusion
cross-sections); a means to try new operating regimes without loss
of production (e.g. trial changes to starting block design in direct
chill casting, or cooling schedules in extrusion of heat-treatable alu-
minium); support for re–design of equipment (e.g. modifying dies
for extrusion); a physical basis for real-time control of processes (e.g.
importance of avoiding surface melting in extrusion detrimental to
finish); better process visualisation (e.g. temperature distribution
within castings, metal flow in extrusion); prediction of microstruc-
ture and properties of final product, both average properties and
variability (e.g. strength distribution across extrusions or welds in
heat-treatable aluminium alloys); greater understanding of origins of
failure - both during processing and later in service (e.g. hot tearing
in castings, embrittlement of HAZ in carbon steel welds, distortion
in extrusion, residual stress and distortion in welding).
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SECTION B

2. Consider an alloy consisting of two components A and B. For the phase
α, the free energy will in general be a function of the mole fractions (1−x)
and x of A and B respectively:

Gα = (1− x)µA + xµB (1)

where µA represents the mean free energy of a mole of A atoms in α. The
term µ is called the chemical potential of A, and is illustrated in Fig. 3a.
Thus the free energy of a phase is simply the weighted mean of the free
energies of its component atoms.

Consider now the coexistence of two phases α and γ in our binary alloy.
They will only be in equilibrium with each other if the A atoms in γ have
the same free energy as the A atoms in α, and if the same is true for the
B atoms:

µαA = µγA and µαB = µγB

If the atoms of a particular species have the same free energy in both the
phases, then there is no tendency for them to migrate, and the system will
be in stable equilibrium if this condition applies to all species of atoms.

The condition the chemical potential of each species of atom must be
the same in all phases at equilibrium is general and justifies the common
tangent construction illustrated in Fig. 3b.

Fig. 3: Chemical potentials and the common tangent

Fick’s first law is empirical in that it assumes that the diffusion flux is
proportional to a concentration gradient. It would be more reasonable to
assume that diffusion occurs in order to minimise the free energy so that
the flux should be driven by a gradient of free energy:

JA = −MA

∂µA
∂x

so that DA = MA

∂µA
∂CA
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where the (positive) proportionality constantMA is known as the mobility
of A. In this equation, the diffusion coefficient is related to the mobility
by comparison with Fick’s first law.

If ∂µA/∂CA > 0 then the diffusion coefficient is positive and the chemical
potential gradient is along the same direction as the concentration gra-
dient. However, if ∂µA/∂CA < 0 then the diffusion will occur against
a concentration gradient. The diffusion coefficient will be zero when
∂µA/∂CA = 0.

3. A Gaussian chain is given by the fact that distribution function for the
end–to–end distance is a Gaussian. In other words the chain of length N
can be regarded as a random walk of N steps. This means in terms of
orientational correlations that the direction of each bond is completely
independent of that of the previous bond.

Two models are: Dissipative Particle Dynamics (DPD), and Mesoscale
Ensemble Dynamics (MesoDyn).

Key features; DPD: particle based, soft non–bonded interaction poten-
tial, pairwise interactions-momentum conservation, energy dissipation,
random noise (Brownian). MesoDyn: concentration field based, free en-
ergy functional based, stochastic diffusion equation, mean field (Flory–
Huggins) interactions.

General expression for the time step:

τR ¿ ∆t < γ−1

Here τR is the relaxation time of the atomistic processes, which bring
about the mesoscale motion.

There should be many such processes per timestep, so that the process
will relax on the mesoscale time. ∆t is the time step for the mesoscale
simulation. γ−1 is the time related to the diffusion of the mesoscale
segments (particles or beads). A typical time can be derived from the
square of segment length divided by the diffusivity:

γ−1 ' l2/D = 10−7 s = 100 ns

Since τR = 10−11 s = 0.01 ns, and the timestep should be much larger
than that but smaller than 100 ns A lower bound would be about 1 ns,
and an upper bound about 10 ns.
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4. An estimation of the volume fraction requires impingement between par-
ticles to be taken into account. This is done using the extended volume
concept of Kolmogorov, Johnson, Mehl and Avrami. Referring to Fig. 4,
suppose that two particles exist at time t; a small interval δt later, new
regions marked a, b, c & d are formed assuming that they are able to
grow unrestricted in extended space whether or not the region into which
they grow is already transformed. However, only those components of a,
b, c & d which lie in previously untransformed matrix can contribute to
a change in the real volume of the product phase (α) :

dV α =

(
1− V α

V

)
dV αe (2)

where it is assumed that the microstructure develops at random. The
subscript e refers to extended volume, V α is the volume of α and V is
the total volume. Multiplying the change in extended volume by the
probability of finding untransformed regions has the effect of excluding
regions such as b, which clearly cannot contribute to the real change in
volume of the product.

Fig. 4: The concept of extended volume.

The extended volume V αe is straightforward to calculate using nucleation
and growth models and neglecting completely any impingement effects.
Consider a simple case where the α grows isotropically at a constant rate
G and where the nucleation rate per unit volume, IV . The volume of a
particle nucleated at time t = τ is given by

vτ =
4

3
πG3(t− τ)3

The change in extended volume over the interval τ and τ + dτ is

dV αe =
4

3
πG3(t− τ)3 × IV × V × dτ
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On substituting into equation 2 and writing ξ = V α/V , we get

dV α =

(
1− V α

V

)
4

3
πG3(t− τ)3IV V dτ

so that − ln{1− ξ} =
4

3
πG3IV

∫ t

0

(t− τ)3 dτ

and ξ = 1− exp{−πG3IV t
4/3}

(3)

5. The shear lag model is based on an analysis of the way in which axial
stress is transmitted into the fibre via shear loading of the cylindrical
surface of the fibre. Balancing shear and axial forces gives the basic
equation of the model, which relates the gradient of axial stress (σi) in
the fibre to the interfacial shear stress (τi) and fibre radius r:

dσi
dx

=
2τi
r

The maximum stress that can be generated in the fibre is given when
the interfacial shear stress along the whole of the half–length of the fibre
has reached a plateau value of τi∗, corresponding either to the shear yield
stress of the matrix or to an interfacial shear strength. When the fibre
length is such that this maximum stress is equal to the fracture stress
of the fibre, σf∗, then this represents the shortest fibre which could be
fractured, with a half–length L∗ such that

dσf
L

=
2τi∗
r

and the critical aspect ratio is given by

L∗
r

=
σf∗
2τi∗

The expression assumes that all fibres debond rather than fracturing in
the crack plane. This will occur provided that fibre aspect ratio is less
than the critical value.
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SECTION C

6. Bonding in molecular solids (examples: solid inert gases and also com-
plex inorganic molecules although the bonding within the molecules is
covalent).

Atoms have spherical electron distributions (full shells). Quantum me-
chanical screening effects cause fluctuations in the distribution. Atoms
induce dipole moments in each other. This results in a weak attractive
potential (known as van der Waals potential). The attractive potential
is balanced by a weak repulsive interaction due to charge overlap.

Attractive −1/r6 term can be justified from simple electrostatics. The
dipoles induce an electric field E ∝ 1/r3. The energy of a dipole in
an electric field ∝ −E2. The mutual energy of two dipoles ∝ −1/r6.
The repulsive 1/r12 term has no physical justification. It is suggested by
experimental data, e.g. viral coefficients.

The potential is valid for non–ionic solids which have spherical electron
distributions, i.e. the potential is radially symmetric and pairwise. It has
been used with some success for solid, liquid and gas phases of Lennard-
Jonesium. Also binary compounds and for the simulation of defects.

Computationally it is not expensive because it is radial, pairwise and
short range. Thus it has been used to simulate model sizes of around 1
billion atoms.

At equilibrium (
du

dr

)

r=r0

= 0

where r0 is the equilibrium nearest neighbour separation. Thus, for the
f.c.c. structure,

−2ε

[
12× 12.13× σ12

r13
0

− 6× 14.45× σ6

r7
0

]
= 0

i.e.

(
σ

r0

)6

=
14.45

2× 12.13

For the b.c.c. structure

−2ε

[
12× 9.11× σ12

r13
0

− 6× 12.25× σ6

r7
0

]
= 0

i.e.

(
σ

r0

)6

=
12.25

2× 9.11
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It follows that the equilibrium cohesive energy for the f.c.c. structure is

u(r0) = 2ε

[
12.13×

(
14.45

2× 12.13

)2

− 14.145× 14.45

2× 12.13

]
= − 14.452

2× 12.13
ε

Similarly, for the b.c.c. structure

u(r0) = − 12.252

2× 9.11
ε

Therefore,
u(f.c.c.)− u(b.c.c.)

u(f.c.c.)
= 0.04

The two principal atomistic techniques covered in lectures were isobaric–
isothermal (NpT) Monte Carlo (MC) and molecular dynamics (MD). Stu-
dents may choose to outline either of these, and must then contrast the
two.

The relevant thermodynamic state functions are the particle number N ,
the pressure p and the temperature T , which are all fixed, and the Gibbs
free energy G, which is minimised during the transformation. It is es-
sential that the cell volume V be allowed to vary, so that the increase in
density in going from a b.c.c. to an f.c.c. structure (approximately 8.8%)
can be accommodated, and that the temperature T is kept fixed to allow
the potential energy liberated by the transformation to be released from
the system. Students should comment on the use of periodic boundary
conditions to mimic a bulk transformation, and superior answers would
also include cell shape variation, using the Parinello–Rahman scheme,
and the effects of finite size. Using larger periodic cells of fixed shape
(usually cubic) will tend to inhibit the transformation.

A suitable algorithm for the NpT MC simulation would be a standard
Metropolis acceptance scheme, supplemented by trial moves in the cell
volume. Marks are allocated for identifying each of the following steps of
the MC algorithm: (i) start with initial b.c.c. structure, (ii) generate trial
configuration using either atomic translation or change in cell volume,
(iii) accept trial configuration with probability min[1, exp{−â∆H}, where
∆H is the enthalpy change (not expected to quote an explicit formula
for ∆H). The efficiency of the algorithm may be improved by sampling
changes in the cell volume only every 1/N steps (where N is the particle
number), or by implementing non–local trial moves (for example, moving
clusters of atoms).

A suitable algorithm for the NpT MD simulation would be to use an ex-
tended Lagrangian method, such as the Nos-Hoover method, in which the
cell volume and two frictional coefficients relating the instantaneous tem-
perature and pressure to their equilibrium values are additional dynam-
ical variables. Identify each of the following steps of the MD algorithm:
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(i) start with initial b.c.c. structure, (ii) calculate forces on each atom,
(iii) integrate the equations of motion for the dynamical variables. The
efficiency of the algorithm may be improved by using a Verlet neighbour
list for the force calculation, and that the fluctuations in temperature
and pressure may be reduced by adjusting the thermostat and barostat
relaxation times to achieve critical damping.

The advantages of using MC over MD are that the equilibration times will
generally tend to be much faster, especially if non–local trial moves are
used. However, the MC simulations will not give a reliable guide to the
dynamical processes that occur during equilibration. So, MC should be
used if the object is to obtain a phase diagram for the system, whereas MD
should be used if the object is to study the kinetics of the transformation.
The simulations differ from the ideal calculation in that they are done
at finite temperature and pressure. Therefore, although the calculation
shows that f.c.c. is lower energy than b.c.c., it gives no insight as to
whether the transformation will occur under a given set of experimental
conditions.
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7. The atomic arrangement in a crystal can be altered either by breaking all
the bonds and rearranging the atoms into an alternative pattern (recon-
structive transformation), or by homogeneously deforming the original
pattern into a new crystal structure (displacive transformation), Fig. 5.

Fig. 5: The main mechanisms of transformation. The parent

crystal contains two kinds of atoms. The figures on the right

represent partially transformed samples with the parent and

product unit cells outlined in bold. The transformations are

unconstrained in this illustration.

In the displacive mechanism the change in crystal structure also alters the
macroscopic shape of the sample when the latter is not constrained. The
shape deformation during constrained transformation is accommodated
by a combination of elastic and plastic strains in the surrounding matrix.
The product phase grows in the form of thin plates to minimise the
strains. The atoms are displaced into their new positions in a coordinated
motion. Displacive transformations can therefore occur at temperatures
where diffusion is inconceivable within the time scale of the experiment.
Some solutes may be forced into the product phase, a phenomenon known
as solute trapping. Both the trapping of atoms and the strains make
displacive transformations less favourable from a thermodynamic point
of view.

Fig. 6 shows how the shape of the product phase changes when the trans-
formation is constrained, because a thin–plate then minimises the strain
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Fig. 6: The effect of strain energy on the morphology of the

transformed phase during displacive transformation involv-

ing shear deformation.

energy.

It is the diffusion of atoms that leads to the new crystal structure during
a reconstructive transformation. The flow of matter is sufficient to avoid
any shear components of the shape deformation, leaving only the effects
of volume change.

As the columnar austenite grains of the weld cool into the α + γ phase
field, allotriomorphic ferrite layers nucleate and grow to decorate the
prior austenite grain boundaries. This reconstructive transformation oc-
curs with the diffusion of carbon and iron. As the temperature decreases,
the diffusion of iron rapidly becomes difficult, giving rise to plates of Wid-
manstätten ferrite in which the change in crystal structure is achieved by
a displacive mechanism, although carbon (which can still diffuse rapidly)
is partitioned. Acicular ferrite, which nucleates intragranularly on oxide
particles present in welds, grows by a displacive mechanism to form a
desirable, chaotic microstructure which is good for toughness. Finally,
martensite forms without any diffusion.

(i) All the displacive transformations, which do not require diffusion, are
promoted by increasing the cooling rate.

(ii) Q = IV η/s where I, V , η and s are the current, voltage, arc transfer
efficiency and speed respectively. The cooling rate must naturally increase
as Q decreases since less heat has to be dissipated into the environment.
The cooling rate can be assumed to depend on the difference between the
actual temperature T and the substrate temperature T0, so the cooling



      

Page 15 of 15

rate increases as T0 decreases.

(iii) The theory describing diffusion controlled growth contains a dimension-
less supersaturation

Ω =
Cγα − C
Cγα − Cαγ

where the two terms in the denominator refer to the equilibrium solubil-
ities of carbon in austenite and in ferrite respectively. C is the average
concentration. As C → Cαγ , i.e. the average concentration approaches
the solubility of carbon in ferrite, less solute is partitioned, making Ω→ 1,
so that diffusion–controlled growth becomes very rapid.


