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(a) An essay on hash codes and/or Hopfield networks is expected here. Examples
of topics to mention include:

Hopfield network: Definition of the dynamics. Existence of a Lyapunov
function, so the dynamics are known to be stable. The Hebb rule for storing
patterns in a Hopfield network. Robustness of Hopfield network to parameter
damage. Hopfield network can store multiple memories in a given piece of
hardware. Capacity of memory is 0.14V, i.e., about 0.3 bits per connection.
Signal-to-noise method for estimating capacity. Spurious memories. Pairs of
nearby patterns are not so easy to memorize. Derivation of Hebbian learning
rule from Boltzmann machine learning.

Hash codes: provide a (non-robust) way of recovering a memory given part
of its content. Properties of random hash codes. Examples of simple hash
functions. Scaling of the required size of hash table with number of memories,
to avoid collisions. Speed-up offered by hash functions compared with, say,
alphabetical storage.

(b) Description of Metropolis method and Gibbs sampling.

Gibbs sampling requires sampling from conditional densities. (Not necessar-
ily possible.)

Metropolis requires only evaluation of the target density at a given point.
But depends on a sensible choice of proposal density. If choice is bad then
method will go nowhere. Gibbs can be viewed as a special case of Metropolis.
Gibbs has no parameters (nice).

Both methods suffer from random walk effects (at least, if Metropolis means
a standard method with a simple proposal density). Time per independent
sample scales as (L/¢)?. [But neither method has catastrophic failure in
high dimensions.] Both methods are superior to rejection sampling because
they do get around eventually, whereas rejection sampling in high dimensions
might never produce a single point.

Random walk behaviour can be reduced by Hybrid Monte Carlo (Metropolis
with gradient information); and by overrelaxation (Gibbs sampling variant).

Problem of setting step size can be evaded by using Slice sampling.

With all these methods, difficult to detect convergence. FExact sampling
method offers an answer to this question in some cases.
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(a)

I(X;Y)=H(X)—- HX|Y).

1(X;Y) = Ha(po) — qHa(po)-

Maximize over pg, get C =1 — q.

The (2,1) code is {01, 10}. With probability ¢, the 1 is lost, giving the output
00, which is equivalent to the “?” output of the Binary Erasure Channel.
With probability (1 — ¢) there is no error; the two input words and the same
two output words are identified with the 0 and 1 of the BEC. The equivalent

BEC has erasure probability ¢. Now, this shows the capacity of the Z channel
is at least half that of the BEC.

The (7,4) Hamming code can detect and correct at most one flip; an error
occurs if there are two or more.

[Either| The probability of block error is dominated by the probability of two
flips, which is about (;) 12

[Or] The probability of error is

> <N> =gy

r>2 \T

which is about 0.002.

Bayes’ theorem

P(s=1r) P(rl]s=1)P(s=1)
o8 Bs=a) =~ "8 Plajs=2)P(s =2)
B 1— f 2r1—1 1— f —(2r3—1) P(S )
= log <—f ) + log <—f ) + log P(s=2)
= wir1 + wars + Wo,
where

which we can rearrange to give

P(s=1r) = .
1+ exp (—wo — 22:1 wnrn)

This can be viewed as a neuron with two or three inputs, one from r; with a
positive weight, and one from r3 with a negative weight, and a bias. (Picture
here of blob with three lines.)
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(a) Using the Huffman algorithm we arrive at this symbol code

a;  Pi log, p%. li c(a;)
111 1e-06 19.9 5 00000
110 9.9e-05 133 5 00001
101 9.9e-05  13.3 5 00010
011 9.9e-05 133 5 00011
001 0.0098 6.7 3 001
010 0.0098 6.7 3 010
100 0.0098 6.7 3 011
000 0.97 00 1 1

The expected length is 1.06, (but 1 would be accurate enough!) and the entropy
of x is 0.24. The ratio length / entropy is 4.4. (Answer 4 to 1 decimal place.)
Arithmetic code N = 1000: expected length is NV times the entropy, i.e. 80 bits.
Variance is found from variance of the number of 1s, which is Npq, and the
factor is logy[(1 — f)/f], so the standard deviation is 3.14 x log,[(1 — f)/f] = 21.
Final answer should be 80 & 21 bits.
(b) Bayes theorem:

P(u) I, P(2n| 1)
P({zn})

The likelihood function contains a complete summary of what the experiment tells
us about u. Expression for the log likelihood,

L(p) = =Y |wn — pl.

P(ul{zn}) =

Sketch of likelihood function on a log scale.

Note gradient changes by 2 as you pass each data point. Gradients are 4, 2, 0, —2,
—4.



Sketch of likelihood function on a linear scale.

Exponential functions have lengthscales 1/4,1/2, 1/2, 1/4.
The most probable values of i are 0.9-2, and the posterior probability falls by
a factor of e? once we reach -0.1 and 3, so a range of plausible 0 values for y is

(—0.1,3).



