
Introduction

A model for a single transformation begins with the
calculation of the nucleation and growth rates using
classical theory,1–6 but an estimation of the volume fraction
requires impingement between particles to be taken into
account. This is generally achieved using the extended
volume concept of Kolmogorov, Johnson and Mehl, and
Avrami (details are given in Ref. 1) as illustrated in Fig. 1.
Suppose that two particles exist at time t: a small interval
dt later, new regions marked a, b, c, and d are formed
assuming that they are able to grow unrestricted in
extended space whether or not the region into which
they grow is already transformed. However, only those
components of a, b, c, and d which lie in previously
untransformed matrix can contribute to a change in
the real volume of the product phase (identified by the
subscript 1)

dV1=A1− V1
V B dV e1 . . . . . . . . . . . (1)

where it is assumed that the microstructure develops
randomly. The superscript e refers to extended volume,
V1 is the volume of phase 1, and V is the total volume.
Multiplying the change in extended volume by the
probability of finding untransformed regions has the effect
of excluding regions such as b, which clearly cannot
contribute to the real change in volume of the product.
This equation can readily be integrated to obtain the real
volume fraction

V1
V
=1−exp A− V e1

V B . . . . . . . . . . . (2)

In practice, there are many instances where several
transformations occur together. The different reactions
interfere with each other in a manner which is funda-
mental to the development of many steel microstructures.
Therefore, considerable effort has recently been devoted to
the development of an Avrami model for simultaneous
reactions.7–14 Most of these works calculated the total
volume of transformed product, but did not calculate the
real volume of each transformed phase.

A simple method of accounting for two precipitates
(1 and 2) is that the above equation becomes a set of
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two equations

dV1=A1− V1+V2
V B dV e1 . . . . . . . . . (3)

dV2=A1− V1+V2
V B dV e2 . . . . . . . . . (4)

which in general must be solved numerically although an
analytical solution which gives both V1 and V2 has been
proposed for the case where the ratio of the volume
fractions of the two phases is constant.11 The method
can in principle be extended to incorporate an indefinite
number of reactions occurring together. The purpose of
the present work is to generalise the previous work and
to present analytical expressions for cases other than the
constant ratio described above.

Method

To obtain the general relationship between real and
extended volumes in simultaneous transformations, the
variables are first redefined as follows

vi=
Vi
V

, vei=
V ei
V

, z= ∑
n

j=1
vj , and ze= ∑

n

j=1
vej (5)

where V
i

(i=1 to n) is the real volume of the product
phase i, and V ei is its extended volume.

From the same analysis as described above with the
assumption of random microstructure development

dvi= (1−z) dvei . . . . . . . . . . . . . (6)

Summing equation (6) from i=1 to n and using equa-
tion (5) gives

dz= (1−z) dze and z=1−exp(−ze) . . . . (7)

Equations (6) and (7) yield

dvi=
dvei
dze

dz=
dvei
dze

(1−z) dze=
dvei
dze

exp (−ze ) dze . . (8)

Hence

vi= P dvei
dze

exp (−ze ) dze . . . . . . . . . . (9)
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(a)

(b)

two precipitate particles have nucleated together and grown to finite
size in time t: new regions c and d are formed as original particles
grow, but a and b are new particles, of which b has formed in region
which is already transformed

1 Illustration of concept of extended volume

In equations (8) and (9), ze is treated as the only
independent variable, and vei is considered to be a function
of ze. The calculations of vi (i=1 to n) require the relations
between the various vei values (i=1 to n) throughout the
reaction paths. To explain this necessary condition simply,
two reaction paths, I and II, are considered, where the
relations between the vei values are different for the two
paths. In this case, even if each vei value is equal for
reactions I and II at a certain moment, the vi values are,
at that moment, different because of the difference of the
reaction paths. Determination of the relationships between
the various vei values throughout the reaction path is hence
necessary to calculate vi . Once all the vei values are related
to one another, only one vei (i=1 to n), or ze, can be an
independent variable. Equation (9) indicates that vi can be
calculated from only vei (i=1 to n) and gives the general
relation between real and extended volumes.

Solution

Analytical solutions of equation (9) exist for special cases
where the extended volumes of the different phases (or vei
for i=1 to n) can be related. Hereafter, the case of n=2 is
considered and, for mathematical convenience, ve1 is treated
as an independent variable.

LINEAR
Suppose that ve1 and ve2 are related linearly according to

ve2=Bve1−C . . . . . . . . . . . . . (10)
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where B is a positive constant and C is zero or a positive
constant. Since ve2 cannot be negative, equation (10)
implies that

ze=Gve1 (0∏ve1∏C/B)

(B+1)ve1−C (ve1>C/B)
. . . . . (11)

Equation (9) can then be integrated for 0∏ve1∏C/B as

v1=1−exp(−ve1 ) and v2=0 . . . . . . . (12)

and for ve1>C/B as

v1=1−
B

B+1
exp(−C/B)−

1

B+1
exp[−(B+1)ve1+C]

. . . . . . . . . (13)

v2=
B

B+1
{exp (−C/B)−exp[−(B+1)ve1+C]} (14)

The new parameters (v1 )s and (ve1 )s are defined here as
v1 and ve1 respectively, obtained during the simultan-
eous transformation. The parameter (v1 )s is calculated by
subtracting [1−exp (−C/B)] from equation (13), hence

(v1 )s=
1

B+1
{exp (−C/B)−exp[−(B+1)ve1+C]}

=
1

B+1
exp(−C/B){1−exp[−(B+1)(ve1−C/B)]}

=
v2
B

. . . . . . . . . . . . . . . (15)

The term exp (−C/B) occurs because [1−exp(−C/B)] of
phase 1 exists before commencement of the simultaneous
reaction, and (ve1−C/B) is (ve1 )s . Equation (15) shows that
there is a simple linear relation between (v1 )s and v2 . An
example of an actual simultaneous reaction is a precipitation
phenomenon in ferritic steel. Suppose that the isotropic
growth rate of phase i (i=1, 2) is Gi , and that all particles
of phase i start growth at time t=0 from a fixed number
of sites Ni per unit volume, then

ve1=
N1
V

4p

3
G31t3 and ve2=Bve1 AB=

N2G32
N1G31B (16)

It is emphasised that the specific assumptions made to
express ve1 can be selected at will, for example, to include
a nucleation rate. Details can be found in Ref. 1. Equa-
tion (16) is the special case where C in equation (10) is
zero, which has been used by Robson and Bhadeshia14 to
examine the precipitation phenomena in power plant steel.
A negative value of C would require a rearrangement of
equation (10) with corresponding changes to the subsequent
derivations.

PARABOLIC
The case is now discussed where ve1 and ve2 are related
parabolically

ve2=A(ve1 )2+Bve1−C (A>0, B, C�0) . . . (17)

Equation (17) implies that when ve1 is less than R(¬[−B+
(B2+ 4AC)1/2]/2A), ve2 is zero. Hence, for ve1<R, equation
(9) becomes

v1=1−exp(−ve1 ) and v2=0 . . . . . . . (18)

and for ve1�R

v1=1−exp(−R)+exp C(B+1)2
4A

+CD 1

2
(p/A)1/2

×[erf (t)−erf (t0 )] . . . . . . . . . . (19)

v2=1−v1−exp[−A(ve1 )2− (B+1)ve1+C] . . . (20)
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2 Calculation of v
1

and v
2

for case of parabolic
relationship between ve

1
and ve

2
(A=5 and B=C=0

in equation (17))

Here, erf (t) is the error function, and

t=A1/2 Ave1+B+1

2A B and t0=A1/2 AR+
B+1

2A B
. . . . . . . . . (21)

vi again indicates the phases that form simultaneously.
Figure 2 shows the calculation results for A=5·0 and
B=C=0.

So far, the present authors have found no example of
parabolic relations for actual transformations. Since growth
rate and number of nucleation sites (Gi and Ni in equation
(16)) are not constant in general and B in equation (16)
is thus not constant, the analytical solutions derived in
the present work (equations (13), (14), (19), and (20)) do
not always function conveniently for actual simultaneous

transformations. It is now, however, possible to examine
simultaneous transformation phenomena systematically,
because the general relation between vi and vei (i=1 to n),
hence between real and extended volumes, has been given
as equation (9).

Conclusion

The general relationship between real and extended volumes
in simultaneous transformations has been considered, and
analytical solutions derived for cases where extended
volumes of two different phases are related linearly or
parabolically. In practice, there are many instances where
several transformations occur together, and the general
relationship obtained in the present work renders it possible
to examine their characteristics systematically.
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