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Introduction to Quantitative Metallography

Standard Stereological Terms

The following terminology is established in stereology:

P Points A Flat areas V Volume

L Lines S Curved surfaces N Number

The terms can be combined. Thus, SV represents the amount of sur-

face per unit volume, VV the volume of a particular phase in the total

volume (i.e. its volume fraction), PP the number of test points lying in

a particular feature as a fraction of the total number of test points etc.

Measurement of Volume Fraction

VV , the volume fraction of a phase α in a microstructure can be

measured directly by separation of the phases, e.g. the electrolytic ex-

traction of carbides in a steel. However, this method is impractical for

most purposes.

AA, the area fraction presented by α on a planar section can be

measured using image analysis. If σA is the standard deviation of the

areas of individual α particles, then the measurement error EA is given

by
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where N is the number of particles measured and A is the mean area

measured. The error is minimised by making a large number of measure-

ments (large N) and is expected to be smaller for uniform microstruc-

tures (small σA).

The line fraction LL of α in a matrix β can be measured by pro-

jecting test lines onto the microstructure and measuring the part that

falls in α. The error in such measurements depends on σα
L and σβ

L which

represent the standard deviations of the intercepts which fall in α and

β respectively:
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By contrast, measurements in which points are projected onto the mi-

crostructure to measure the point fraction PP of α have the simplest

error term:

E2
P =

1

P
(3)

For sufficiently large numbers of measurements, VV = AA = LL = PP .

The following experimental errors may also contribute to uncertainty:

1. The sample on which observations are made is unlikely to be flat.

After all, observations are frequently made on etched samples. The

surface relief can be characterised by the height h (Fig. 1a). Suppose

the relief is caused by the etching of grain boundaries, than the

measured volume fraction V e
V may be overestimated compared with

the true fraction VV as follows:

V e
V = VV +

1

4
SV h (4)
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Fig. 1: (a) The surface relief caused by etching and

characterised by the height h. (b) Projection of par-

ticles in a thin foil.

where SV is the amount of grain surface per unit volume.

2. There may be errors due to microscope resolution. Interfaces ap-

pear as diffuse bands on two–dimensional sections; the thickness of

the confused region δ is given by

δ '
λ

2n sinα

where λ is the wavelength of the light used for imaging, n is the

refractive index of the medium between the light and the sample

and α is the angle relative to the incident light, by which reflected

light is accepted in order to form the image.

3. Errors may be caused by looking at non–representative regions in

heterogeneous samples.
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Grain Size Determination

A common measure used in industry is the ASTM† grain size num-

ber Ng:

n = 2Ng−1 (5)

where n is the number of grains per square inch as seen in a specimen
viewed at a magnification of 100! A large value of Ng implies a small
grain size.

Ng n Ng n

1 1 4 8

2 2 5 16

3 4 6 32

It is possible in practice to obtain grids which when inserted into

the microscope allow a comparison with the underlying microstructure

to directly give an estimate of the ASTM number.

The mean lineal intercept L is a much better method of charac-

terising the grain size since it is related fundamentally to the amount

of surface per unit volume, SV = 2/L. The intercept is measured by

imposing test lines onto the microstructure. For a two–phase material,

Lα =
LV α

V

Nα
Lβ =

LV β
V

Nβ
(6)

where L is the total traverse length and N represents the number of

grains of the appropriate phase within the total traverse length.

Particles in Thin Foils for Transmission Microscopy

A thin–foil is nevertheless a three–dimensional object and the image

obtained is a projection of that object (Fig. 1b). For spherical particles

† American Society for Testing of Materials
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of radius r in a foil of thickness t, there will be a projection error which

is corrected as follows:

VV = Ae
A

(

1 +
3t

4r

)

−1

(7)

where Ae
A is the projected area fraction. Naturally, the fraction esti-

mated using Ae
A alone will appear larger than the true fraction VV . Sim-

ilarly, the number of particles per unit volume is related to the number

counted per unit area as follows:

NV =
NA

t + 2r
(8)

where r is the mean observed radius.

Representative Samples

It was emphasised earlier that ‘representative’ samples should be

used when making observations. This also means choosing the right

technique or set of techniques for the problem concerned. The highest

magnification technique is not always the right answer. The following

example illustrates this by estimating the amount of metal that has been

studied, using thin foil samples, in a transmission electron microscope

since its invention:

t foil thickness, 10−7 m x size of micrograph, 0.1 × 0.08 m2

z magnification, 5 × 104 N number of pictures per year, 106

y number of years, = 40 ρ density, 7 × 106 kg m−3

mass of material examined = txNyρ/z2 ' 10−4 kg

weight of a pin ' 10−3 kg
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Classification of Shape

A shape factor must be dimensionless since shape does not de-

pend on size. The divisor and divident must have the same units, e.g.

area/length×perimeter, or it may be a number, such as the number of

corners per grain. The shape factor must also be independent of the

orientation of the feature.

It is useful to define some terminology before discussing shape fac-

tors:

A Area p Perimeter

l Longest Feret b Shortest Feret

c Convex perimeter

We shall see that the perimeter p should be used with caution since

its value depends on the resolution of the measuring instrument. A Feret

is the length of an object measured between two parallel rulers (Fig. 2).

The convex perimeter c is that measured by tightly wrapping a string

around an object and measuring the length of the string on unwrapping

(Fig. 2). We now proceed to discuss some shape factors.

Fig. 2: Definition of a Feret diameter.
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p2/4πA This shape factor has a minimum value of 1 for a true

circle. It defines roundness and can be used to measure

departures from circularity or surface smoothness.

c2/4πA ignores any indentations in the surface, so will classify a

rough and smooth circle together.

l/b is useful to isolate fibres in the image.

p/c helps identify agglomerated clumps of particles from iso-

lated particles.

Fractal Dimensions

Measures such as perimeter and surface area are not well–defined

for objects which are rough, because they depend on the resolution of

the measuring technique. Thus, a child walking around a coastline will

measure a larger perimeter than an adult who has a longer foot–span.

The child is able to penetrate nooks and crannies in the perimeter which

the adult cannot. Similarly, the surface area of a catalyst determined

from the amount of atomic gas adsorbed onto the surface, will not be the

same as that measured from the adsorption of large polymer–molecules.

Consider a straight line of unit length. If the line is measured in

steps, each of length ε, then the number of steps needed is

N =
1

εD
, where D = 1.

Consider now a square with a side of unit length. If its area is

measured by imposing on it, smaller squares, each of side ε, then the

number of squared needed is

N =
1

εD
, with D = 2.
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It is obvious that the term D represents the dimension of the object

being measured and that the value of D can be derived by plotting

log{N} versus log{1/ε}. The dimensions will be integral for smooth

objects, but the concept can be generalised for rough objects where D

is called the fractal dimension with values which are not integers.

Suppose that the perimeter p of the coastline is measured using a

step of length ε. It follows that

p = N × ε =
p0

εD
× ε = p0ε

1−D.

A plot of log{p} versus log{ε} gives a straight line with slope (1 − D),

where D is the fractal dimension of the coastline, a unique measure of its

ruggedness. In the earlier examples of the straight line and the square,

we began with a unit length and unit side–length respectively. In the

case of the coastline, there is no defined length to begin with since the

length depends on the resolution of the measuring technique. However,

the constant p0 can be regarded as a fractal length but with a dimension

D.

For a recent description of fractals in the context of metallurgy, see

Image–based fractal description of microstructures, J. M. Li, Li Lü, M.

O. Lai and B. Ralph, Kluwer Academic Publishers, 2003.
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