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Abstract

The automotive industry is striving to produce lighter vehicles.  At present this is
achieved through the use of ultralight steels, aluminium alloys and magnesium alloys
for some body parts.  Magnesium has the highest strength-to-weight ratio of any
structural metal and so engineers are keen to use as much magnesium as possible in
their vehicles.  However, magnesium alloys creep, even at room temperature,
restricting their use.

This project focuses on the problem of bolting together magnesium alloys
components at temperatures around 100oC, such as those found in car engines.  The
bolted joints undergo stress relaxation even at such low temperatures.  The problem of
stress relaxation in magnesium alloy AZ91D is investigated using four physical and
non-physical neural network models.  These models have half the noise level of the
experimental results used to make the networks and their predictive qualities are
shown to be an improvement over standard empirical models.  The networks were
used to attempt to reproduce published results and to calculate the activation energy
for self-diffusion in magnesium.
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1  Introduction

The weight of the average family car has increased by 20% over the last 20 years
(Fig. 1).  Most of the increased weight is a result of increased average engine size and
the addition of safety features such as crumple zones and roll cages.

Fig 1
The kerb weight1 of the four door hatchback Ford Fiesta from 1983 to 1999 [2].

Customers’ awareness of fuel efficiency has been made more acute by increasing fuel
prices and the popularity of environmental issues.  Car manufacturers are also
affected by legislation to control air quality, such as the European Union directive that
cars should produce less than 120 g of CO2 per kilometre by 2005 [3], and are
approaching this problem by attempting to reduce the weight of their cars.  “Concept
cars” produced in recent years have been lightweight, for example, the Ford P2000
which weighs only 544.3 kg [4].  The weight reductions have been made possible by
the replacement of steel by light metal alloys, usually aluminium or magnesium.  In
production vehicles, the weight is saved through the use of lightweight steels, which
have reduced the weight of cars by 10% since 1978, without compromising safety [5].

Magnesium offers a greater weight saving capacity than aluminium, as its density,
1.7 g cm-3, is two thirds the density of aluminium, 2.7 g cm-3, without sacrificing
strength [6].  However, magnesium has poor creep resistance and this has limited its
use to room temperature applications (Table 1).

                                                
1 Kerb weight is defined as the weight of the complete vehicle and all equipment including fuel and
water, but without luggage, driver or passengers [1].
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Table 1
Magnesium components currently used by car manufacturers.

Component Car manufacturer Reference
Hand brake lever Porsche [7]
Instrument panel General Motors, Smart, Buick, Cadillac[7], [8]
Intake manifold Diamler Chrysler [7]
Oil pan Honda [7]
Steering wheel Ford, Lupo, Volkwagen [7]
Cylinder head cover door Lupo [7]
Pedal bracket General Motors, Ford [7], [8]
Seat cushion Smart, Fiat, Jaguar [7], [8]
Radiator support General Motors [7]
Cam cover Ford [8]
Grill sections Pontiac [8]

Magnesium is the sixth most abundant element on Earth; one cubic mile of sea water
contains 6 million tonnes [9].  Despite magnesium being abundant, it has been nearly
twice as expensive as aluminium in recent years (Fig. 2).  One of the reasons for the
high cost is the relatively low demand for magnesium metal.  Magnesium is extracted
either from ores such as dolomite, magnesite and carnalite or from sea water [7].  The
extraction process involves processing the ore or brine to make MgCl2, which is then
split by electrolysis to give pure magnesium [7, 10].

Fig. 2
The price, in US dollars per kg, of aluminium and magnesium ingots over the five years
1996-2000 [11, 12].

The potential for weight saving by using magnesium is about 6%: 77kg for a medium
sized car (Fig. 3) [6].
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Fig. 3
The potential weight reduction for a medium sized car by the substitution of magnesium alloys
whenever possible.  A distinction is made between easily achievable substitution and the
maximum substitution [6].

The use of magnesium within car engines is limited by stress relaxation2 causing
bolted joints to become loose.  In stress relaxation, the initial elastic deformation of
the metal becomes a permanent strain over time.  The steel bolts used to join sheets of
aluminium and magnesium are harder than the metal they hold together.  The stress
field due to the bolting operation creates elastic strain in the soft metal flanges, which
causes Poisson contraction to occur perpendicular to the plane of the flanges.  Over
time, this elastic deformation becomes a permanent deformation; as the Poisson
contraction makes the flanges of aluminium and magnesium thinner in the region
close to the bolt (Fig. 4).  The distance between the bolt and the nut is fixed and so the
joint becomes loose.  In a moving vehicle the joint would vibrate, eventually leading
to failure.

As the bolts become loose, the problem is compounded by the component starting to
vibrate against its fasteners.  The joint is considered to be completely relaxed when
there is no appreciable force left in the bolt.  At this point, the weight of the
component will cause the joint to fail completely and the engine will start to fall apart.

                                                
2 A definition of stress relaxation is that, "… it is recognised by a component which is at constant strain
under a system of forces, normally below the yield point, showing a time-dependent plastic
deformation giving a stress drop with time, the rate of change of stress decreasing with time" [13].
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Fig. 4
Diagram showing the forces present in stress relaxation.  The left hand side shows the initial
forces, while the right hand side shows the magnesium flange relaxing and becoming thinner.

In the remainder of this report I will first of all describe the metallurgy of magnesium
and its alloys.  Then I shall summarise the current models of stress relaxation before
discussing neural networks in detail.  Next I will give details of the models that were
created.  Then I shall describe and discuss the predictions made by the models.  Next I
will show how the models can be used to reproduce published results and can
determine the activation energy of diffusion.  Finally, I will draw conclusions from
the results.
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2  Magnesium

In this section I will discuss the basic metallurgy of pure magnesium.  Then I shall
discuss the affects of the various alloying elements and summarise the properties of
the common magnesium alloys.  Next, I will discuss experimental alloys which claim
to solve many of the difficulties of using magnesium.  I will then discuss the
relationship between creep and stress relaxation.  Finally, I will discuss the problem
of stress relaxation in magnesium.

2.1  Structure and Failure Mechanisms

Pure magnesium has a hexagonal close-packed (hcp) structure (Fig. 5), with a c:a
ratio of 1.6236, very close to the ideal value of 1.633 for the dense atomic packing of
spheres [6].  The principal mechanism by which magnesium alloys may be
strengthened is precipitation strengthening, which usually involves aluminium
compounds[14].

Fig. 5
In a hexagonal crystal, the axes labeled a form two sides of a regular hexagon in the
horizontal plane.  The height c is independent of a, the c:a ratio which describes the atomic
spacing of the crystal.  The unlabelled arrows show the independent directions of the slip
system.  For clarity the layer of atoms at c/2 has been omitted.  This layer is identical to the
top and bottom layers that are shown.

At temperatures below 573K, there are only three slip systems, all parallel to the basal
plane (0001) (Fig. 5) [15].  Slip occurs when the basal plane is orientated favourably
with respect to the applied stress.  The slip direction is along the lines of close packed
atoms typified by ]0211[  [6, 16, 17].

The most common magnesium alloy, AZ91D, starts to creep at 100oC and has a
maximum service temperature of 125oC [16].

a

a

c
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2.2  Magnesium Alloys

Magnesium alloys have been developed for a variety of applications where low
density is more important than strength, such as castings for aeroplane components
and artificial limbs.  Table 2 lists alloy compositions and Table 3 some material costs.
The susceptibility of magnesium to creep at relatively low temperatures has limited
the variety of its applications, resulting in the development of alloys with higher creep
resistance, such as AE42.  The potential for thermally activated slip is decreased if
alloying elements with low melting temperatures, such as lithium, are excluded from
the alloys [6].

Table 2
Alloying elements used in die casting magnesium alloys.  The elemental compositions are all
given as percentage weight (ASTM B-93) [6].  Rare Earth metals are collectively abbreviated
as RE.

Alloy Al Zn Si Mn RE Cu Fe Ni Others
AM20 1.7-2.2 <0.1 <0.1 >0.5 <0.008 <0.004 <0.001 <0.01
AM50 4.5-6.3 <0.1 <0.1 >0.27 <0.008 <0.004 <0.001 <0.01

AM60B 5.7-6.3 <0.20 <0.05 >0.27 <0.008 <0.004 <0.001 <0.01
AS41A 3.7-4.8 <0.10 0.60-1.4 0.22-0.48 <0.04 <0.01 <0.30
AZ91D 8.5-9.5 0.45-0.90 <0.05 >0.17 <0.015 <0.004 <0.001 <0.01
AE42 3.6-4.4 <0.20 >0.27 2.0-3.0 <0.04 <0.004 <0.004 <0.01
ZC63 5.5-6.5 0.25-0.75 1.8-3.0 2.4-3.0

Table 3
The cost of magnesium alloying elements and the total material cost of some alloys [18].  The
dominant cost of magnesium is likely to fall as demand for the metal increases, making the
significant factor the cost of the alloying elements.

AZ91D AE42

Alloying element Cost ($/kg)

Weight of
element in
alloy (kg) Cost ($/kg)

Weight of
element in
alloy (kg) Cost ($/kg)

Mg 3.64 0.918 3.342 0.959 3.491
Zn 1.32 0.010 0.013
Al 1.54 0.092 0.142 0.041 0.063

Rare Earth Elements 15.43 0.033 0.509
Total
materials
cost ($/kg)

3.497 4.063

For the low density properties of magnesium to be preserved, the alloying elements
used must also be light.  Aluminium is often present as it solid-solution strengthens
the magnesium, it also improves the castability of the melt and decreases the
microporosity of the as-cast alloy.  The generic magnesium alloy contains aluminium
and consists of two phases:
 α-Mg solid solution
 β-Mg17Al12 [6].

The interdendritic β phase has a low melting point [19] and has been shown by
Powell et al. (2001) to be responsible for the low creep resistance of Mg-Al alloys
[20].  There can be as much as 10 vol% Mg17Al12 precipitated at the grain boundaries
[15].  The motion of dislocations is not restricted to the basal planes as in pure
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magnesium [15, 21].  The large quantity of the β phase  and the extra slip systems in
AZ91D both contribute to the low creep-resistance of the alloy.

The inclusion of manganese means that commercial magnesium alloys can possess
very high corrosion resistance [9].  Magnesium alloys readily form protective films
that prevent corrison from the environment [22].  This is very effective and no
alloying element has been found to improve the corrosion resistance [22].  However,
galvanic corrosion is a constant threat because magnesium is the most anodic
structural metal [9, 22].  The presence of a cathodic metal, such as iron, and any
electrolyte, will cause galvanic corrosion to occur [7].  Manganese removes iron
impurities from the matrix and forms stable FeMn precipitates [9].  These not only
reduce the corrosion rate to below that of mild steel [22], but they also increase creep
resistance [6, 23].

Zinc increases strength at ambient temperatures through precipitate-hardening and
also increases the fluidity of the melt [5, 23].  The use of zinc is limited to less than
2 wt% to avoid “hot shortness”, which occurs when an alloying element with a low
melting temperature segregates to the grain boundaries.  The material is then likely to
separate along its grain boundaries when it is deformed at temperatures close to the
melting temperature of the segregated region [24].  Hot shortness increases the
brittleness of alloys.

Small quantities of silicon, <0.1 wt%, are often added to magnesium alloys because it
forms stable silicide compounds with aluminium and zinc, producing precipitates that
greatly increase the creep resistance of the alloy [6].

The general properties of magnesium alloys aside from their very high strength-to-
weight ratios (Fig. 6, 7) include good castability and machinability (Fig. 8) [9, 10].
Liquid magnesium has low viscosity which enables the casting of large, complicated,
thin-walled components; it is possible to cast walls as thin as 0.8mm [9].  The die-
casting rate for magnesium alloys can be as much as 25% higher than for aluminium
alloys because magnesium, and its alloys, has a low heat capacity [10].

Fig. 6
Strength-to-weight ratios of common structural materials relative to magnesium [10].
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Fig .7
Densities of common structural metals relative to magnesium [10].

Fig. 8
The machine power needed to perform the same operation on samples of the same geometry
and size, of mild steel and aluminium relative to that of magnesium.

The most common magnesium alloy, and by far the cheapest, is designated AZ91D
(Table 3, page 6).  Its important mechanical properties include high fatigue strength
[25], and, initially, relatively good creep strength and stress relaxation resistance [14]
(Table 4).  However, creep has been observed to occur in AZ91D even at room
temperature [26].
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Table 4
Comparison of the mechanical properties of AZ91D, the die cast aluminium alloy LM24 and
the die-cast zinc alloy BS1004 [9].

Property AZ91D LM24 BS1004
Yield strength (MPa) 160 150 -
Tensile strength (MPa) 230 320 283
Compressive yield strength (MPa) 160 - 414
Elongation (%) 3 1-3 10
Hardness (%) 63 80-85 82
Fatigue strength (MPa) 97 138 476
Density (g cm-3) 1.81 2.79 6.6

Researchers are also interested in AE42, which contains rare earth elements, and
AM20, which has only a small amount of aluminium [6].  These alloys have been
developed for improved creep-resistance and are largely responsible for the recent
interest in magnesium shown by the automotive industry.  Magnesium alloys are now
available that have creep resistance similar to that of aluminium alloys.  Table 5 gives
the creep properties of various magnesium alloys.  AS41 has improved creep
resistance due to the presence of silicon, which forms MgSi2 precipitates [19].  When
the AS41 is die cast, the precipitates are finely dispersed and contribute to creep
resistance [19].  The cause of the relatively high creep resistance of AE42 has been
subject to some debate [20, 27].  The rare earth elements form Al11RE3 precipitates,
which are only stable below 150oC; at higher temperatures they decompose into
Al2RE, Al4RE and Mg17Al12 [20].

Table 5
Creep coefficients for AZ91D, AS41A and AE42 at 100oC and 100MPa using the two power
law formalism εp=at b and εs=c+dt where εp = primary creep strain and εs = secondary creep
strain, t = time and a, b, c and d are constants found by regression [28]

Alloy a b c d
AZ91D 0.078 0.45 0.280 0.0028
AS41A 0.036 0.65 0.116 0.0021
AE42 0.042 0.40 0.117 0.0003

.
The cost of AE42 makes it too expensive to use in automobiles and alternatives with
lower costs are currently being developed.  Several alloys based on the Mg-Al-Ca
system (ACX alloys) have been investigated for creep-resistance [29].  The
experimental ACX alloys have considerably 25% higher creep resistance than AE42
[29, 30].  A strontium containing subgroup of the ACX alloys have shown high
potential for power-train components at the same cost of manufacture as AZ91D [30].
ACX alloys containing zinc, ZAC alloys, have been found to be slightly cheaper than
AZ91D and to outperform both AZ91D and AE42 in applications below 150oC [31].
The ZAC alloys also have slightly more creep resistance than A380, the industry
standard alloy for power-train components [31].

The alloys described above are unsuitable for use in their current form for various
reasons: ACX alloys have been unable to die-cast reliably and ZAC alloys have
exhibited extreme sensitivity to composition [32].  Norada A and Norada N alloys,
have been developed to meet the need for a creep resistant magnesium alloy [28].
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The published results seem promising, but the compositions of these alloys have not
yet been released [28].

All this exciting work developing new and better alloys has lead to older alloys, such
as AZ91D, being abandoned by researchers.  It is possible that the full potential of
AZ91D in automotive design has not been realised.  The purpose of this project is to
be able to predict how stress relaxation will proceed in AZ91D.  This will enable
engineers to make full use of this alloy.

2.3  Creep and Stress Relaxation

Mechanical tests used to quantify both creep and stress relaxation measure the strain
rate sensitivity of the material.  Paetke (1980) has shown that these quantities are the
same, and hence that creep is equivalent to stress relaxation [13].  If a bolt is tightened
onto a component, the total strain on the shank is constant.  However, the initial
elastic strain created by the applied stress can be replaced over time by inelastic, or
creep strain [31].  The accumulation of inelastic strain causes the stress to relax.

Since there is little literature dealing explicitly with stress relaxation, we shall now
consider stress relaxation as a form of creep.  The creep rate is limited by diffusion,
which is temperature dependent [31].  Creep is generally thought of as a high
temperature phenomenon, but the homologous temperature, T/Tm , where T is the
temperature and Tm is the melting temperature, is a useful indicator for when creep
occurs [14].  AZ91D has a tendency to creep at low temperatures as indicated by its
relatively high T/Tm of 0.46 [14, 27].

Creep behaviour can be divided into three stages: primary, secondary, or steady-state,
and tertiary.  In the middle steady-state stage, the strain rate, ε

�
, is described by :

RTQne−Α= σε
�

   (1)
where σ = initial stress, Q = activation energy for diffusion, T = temperature,
R = molar gas constant, 8.314 J K-1 mol-1 and A, n are materials constants [31].

This expression has been empirically derived from creep data using a)
a graph of strain rate against logarithmic stress shows power law dependence
(Fig. 9).

nBσε =⇒
�

(2)
and b)

a plot of logarithmic strain rate versus inverse temperature has gradient 
R

Q−

(Fig. 10).
RTQCe−=⇒ ε

�
(3)

By combining expressions (2) and (3), equation (1) is obtained [31].
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Fig. 9
Graph of strain rate versus logarithmic stress used to derive (2).  Typically, 83−≈n .

Fig. 10
Graph of logarithmic strain rate versus inverse temperature used to derive (3).

There are several creep mechanisms which include dislocation (power law) creep and
diffusional (linear-viscous) creep.

log σ
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Fig.11
Deformation mechanism map for pure magnesium with a grain size of 0 .1 mm [32].  LT creep
and HT creep are low and high temperature creep, respectively.

At small stress levels, diffusion creep is the dominant mechanism (Fig. 11).  The
applied stress acts as a driving force for diffusion through the grains and is relieved by
grain elongation.  For high homologous temperatures, as in the case of magnesium,
bulk diffusion through the crystal lattice occurs [31].

At large stress levels, and at temperatures greater than 0.3Tm, dislocation creep occurs.
When a precipitate blocks the path (ie pins a dislocation) there is often a component
of the glide force which creates a climb force, which tries to push the dislocation out
of its slip plane.  The dislocation can only move upwards if the atoms in the plane
below it are able to diffuse away.  The climb unpins the dislocation from the
precipitate, allowing further slip to occur.  Dislocation climb has been found to be the
rate-controlling dislocation reaction for magnesium based alloys at temperatures
below 150oC [6, 23, 26].  In pure magnesium, the movement of dislocations is
restricted to the basal planes, while in alloys, such as AZ91, the presence of
precipitates causes climb to occur [23].  Mg17Al12 precipitate grows on the basal
planes, causing pinning and promoting dislocation climb.  The hardening mechanism
changes during this process from solid solution hardening to precipitation hardening
[23].  Creep will occur when the amount of precipitate exceeds a certain level, and
therefore the creep rate is dependent on the amount of supersaturated alpha-
magnesium [23].
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3.  Summary of Models in Current Use

In this section I will review the models currently used to simulate stress relaxation.

Several models for creep and stress relaxation have been developed which are based
on the motion of dislocations [13].  However, researchers have not yet been able to
develop an analytical model of stress relaxation or of creep.  There are a large number
of variables involved, such as details of the composition, microstructure, temperature,
time, and applied force.  Such a large number of variables suggests that this problem
is one too complicated for theorists to solve completely.  The models currently in use
are based on a mixture of the understood theory and empirical techniques.

Magnesium is a brittle material and so the primary stage of creep has relatively small
duration.  Cavitation growth, which marks the onset of tertiary creep, does not occur
if the sample is in compression, in which case there is no tertiary creep [16].
Secondary creep is widely accepted as the only relevant creep process and all the
models focus on it.  Experiments have shown that steady-state creep of magnesium
obeys the conventional power law (1) [21].  Researchers in steel have produced
various empirical models for stress relaxation and creep, the general forms of which
should be applicable to magnesium alloys.

A two parameter creep equation has been used successfully by Ellis et al. (2000) to
model stress relaxation in stainless steel [33].  This is given by:

( ) δ

ε
ε



















−−=

+1

11
m

rr t

t
                            (4)

where ε = strain, εr = strain to rupture, t = time, t r= time to rupture and m, δ are
material constants.

This dimensionless equation amounts to strain being proportional to time, in some
power law determined by the material [33].  Despite the physical underpinning of this
equation, it is an empirical equation; the constants m and δ are determined using
regression analysis.

Similar power laws, based similarly on strain being proportional to time, include

βαε += tlog (5)
where α and β are constants that depend on the applied stress [34] and

dtcat s
b

p +== εε   ; (6)

where εp = primary creep strain and εs = secondary creep strain [26, 35].  These
approaches are very similar to each other in that they are all regression analyses.  The
only advantage of one over another would appear to lie within the data set being
considered i.e. one data set might be closer to (5) than (6).  The regression analysis
performed to obtain (5) used an exponential function in its fitting.  The analysis used
to obtain (6) divided the data into two regions before performing a regression on each
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part.  The primary creep strain was found to be best fitted by a power law and the
secondary strain by a linear relationship.  This is contrary to the results of Ashby et al.
(1982), which suggest a power law relationship for secondary creep [31].

Equations (4) to (6) are limited in scope to cases where the bolt and the material being
bolted have similar thermal expansion coefficients.  This is not the case for the bolting
of magnesium, or aluminum, by steel bolts.  Differing thermal expansion coefficients
will create differing distributions of stress as temperature changes.  Various authors
have considered this problem and have developed a compliance-based approach [36,
37, 38].  Compliance is related to stiffness in the following way:

[ ] [ ] 1−= ijij CS (7)

where Sij is the stiffness matrix and Cij is the compliance matrix.
It is often easier for engineers to measure and calculate the compliance and so it is a
substitute for stiffness.

As for (4) to (6) the compliance approach is empirical, as there is no physical
justification for the compliance to be the only determining factor in stress relaxation.
The dependence of compliance on time is given by







+

+
=

)(
)( 0

0 tCC

CC
FtF

bf

bf

(8)

where F(t) = residual force in bolt, F0 =initial force, Cf = compliance of fastener,
Cb

0 = initial compliance of bolt and Cb(t) = compliance of bolt at time t.

A more complicated expression considering thermal expansion has recently been
derived from the dimensions of the fastener [16].

( )

MgMg

Mg

ww

w

bb

b

bbwwMgMg

EA

l

EA

l

EA

l
K

lll
K

TT
TFTF

++=

++
−

+= ααα)(
)()( 0

0

(9)

where the subscripts Mg, W and b refer to magnesium, washer and bolt respectively,
α = thermal expansion coefficient, l = length, A = stressed area, E = Young’s modulus
and F(T) = residual force at temperature T .
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4  Neural networks

The problem of stress relaxation is a complicated one.  The movement of dislocations
during stress relaxation has been studied and various theories developed, but no
analytically consistent method [13, 40].  The number of variables involved means that
to produce an empirical model, assumptions, based on known mechanisms, need to be
made, for example that the strain rate has a power law dependence [41].  A linear
regression model is likely to be inadequate since generalisation beyond the data set is
known to be poor because there is no justification for linearity [42, 43].  A more
general regression technique is a neural network [44, 45].

Mathematically, a neural network may be described by the mapping

x → y (x; w, 
�

)            (10)

where the parameters defining the physical problem form the input vector x, the

vector w contains the weights and �  describes the architecture of the network [43,
44].  A neural network requires a minimum of three layers: input, hidden (of which
there may be more than one) and output [42].  Each input is connected to all the units
in the hidden layer; the set of connections formed by each input is called a neuron
(Fig. 12) [41].  The connections in the hidden layer are each assigned a weight and
there are also weights on the connections between hidden layers and between the final
hidden layer and the output.  Initially the weights are randomised, and then during the

creation of the model a learning algorithm optimises the weight vector so that the
objective function is minimised [41, 42, 43, 44, 46].
Fig. 12

weights

Inputs

Hidden units

Output

x1

f(a)
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Schematic diagram of a neural network with two inputs, x1 and x2.  The function f(a) is applied
in the hidden units and the function y(a) is applied at the output neuron.
The objective function in this case is the sum squared error:

( )( )∑∑ −=
m i

m
i

m
iD ytE

2)()( ;
2

1
)( wxw              (11)

where m = current set of data points, )(m
it = ith component of the target vector (the

known value which the output of the network should reproduce); ( )wx ;)(m
iy  = ith

component of the output vector as function of the input vector, x, and the weight
vector, w [44, 46].

To favour small values of w, and thus avoid overfitting the model [44], the objective
function is often modified to:

αβ WD EEM +=)(w              (12)

where ∑=
i

iW wE 2

2

1
  , and α, β are constants [44, 46].

The hidden layer is not just concerned with the application of weights to the inputs.
Here a, usually, non-linear function is applied to the input [41, 42, 44, 46].  The
output is produced as a combined effect of the hidden unit functions on the inputs.  If
the weights have been correctly optimised an output function of any form can be
simulated by overlaying many functions in the hidden units.  A popular choice of
function is the hyperbolic tangent since it any curve can be reproduced by a
combination of them (Fig. 13) [41].  This may be represented mathematically as:

)( )1()1(
jj afh =       (13)

)( )2()2(
ii afy =       (14)

where xl = lth component of input vector x, w = weights, θ = biases (a random value
drawn from a Gaussian distribution), hj = output of jth hidden layer and yi = ith
component of output vector y.  For example, f (1)(a)= tanh(a) and f (2)(a)=a [44].

The process of optimising the weights is often referred to as “training the network”.
This is done using half of the data (the training dataset).  The weights are adjusted
until the predicted output is close to the real output [43].  The remaining data are used
to test the model.  As training progresses, the model is able to fit the training dataset
with increasing accuracy.  Whilst the error on the training data should decrease as the
complexity of the model increases, the error on the test set should reach a minimum
value before starting to increase (Fig. 14) [43, 44, 46].  It is possible for the model to
become so complex that it starts to model the noise in the data rather than the
underlying physical trend [43, 46].  This is one of the hazards of using nonlinear
methods such as neural networks and is known as “overfitting” [41, 44, 46].  When
the test error begins to increase, the model is as complicated as it needs to be to model
the data but training continues in order to create a committee [43].  The committee is
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used to avoid overfitting by including the “best” parts of various submodels3.  The
poor predictions made by a submodel are ignored in favour of better predictions made
by other submodels.

Fig. 13
Sketches
showing
the
flexibility
of single
tanh
curves.
The graph
on the left
shows the
functions

y = tanh(cx) for
various c, the
graph on the
right shows a
combination of
tanh curves
given by y =
f(x) where f1 =
ctanh(cx) and f2

= d + tanh(-dx)

                                                
3 Here a submodel is one small network generated from one set of weights and random values.  The
term model refers to a committee model, made from several submodels that are amalgamated into the
committee so that the best parts of each model are preserved, but the poorer parts have little influence
over the output.
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Fig. 14
Comparison of test error and training error as model complexity increases [44, 46]

The complexity of the model may be described by the number of submodels that it
contains.  Despite the fact that the submodels may contain different numbers of
hidden units, it is usually the case that two submodels are more complicated than one.
Therefore the number of submodels used to form a committee can be determined from
a plot of the test error.  To make this plot, the errors of the individual submodels are
amalgamated to form the Combined Test Error (CTE) [44, 46].  The optimum number
of submodels is the one with the minimum value of test error.

To choose the best submodels to go into the committee, the submodels are ranked by
either increasing Test Error (TE)

TE= ( )( )∑∑ −=
m i

m
i

m
iD ytE

2)()( ;
2

1
)( wxw              (15)

or decreasing Log Predictive Error (LPE)
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mm yt πσ
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+−∑            (16)

where σy = perceived noise in the relevant submodel [44, 46].

MacKay has shown that the traditional use of TE may be misleading and that LPE is a
better measure of prediction accuracy [44, 46].

All the models created were based on the Bayesian approach to neural networks
developed by MacKay [44, 46, 47], in which information about uncertainty is
included through the use of Bayes’ theorem [46].  Practically, this means that the
models make predictions with error bars that show the error in fitting the model, ie the
uncertainty in the model.  The error bars shown in subsequent graphs show the
combined fitting error and the perceived noise.
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5  The Models

In this section I will discuss the data from which the models were created.  Next I will
describe how the models discussed in Section 3 can be used with a neural network.
Finally I shall give the details of the construction of each model.

The database used for creating the models contained the following variables:
 temperature
 torque used to tighten the bolt before the experiment began
 stiffness of the bolt
 initial force on the bolt
 area under the flange of the bolt and in contact with the AZ91D
 time

The output of the models is the residual force in the bolt, as a function of the above
variables.

The distribution of the experimental data is shown in Fig. 15.  It shows where the
models will produce predictions with small errors.  Certain variables were restricted
to specific values, for example three sizes of bolt were used, with three flange areas.
This is why the information space for some of the variables appears to be discrete.

Fig. 15

(a) (b) (c)

(e) (f)
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Graphs showing the information space in the original database as used to create the models.
The graphs show the measured force against (a) initial force, (b) torque, (c) area, (d) stiffness,
(e) temperature and (f) time.
The following models were created:
 Model 1 using the original database
 Model 2 using the original data and diffusion equation inputs
 Model 3 using only the diffusion equation inputs
 Model 4 using inputs based on the empirical compliance approach.

The equation for steady state creep,
RTQne−Α= σε� (1)

includes the influence of diffusion on the creep process [31], but is an equation for
strain rate, which was not in the original database.  Integrating this equation to give an
expression for the strain as a function of temperature and time, suggested the physical
inputs of 1/T, lnσ and lnt.
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In order to ensure that the best possible model was created, these “diffusion” inputs
were added to the original data to create Model 2 and were used alone to create Model
3.  In doing this it was possible that Model 2 would be biased, but it may also reveal
relationships in the data that were unsuspected.

The expression for compliance was taken from the work of Yang et al. [37], which
shows that the force present in the bolt can be written in terms of the “bolt
compliance”







+

+
=

)(
)( 0

0 tCC

CC
FtF

bf

bf

      (7).

where F(t) = residual force in bolt, F0 =initial force, Cf = compliance of fastener, Cb
0

= initial compliance of bolt and Cb(t) = compliance of bolt at time t.

Bolt compliance is defined as the ratio of the deformation of the bolt to the applied
load [37], and as such is related to stiffness.

AE

T
C flangef ∑=            (17)

where Tflange = thickness of the flanges clamped by the bolt, A = bolt area, E =
Young’s modulus of bolt.

Fitting a power function of the form  βα mt+   to the creep curve produced by the
experimental data gives the following expression for the creep strain of the bolt:

βαε 2.0)( tt +=            (18)
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Hence, the time dependent compliance term can be expressed as

( )βα ′+′= 2.0)( t
A

T
tC hb               (19)

where α’  and β’ are 
σ
α

 and 
σ
β

 .

Then (7) can be approximated by   
A

t
C

2.0

~            (20)

[37, 384].  The inverse of C is used as an input to Model 4.  Therefore Model 4
actually has two stiffness inputs.

The inputs to the various models are shown in Tables 6 and 7.

Table 6
Shows which inputs were used for each model and the units used.

Input Units Model 1 Model 2 Model 3 Model 4
Temperature oC
Torque N m
Stiffness kN µm-1

Initial Force kN
Area mm2

Time h
1/T K-1 5

lnσ kN mm-2

Lnt h
1/C h0.2 mm-2

Table 7
A basic statistical analysis of the database used to create the models.  The very large
standard deviations correspond to inputs with discrete information spaces.  The units are as
before.

Temperature Torque Stiffness
Initial
Force Area Time

Minimum 75 6 0.10 3.84 105 0

Maximum 135 43 0.35 21.5 249 1536

Mean 105 19.97 0.19 10.3 166.37 341

Standard
Deviation

15.21 14.3 0.08 5.72 63.74 550.59

                                                
4
 There is some disagreement over the exponent Chen et al. (1997) use 0.3 [38] whereas, Yang et al.

(1999) use 0.2 [37].  The use of 0.2 in this work was decided by the toss of a coin.
5 Units of oC-1 were used to allow consistency within Model 2.
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5.1  Model 1

Model 1 displayed a clear minimum value for its CTE at nine submodels (Fig. 16).
The submodels were chosen to maximise LPE and the largest σν value (perceived
noise) of any of the submodels was 0.11468.  This is less than half the experimental
error of 0.23 (Appendix C).

Fig. 16
The graphs used to determine the size of the committee of submodels for Model 1: (a)
perceived noise (σ) vs number of hidden units; (b) CTE vs number of models; (c) LPE vs
number of hidden units; (d) TE vs number of hidden units.

A maximum of 10 hidden units was used when creating Model 1.  It was found that
increasing the number of hidden units to 20, as done for the other models, resulted in
exactly the same committee.

The model was tested by predicting the results given in the experimental database.
The graph of predicted force versus actual force (Fig. 17) shows that almost all the
error bars of the data points intersect the line of the perfect model: predicted result
equals experimental result.

(a) (b)

(c) (d)
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Fig. 17
Graph of actual, or experimentally measured, force versus force predicted by Model 1.  The
dashed line shows the perfect correlation of predicted = actual.  This is a committee
prediction using the entire original dataset.  The error bars represent a combination of the
fitting error and συ.

Fig. 18
Bar graph showing the relative significance, σw, of the inputs to Model 1.

The relative significance of the individual inputs can be determined from the weights
[47].  These values should support the physical theories of stress relaxation; time and
temperature should be the most important factors in determining the amount of stress
relaxation.  The time was by far the most significant input; it was nearly 20 times
more significant than any of the others (Fig. 18).  Temperature and starting force were
also significant which agrees with the basic creep equation (1) because the stress
involved is the initial stress, closely related to initial force.  Torque was almost
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completely insignificant as expected.  It would have been very surprising if the
residual force had been dependent upon how the bolt was tightened.  The very small
significance of torque, lead to it being omitted from subsequent models.

Model 2

Model 2 has an increasing function for its CTE (Fig. 19), so only one submodel was
chosen.  The perceived noise (0.02269) was much lower than that of Model 1.

Fig. 19
The graphs used to
determine the size
of the committee of
submodels for
Model 2: (a)
perceived noise (σ)
vs number of hidden
units; (b) CTE vs
number of models;
(c) LPE vs number
of hidden units; (d)
TE vs number of

hidden units.

The graph of predicted against actual
shows very close agreement between
the original data and the predicted
results (Fig. 20).

The initial force input was found to be
the most significant, followed by
temperature and area (Fig. 21).

(a) (b)

(c) (d)
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Fig. 20
Graph of actual, or experimentally measured, force versus the force predicted by Model 2.
The dashed line shows the perfect correlation of predicted = actual.  This is a committee
prediction using the database used to create this model.  The error bars represent a
combination of the fitting error and συ.
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At first sight, the difference in the significance of time between Model 1 and Model 2
is surprising.  However, the σw values are not measuring the sensitivity of the output
on the input, they are partial correlation coefficients.  This means that it is not correct
to directly compare the σw values.  A more scientific method for comparing models to
use both models to make the same prediction and to compare the results, both with
each other and with accepted physics.

It is clear that the initial force and the clamping force are highly likely to be
proportional.  Model 1 makes such a prediction but Model 2 makes a very strange
prediction (Fig. 22).

Fig. 22
Comparison of the predictions made by Model 1 and Model 2 for the affect of varying the
initial force.  Graph (a) shows the prediction of Model 1, which is almost the line
y = x, as expected.  Graph (b) shows the prediction of Model 2, which is clearly unphysical.
The error bars represent a combination of the fitting error and συ.

There are three possible reasons for the poor behaviour of Model 2: it could be a poor
model or biased or overfitted.  Introducing physical inputs may produce a better
model, but they may also bias the model by obscuring “hidden” relationships within
the data in favour of relationships that scientists predict.  Overfitting occurs when the
model fits the data too closely and starts to model the experimental noise rather than
the underlying physical trend.  It is not clear whether Model 2 is biased or overfitted
but this model is unphysical.  I think that the very small level of noise supports the
proposition that this model is overfitted.  There was no further development of this
model.

(a) (b)
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5.3  Model 3

Model 3, like Model 2, has an increasing function for its CTE (Fig. 23).  The
perceived noise (0.1243) was slightly greater than that of Model 1.

Fig. 23
The graphs used to determine the size of the committee of submodels for Model 3: (a)
perceived noise (σ) vs number of hidden units; (b) CTE vs number of models; (c) LPE vs
number of hidden units; (d) TE vs number of hidden units.

The correlation between predicted and actual force is low; the extent of the error bars
is not sufficient to explain the large amount of scatter away from the line y = x
(Fig. 24).

The initial stress term was found to be the most significant, and was more than twice
as significant as the time input which was more than twice as significant as the
inverse temperature (Fig. 25).

(a) (b)

(d)(c)
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Fig. 24
Graph of actual, or experimentally measured, force vs the force predicted by Model 3.  The
dashed line shows the perfect correlation of predicted = actual.  The error bars represent a
combination of the fitting error and συ.

Fig. 25
Bar graph showing the relative significance of the inputs to model 3.
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5.4  Model
4

The CTE of
Model 4 is

minimised by 17 submodels, making this model more complicated than the other
three (Fig. 26).  The perceived noise (0.03097) was much lower than that of Model 1.

Fig. 26
The graphs used to determine the size of the committee of submodels for Model 4: (a)
perceived noise (σ) vs number of hidden units; (b) CTE vs number of models; (c) LPE vs
number of hidden units; (d) TE vs number of hidden units.

The predicted versus actual force graph shows very close agreement between the
original data and the predicted results (Fig. 27).

The initial force input was found to be the most significant, followed by compliance
and temperature (Fig. 28).  This is reminiscent of Model 2, but the trends produced by
Model 4 appear to be physical (Fig. 29).

(a)

(b)

(d)
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Fig. 27
Graph of actual, or experimentally measured, force vs force predicted by Model 4.  The
dashed line shows the perfect correlation of predicted = actual.  The error bars represent a
combination of the fitting error and συ.

Fig.
28
Bar graph showing the relative significance of the inputs to Model 4.
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Fig. 29
Comparison of the predictions made by Model 1 and Model 4 for the affect of varying the
initial force.  Graph (a) shows the prediction of Model 1, which is almost the line y=x, as
expected.  Graph (b) shows the prediction of Model 4, which contains more uncertainty but
also follows the same physical trend.  The error bars represent a combination of the fitting
error and συ.

The obvious extension of the project, a model with the same inputs as Model 3 but
with stiffness added, was disappointing.  The perceived noise was slightly lower than
in the case of Model 3, but the predictions had huge levels of uncertainty.  The cause
of this is unknown and the model was abandoned.

(a) (b)
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6  Results

In this section the predictions of all three models are compared.  Only one input was
varied for each prediction so that the effects of that variation are clear.  The
predictions were made for varying time, area, initial force, stiffness and temperature.

All of the models assume continuous creep in one long thermal cycle.  It is unlikely
that a bolted component will be exposed to such a cycle; for car engine components,
interrupted creep over numerous thermal cycles must be assumed.  Recent work by
Regev et al. (2001) compares interrupted and continuous creep in AZ91D and shows
that the continuous creep assumption leads to consistent underestimates of joint life
[22].  Therefore in safety critical situations these predictions should be used with
caution as a performance upper bound.

6.1  Time

Engineers wanting to use magnesium components in a car engine are most interested
in the performance of the bolted joints as a function of time.  The trends produced by
all three models show the expected decrease in force as time increases (Fig. 30).  The
error bars are small and do not increase significantly beyond the edge of information
space.  This indicates that the relationship between force and time is modeled well.
The disparity between the magnitudes of the predicted forces shows that each model
has a different functional relationship between force and time.  The predictions made
by Model 1 and Model 2 agree, although Model 2 is less uncertain than Model 1.  The
prediction made by Model 4 is significantly higher than those of Models 1 and 2.
Also the force appears to be approaching a limit greater than zero.  These facts
suggest that Model 4 has not made a physical prediction.

At the start of the experiment the bolt is strained elastically.  This strain is gradually
converted to plastic strain as the creep process begins.  The effect of this is an elastic
shortening of the flanges and the bolt shaft [37].  The magnitude of this effect has
been shown to be small and has been neglected without compromising the results
obtained [37].  The results of Albright et al. (1991) show that the residual stress in the
bolt decreases rapidly and does not reach a linear regime until five hours have passed
[48].  This is consistent with the rapid decrease in force predicted by all models
(Fig. 20).  The time-force curve predicted by Model 3 is the same shape as examples
found elsewhere in the literature [48, 49].  The prediction made by Model 1 is almost
linear and the prediction made by Model 4 approaches the wrong limit.

Model 1 Model 3
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Fig. 30
Graphs showing the predictions made for
residual force as time varies.
Temperature=105 oC, Torque=17 N m,
Stiffness=0.11 kN µm-1, Area=165
mm2, and Initial force=9.74 kN.  The
dotted line marks the start of
extrapolation.  The error bars represent
a combination of the fitting error and
συ.

The models were tested over a range
of temperatures (Fig. 31).  Model
1 handles predictions for
temperatures within the
information space well, but for 20 oC
the prediction is less good.  At room temperature there should be much less diffusion
of magnesium than at 100 oC and so there should not be as much stress relaxation as
at 100 oC.  The predictions made by both models agree in that it is possible to draw a
line through the prediction made by Model 1, which lies within the prediction of
Model 3.  Model 3 predicts an almost horizontal line for 20oC, but with large error
bars.  This shows that the model is uncertain because it has no data at temperatures of
20oC but the prediction follows standard diffusion behaviour.  For 130oC, the Model 3
prediction shows that no force will be present in the bolt after 650 hours; this time
period is short enough to be consistent with the accepted maximum service
temperature of 125oC [32].

Fig. 31
Predictions for residual force as time varies and at different temperatures using (from left to
right) Models 1 and 2.  Torque=17 N m, Stiffness=0.11 kN µm-1, Area=165 mm2 and Initial
force=9.74 kN.  The error bars represent a combination of the fitting error and συ.  Both
graphs show the prediction made by the model at zero time rather than the initial force.

Model 4

Model 3
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The graphs in Fig. 30 show the prediction of force at zero time.  For Model 3, the
error bars include the initial force of 9.74 kN.  In the case of Model 1, the initial force
is predicted to have a minimum value of around 15 kN.  This is evidence that Model 1
is unphysical since the initial force is given as an input and yet this model cannot
predict it successfully.

6.2  Area

Model 1 gave a linear increasing prediction for the residual force as the area in
contact with the flange is increased (Fig. 32).  Physically, a larger contact area
reduces the stress in the bolt and hence there is less stress relaxation as can be seen by
remembering that in this case

A
F

σ=              (19)

where F = force, σ = stress and A = area the stress is applied to6 and so for a given
stress, increasing area decreases the residual force.  The prediction made by Model 1
is therefore wrong.  The same trend can be seen in the prediction made by Model 4.
Fig. 32

                                                
6 A here is the same as the A in the compliance calculations used in Model 4.

Model 1 Model 3

Model 4
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Graphs showing the predictions made for force as area varies.  Temperature=105 oC,
Torque=17 N m, Stiffness=0.11 kN µm-1, Initial force=9.74 kN and Time=6 h.  The error bars
represent a combination of the fitting error and συ.  The prediction made by Model 3 is based
on varying the lnσ  input.

The prediction made by Model 3 is the only one to agree with the physical trend that
increasing area should decrease the force.  The strange form of the error bars in the
prediction could be a result of area not being an individual input to Model 3.  The
effect of area is incorporated in the lnσ input, so increasing area reduces the initial
force.  As shown below, initial force is proportional to the residual force and so the
strange shape of the prediction is actually correct.  For the first portion, where the
residual force is shown to increase, the effect of reducing the initial force is not very
significant.  However, when the area increases to about 100 mm2, the initial force
effect becomes dominant and the overall trend shows a decrease in clamping force.

6.3  Initial Force

The initial force, Fstart, is given by

A
F start

start

σ
=               (21)

where it is assumed that   startσσ ∝

startFF ∝∴ .             (22)

The predictions should be of the form of a linear increasing function (Fig. 33).

Model 1 makes such a prediction, as does Model 4, albeit with some variation in the
error bars.  Model 3 predicts a curve with a turning point at a starting force of 17 kN,
however the subsequent error bars are large and could contain a curve that continued
to increase beyond this.  The predictions of Model 3 for area and starting force are
related mathematically in a y = f(x) and y = constant - f(x) relationship, ie one curve is
a scaled reflection in the line y = constant of the other.  This is confirmation of the
effect of the combined lnσ input discussed above.

The prediction made by Model 1 is fundamentally wrong, despite having the correct
shape.  The predicted force for zero initial force is about 3 kN, which is simply
impossible.  For low initial forces the other models have large error bars which
include zero.
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Fig. 33
Graphs showing the predictions made for force as initial force varies.  Temperature=105 oC,
Torque=17 N m, Stiffness=0.11 kN µm-1, Area=165 mm2 and Time=6 h.  The error bars
represent a combination of the fitting error and συ.  The prediction made by Model 3 is based
on varying the lnσ input.

Model 1 Model 3

Model 4
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6.4  Stiffness

Model 3 does not have stiffness as an input and so it cannot make predictions for the
behaviour of stiffness, although the effect of stiffness is included implicitly in the
stress.  Both Models 1 and 4 predict a decreasing trend for the residual force as the
stiffness is increased (Fig. 34).

Fig. 34
Graphs showing the predictions made for force as stiffness varies.  Temperature=105 oC,
Torque=17 N m, Area=165 mm2, Initial force=9.74 kN and Time=6 h.  The error bars
represent a combination of the fitting error and συ.  There is no prediction for Model 3 because
it does not include stiffness as an input.

Comparing the stress-strain curves for high stiffness and low stiffness materials shows
that relaxing to a given strain will result in different amounts of stress relaxation; the
high stiffness material will have a much larger amount of stress relaxation than the
low stiffness material (Fig. 35).  Therefore using a material with a small Young’s
modulus for the bolt will reduce the stress relaxation when compared with a bolt that
has a high Young’s modulus.  This effect could also be achieved by using a washer of
a low Young’s modulus material.

The calculations not only predict the physical trend, but the models agree very well
with each other and there is scope within the error bars for both models to be making
the same prediction.

Model 1 Model 4
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Fig. 35
Sketch showing the effect of stiffness on strain and stress for a given material.  Reducing the
strain by L causes the high stiffness material to relax by stress M+N and the low stiffness
material to relax by stress N.

6.5  Temperature

As temperature increases, the amount of diffusion increases exponentially causing the
residual force to decrease (1).  All three models predict this trend (Fig. 36).

At first glance it seems that the prediction made by Model 1 is not physical.  If the
error bars were to permit a linear trend then the shape of the graph could be excused
as being due to uncertainty.  It is not possible to draw a straight line through the error
bars of Model 1’s prediction.  Therefore, if the prediction is physical, either the plot
has a minimum or the curve asymptotically approaches the temperature axis.  A
minimum is completely unphysical, since differentiating the creep equation (1) with
respect to temperature gives

RTQneA
RT

Q

dT

d −−= σε
2

�
           (23)

which has no turning points.  However, there would not be any turning points if the
curve were asymptotically approaching the axis.  The error bars show a 65%
confidence interval (1σ).  A confidence interval of 95% (2σ) would permit a linear
trend, without either a turning point or asymptotic behaviour.  Therefore it is not clear
whether the temperature dependence of Model 1 is a physical prediction.
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Fig. 36
Graphs showing the predictions made for force as temperature varies.  Torque=17 N m,
Area=165 mm2, Stiffness=0.11 kN µm-1,Initial force=9.74 kN and Time=6 h.  The error bars
represent a combination of the fitting error and συ.  The prediction for Model 3 is shown in oC
(rather than in K) to aid comparison.

Model 1 Model 3

Model 4
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7  Application of Model

In 1997 Chen et al. conducted experiments in bolt load retention on a variety of
magnesium alloys [38].  The models detailed above were used to attempt to reproduce
these results.  Before this work could begin, it was necessary to convert the results of
Chen et al. (1997) from the dimensionless F(t)/Fstart format to F(t).  Various data
points were taken and mathematical software was used to make a regression analysis
of the curves, which were then plotted (Fig. 37).

Fig. 37
Reproduction of Chen et al. (1997) results, un-normalised.

The predictions of the various models are shown, with error bars that include the
fitting error and σν; Chen et al. did not publish their experimental errors (Fig. 38).
These plots are on the same scale as Fig. 37.

The models all predict curves of the same shape as the results that Chen et al.
obtained.  The error bars are large because the temperature of Chen et al.’s
experiment, 175oC, was much greater than the highest temperature, 130oC, in the
original dataset.  The high temperature also explains why the models all predict total
relaxation by about 100 hours, independent of the initial force.  Where the predictions
appear to be missing, they were negative, implying total relaxation.
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Fig. 38
Predictions of Chen et al’s results, without and
with error bars.  The error bars represent a
combination of the fitting error and συ.
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A glance at Fig. 28 shows that only Model 3 predicts almost complete relaxation of
stress after 100 hours.  The other models show residual stresses of appreciable
magnitude continuing even after 150 hours.  This is especially true when the initial
force was large.  The asymptotic behaviour seen in the predictions made by Model 1
and Model 4 is not desirable.

The prediction made by Model 3 shows very rapid relaxation for small loads.  To try
to reproduce this effect more closely, Model 5 was created using the same database as
Model 3, and the same inputs, but with Chen et al.’s data included.

The level of perceived noise (0.11286) in Model 5 was similar to that of Model 3
(0.1243).  The additional data increased the complexity of the model; five submodels
were used in the committee (Fig. 39).

Fig. 39
The graphs used to determine the size of the committee of submodels for Model 5: (a)
perceived noise (σ) vs number of hidden units; (b) CTE vs number of models; (c) LPE vs
number of hidden units; (d) TE vs number of hidden units.

(a) (b)

(c) (d)
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The graph of predicted force against actual force is shown in Fig. 40.  This graph
shows almost exactly the same distribution of points as the equivalent graph for
Model 3.  This similarity is expected and shows that if the previous predictions for
Model 3 were repeated with Model 5, they would be very similar.

Fig. 40
Graph of actual, or experimentally measured, force versus force predicted by Model 5.  The
dashed line shows the perfect correlation of predicted = actual.  This is a committee
prediction using the entire dataset.  The error bars represent a combination of the fitting error
and σν.

Fig. 41
Model 5’s predictions of Chen et al’s results, without and with error bars.  The error bars
represent a combination of the fitting error and συ.
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The predictions made by Model 5 are shown in Fig. 41.  The relaxation behaviour is
closer to the published results than Fig. 38.  The improvement in this prediction
illustrates the improvements that are possible with only a small amount of additional
data and underlines the advantages of a physically based model.
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8  Determination of the activation energy for stress
    relaxation of magnesium

The equation for steady-state creep

RTQn
s eA −= σε	 (1)

can be applied to the data and from this a value of Q obtained [50].  A plot of ε
ln
versus T1  should be a straight line with gradient RTQ− , for a regime of constant
stress [50].  The models do not calculate the strain rate, or even the strain but the
strain rate can be estimated as:

( )12

21

ttAE

FF

−
−

=ε�            (24)

where Fi = the residual force at time ti, A = area and E = Young’s modulus of the bolt.

The linear approximation for the relationship between ε and ε�  is justified because the
strain intervals are small.  Blum et al. (1991) include an ε
  - ε  for AZ91D at 135 oC
which shows that for strains below 0.075, the relationship is approximately linear
[14].  This further justifies the above approximation.

Model 3 was used for this calculation since it correctly produces physical trends.  The
graphs are shown in figures 42 – 45.  The results given in Table 8 are for the first 10
hours of stress relaxation.  Results beyond this point gave decreasing values for Q,
with little difference between the value of Q for different starting stresses by 100
hours.

Table 8
Results for Q.  The stress was applied to a bolt with area 165 mm2  at a temperatures from
75-150 oC.  The regression (best fit), minimum and maximum values of Q are given.  The
minimum and maximum values were found from the lines of maximum and minimum gradient
that could be drawn within the error bars shown in Figs. 40 - 43.  The error bars define the
65% confidence interval.

Stress
(MPa)

Best fit value of
Q (kJ mol -1)

Minimum value of
Q (kJ mol -1)

Maximum value of
Q (kJ mol -1)

50 55 12 71
75 122 25 175
100 104 -100 291
125 55 -166 299

These results show some agreement with the published value of 135 kJ mol-1[27].
Other authors have published results of 130 kJ mol-1 [27] and 146.9 kJ mol-1under 100
MPa [21].  The variation in these results are consistent with the parts of information
space that are known.  The stresses found in the database are between 36 MPa and
86MPa.  The amount of uncertainty in Q increases as the stress increases.
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Although these results show large intervals within which Q could be, all of these
intervals contain the published value.  For a stress of 75MPa, the model calculates Q
to be 122 kJ mol-1 , which is 90% of the published value.  Given that the perceived
noise in Model 3 is 12%, this shows that Model 3 is accurately reproducing the
physics of stress relaxation.
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 Fig. 42
Graph used to determine Q for a stress of 50 MPa.  The error bars represent the fitting error
for the predicted force.  A line of best fit has been plotted; its equation is given in the form
y = mx+c.  The R2 value is a measure of how well the line is fitted to the data.  R2 is defined by
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Fig. 43
Graph used to determine Q for a stress of 75 MPa.

Fig. 44
Graph used to determine Q for a stress of 100 MPa.
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Fig. 45
Graph used to determine Q for a stress of 125 MPa.
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9.  Conclusion

In this section I shall discuss the predictions and limitations of each model.  Then I
will compare the neural network method used here to the empirical methods
employed by others.  Next I shall consider the problem of stress relaxation set out in
the introduction and consider the advances made by this work.  Finally, I will consider
extensions to this work.

9.1  The Models

9.1.1  Model 1
This model was created using only the data in the database; there were no physical
inputs.  It was instrumental in the project in that the physics it suggested were
followed up in the later models.  However, this model itself was not physical.

Model 1’s predictions for any input other than time do not show physical trends.  The
trend for time itself is not completely physical, as shown by the reproduction of Chen
et al.’s results.  The long term trend for time, accelerated by the high temperature used
in Chen et al’s experiments, shows that a settled residual force is reached, that can be
as much as one quarter of the initial force.  If this were true, then all that would be
necessary to use AZ91D components would be careful preloading at high temperature
in the factory.  In high temperature conditions, total relaxation should occur in a finite
time, therefore Model 1 is unphysical.

9.1.2  Model 2
Model 2 included all the original data inputs used in model and combined these with
the diffusion inputs used in Model 3.  The result could have been very good,
especially given the low level of noise.  This was not the case.  The predictions
produced by Model 2 showed trends that were completely the wrong shape, even in
the known areas of information space.  The model was so obviously unphysical from
such an early stage that very little work was completed using it.

The catastrophe of Model 2 illustrates the dangers of adding inputs, particularly inputs
that duplicate information.  The software used has an automatic relevance
determination facility, which meant that the significance of some of the combined
inputs was very small when compared with the individual inputs.  However, this did
not prevent the introduction of bias.  Model 2 is an example of a poor attempt to
construct a neural network.

9.1.3  Model 3
Model 3 included the diffusion inputs alone, thus avoiding the pitfalls encountered
when running Model 2.  The predictions produced by this model were all physical.  It
was the only model to predict, for example, complete relaxation rather than residual
force decreasing to a constant value.

Model 3 illustrates nicely the improvement in performance possible when physical
insight is used to construct a model, rather than just data.  The contrast with Model 1
is particularly interesting.  The level of perceived noise is similar, despite Model 3
being constructed from a smaller database than Model 1.  The predictions for time for
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these two models are at first glance similar but with larger error bars on Model 1’s
prediction.  Closer inspection reveals that apart from the initial force, the prediction
made by Model 1 is almost linear, whereas Model 3’s prediction shows a curve.  The
curve is what we physically expect, although, it is contained by the error bars of
Model 1.

The predictions made by Model 3 are all physical.  The predictions for area and initial
force, which are linked together in the lnσ input, are physical, but include the effect of
the inputs being combined.  Model 3 is by far the most useful model of the four and
correctly reproduces the physics of stress relaxation.

Model 3 also confirms that stress relaxation can be approximated by steady-state
creep, if it could not then this model would not have been successful.  The correct
calculation of the activation energy for self-diffusion in magnesium at a stress of
75 MPa confirms that self-diffusion is an important mechanism in stress relaxation.
With more data, a more certain value could be obtained.  Also, the calculation of the
activation energy confirms that this model does reproduce the correct physics.

The success of Model 3, and its extension (Model 5), when applied to Chen et al.’s
published results is further evidence that a physical model makes better predictions
than an empirically based one.

Model 3 is the best model produced.  The success of Model 3 and the failure of the
other models underlines the superiority of neural networks with physical inputs over
those without.

9.1.4  Model 4
Model 4 is based on the compliance approach, which postulates that the residual force
is directly proportional to the fifth root of the time and inversely proportional to area.
The predictions produced are all non-physical.  In particular, the residual force does
not appear to experience total relaxation as time progresses, but instead approaches a
constant value, which is greater than the error bars on both Model 1 and Model 3
allow.  The predictions made for stiffness and temperature appear to be physical, but
the other predictions are not.

It is difficult to determine whether Model 4 offers an improvement over Model 1.  It
is certain that this technique is limited in application and that the approximation for
the compliance is wrong.  The link between stiffness and compliance does not seem to
produced a physical model.  The significance graphs of all the models show that the
stiffness is the least important input.  Therefore it is not surprising that a model which
concentrates on compliance (stiffness) is not very successful.
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9.2  Neural networks versus empirical methods

Neural networks are increasingly being used as an alternative to traditional empirical
methods to solve complicated problems.  Traditional regression methods have given
scientists insights into mechanisms, such as the regression based derivation of the
steady-state creep equation (1).  The method of fitting a function to a set of data is
limited to datasets that can be plotted on a graph.  This makes regression a “two-
dimensional” approach.  For problems that are more complicated, many more
dimensions than two are often present.  The graphs of showing the significances of
the inputs to the models, show that at least three inputs are required to describe stress
relaxation, lnσ, 1/T and lnt.  However, lnσ is a compound input containing
information about the applied force, the area it is applied to and information about the
stiffness of the bolt, making stress relaxation a five dimensional problem.  It would be
surprising if an empirical model were capable of reproducing this complicated
problem accurately.

As shown in section 3, there are a variety of empirical methods in use.  Some of these,
[26, 33, 34, 35] are partially based on the steady-state creep equation, others on the
compliance method [36, 37, 38].  The success of Model 3 shows that inputs derived
from the steady-state creep equation can be used to model stress relaxation
successfully.  The advantage Model 3 has over empirical methods is that it can make
predictions outside of its dataset.  These predictions contain a measure of uncertainty,
but the amount of it is shown in the predictions.  This is not possible with a model
based only on a line of best fit.  The failure of Model 4 to make physical predictions
beyond its dataset, clearly illustrates the restrictions of an empirical model.  This
model consistently predicted a residual force that was significantly larger than the
other models.  This failure shows how dangerous an empirical method can be; a car
designed using the predictions made by this model would be unsafe.

The technique of using neural networks is often described as being a “black box”.  I
believe this is partly because the method is defined in terms of frightening equations
but it also illustrates the Achilles heel of the neural network method: it is very
difficult, if not impossible, to discover precisely what is happening inside the
network.  The technique can produce answers, but cannot explain why.  To use a
neural network requires a good physical understanding of the problem and careful
consideration of the likelihood of the results.  Empirical methods are often used for
this.  The form of the relationship between variables cannot be found directly from a
neural network, but an empirical method can determine it.  Both techniques should be
used together when tackling a problem, there should not be “competition” between
the methods but “cooperation”.
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9.3  The future for magnesium alloys in car engines

The demands facing automobile manufacturers for lighter, cleaner and safer cars are
unlikely to diminish.  Today’s generation are more aware of environmental issues
than any before, and they are also conscious of value for money.  Per kilogram, it is
cheaper to process magnesium than aluminium.  The price of pure magnesium, which
dominates the cost of all magnesium alloys, is likely to decrease as demand increases
[9].  The supply of magnesium is at present limited only by the small number of
extraction facilities.  There are many benefits of magnesium over aluminium with the
added bonus of not sacrificing strength.

Magnesium is not the “dream material” it seems to be.  As well as the benefits there is
the problem of stress relaxation.  At present, designs eliminate this small difficulty by
using magnesium only for room temperature applications, body parts etc.  If
magnesium is to be used at higher temperatures, it is necessary to be able to model the
progress of stress relaxation.

Predictions have been made by the models to show the effect of varying all the
defining variables on the residual force.  The engineer is most concerned with the
combined effects of temperature and time.  The predictions of Model 3 show that the
force in the bolt will be less than half the starting force by 250 hours and that at
130 oC total relaxation occurs in 500 hours.  These predictions reveal the severity of
stress relaxation as a design issue.  The large amount of stress relaxation shown to
occur in such a short time period, relative to the lifetime of the vehicle, suggests that
engineers would do better with a different material.

Despite this bleak outlook, it is important to remember that the alternative alloys
available are too expensive for use in cars.  There are alternatives in development, but
it is unlikely that they will be tested and refined to an extent suitable for use in car
engines for some time.  The future of magnesium alloys in car engines is likely to rest
with one of these developmental alloys.  Meanwhile, the technology to use alloys,
such as AZ91D, is available for manufacturers to exploit.  The advantages of
magnesium alloys justify the amount of research interest, it is just not clear that much
progress can be made with AZ91D.

The predictions made by Model 3 suggest that using AZ91D at temperatures around
100 oC is not a good design choice.  Coupled with the results in [23], the predictions
show that at these temperatures AZ91D is severely limited.  The obvious solution of
welding, rather than bolting the components together, is at present not viable.  Not
only are magnesium alloys unsuited to welding, but welding joins makes replacing
parts much more difficult.  As the predictions based on stiffness show, reducing the
Young’s modulus of the bolt will reduce the amount of relaxation.  Lack of data has
prevented the prediction of residual force for other materials, despite the models being
material independent.  It is certain that to use AZ91D the bolts would have to be
carefully chosen.  One possibility would be to use aluminium bolts and another to add
a washer of memory metal alloy.

The problem of stress relaxation will always be present for magnesium alloys, even
when the new generation of (relatively) creep resistant, affordable alloys is available.
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This work shows that the best method for analysing stress relaxation is a neural
network.
9.4  Extensions

These models are material dependent as far as the material the bolt is made from is
concerned.  To extend this to alloy independence would require a database of stress
relaxation data including other alloys.  Then a much more powerful model would be
produced which would enable engineers to compare the new alloys about to emerge
onto the market.

Many of the predictions made contain reasonably large error bars, indicating that the
model is very uncertain about this region of information space.  This problem could
be reduced and a better model produced, simply by adding more data to the database.
This is illustrated by the improvement in Model 5 over Model 3, where the only
difference was that Model 5 had more data.

Some of the inputs to the model, such as area, could almost be described as discrete,
with as few as 3 different values.  In the case of area, the predictions show that
increasing the area decreased the stress relaxation.  If data were available concerning
different areas of contact it would be possible to investigate the affect of bolt
geometry on relaxation, following the work of Pettersen et al. (2001), which shows
that changing bolt geometry has implications for the stiffness [16].  Reducing the area
reduces the stiffness of the bolt, which has been shown to reduce the relaxation.  This
extension combined with using a low Young’s modulus material for the bolt may
make AZ91D a practical material for engine applications.
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11  Appendices

Appendix A – Nomenclature

Inputs to the models are emboldened.  The list is divided into three: the notation
associated with steady-state creep; the notation used to describe the models; and the
notation used in the theory of neural networks.

ε� strain rate s-1

σ initial stress MPa
Q activation energy for self-diffusion in magnesiumkJ mol-1

T temperature oC (sometimes K)
R molar gas constant 8.314472 J K-1 mol-1

12 A constant (only in the context of steady-state creep)
n power law exponent

B, C constants
m, δ power law exponents
ε strain (no units)
t time h
S stiffness kN µm-1

C compliance µm kN-1

α thermal expansion coefficient K-1

l length
A stressed area
E Young’s modulus (usually of the bolt) GPa
Fstart initial force kN
F residual force (model output) kN

x input vector
y output vector
w weight vector
t target vector
θ bias
σν perceived noise
σw significance of input



61

11.2  Appendix B – Calculation of Stiffness

11.2.1  Derivation of stiffness addition rule
By definition, strain  

E

σε =   where σ = stress and E = Young’s modulus.

Also, extension  εLl =∆   where L = total length.

L
E

l
σ=∆∴   and if 

A

F=σ   where F = applied force and A = area then

AE

FL
l =∆

By dimensional analysis7, stiffness  
L

AE

l

F
S =

∆
= .

For two materials in series e.g. a bolt with a steel shaft and an aluminium head, the

strains in each material are given by 
1

1 E

σε =   and 
2

2 E

σε =   for a constant stress.

Total extension  21 lll ∆+∆=∆   where 1l∆ = extension in material 1 and 2l∆ =
extension in material 2.







+=+=+=∆∴

2

2

1

1
2

2
1

1
21 E
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E

L

A

F
L

E
L

E
LLl

σσεε

The combined stiffness  







+

=
∆

=

2

2

1

1

E

L

E

L

A

l

F
SC

Considering  
212

2

1

1 111

SSAE

L

AE

L

SC

+=+=   gives the stiffness addition rule, which

can be extended to add any number of stiffnesses together.

11.2.2  Calculating the stiffness of a bolt
To calculate the stiffness of a bolt, it is divided into head, shank, thread and nut and
these individual stiffnesses are summed using the rule just derived.

nutthreadshankheadC SSSSS

11111 +++=

The shank component has an extra term relating to the stiffness of the unthreaded
length of the shank.  Experiments have shown that a more precise estimate of stiffness
can be gained if the constituent stiffnesses are weighted before summing.

XXXXC EA

d

EA

d

EA

d

EA

L

EA

d

S

5.06.06.11.11

1

1 ++++=∴   where E = Young’s modulus of the bolt

material and the remaining quantities are the dimensions shown in Fig. 46.

                                                
7 The units of stiffness are kN µm-1.
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Fig. 46
Diagram of bolt labelling dimensions used to calculate stiffness.  D on the diagram is identical
to d in the discussion.

1

18.31

EA

L

EA

d

S XC

+=∴

This is only true if the bolt is completely engaged, i.e. the bolt is screwed in as far as
possible.

Typically, the calculated stiffness is 10-15% higher than the experimentally measured
stiffness.

Al Mg

A1

L1

AX

D
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11.3  Appendix C – Calculation of Experimental Error

11.3.1  Definitions and rules 8

Any measured quantity, x or y, has an associated uncertainty δx, δy respectively.  The
result of a measurement is given as  xx δ± .  The fractional uncertainty of x is defined

as  
x

xδ
.

The “rules” used in the calculation below:

1. If xyq =  then  
y

y

x

x

q

q δδδ += .

2. If q = Bx where B is a number then  xBq δδ =
3. If q = q(x,……,y) and if  { }yx δδ ,......  are independent random variables then

22

...... 





∂
∂++







∂
∂= y

y

q
x

x

q
q δδδ

4. If errors are independent random variables then to combine them, add in

quadrature i.e.  22 yxq δδδ +=

11.3.2  Calculation of Experimental Error
The following calculation is for an M8 bolt.  The following values were used in the
calculation9:
A = 149×10-6;  d = 8×10-3;  L1 = 20×10-3;  AX = 36.6×10-6;  A1 = 32.3×10-6;
E = 210×109;  e(0) = 24×10-6;  F = 21.5×103;  t = 6;  T = 75
The measurements have the following uncertainties:

• Temperature:  3±T  oC
• Dimensions:  2.0±L  mm, excepting  5.01 ±L  mm

• Elongation:  5±e  µm

• Time:  60
1±t  h

Measurement of elongation was used to determine the clamping force on the bolt at
any given time.  )()( tSetF =
The uncertainty for time is estimated.  It has been assumed that the best estimate for

experimental error will be given by 
q

qδ
 where ( )tFSATqq ,,,,→ .

Using (4),  the experimental error 
22222

t

t

F

F

S

S

A

A

T

T

q

q δδδδδδ ++++=

From the information above, 04.0
75

3 ==
T

Tδ

For an M8 bolt, A = 149 mm2.  The length measured is assumed to be the diameter, in
line with engineering practice.  Hence using (1) and (2),

                                                
8 The calculation in this appendix is based on the formalism developed by J.R. Taylor [51].
9 Torque is omitted due to it only being present in Model 1.
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From the above information, δd = 0.2 310−× , and δL1 = 0.5 310−× .
Using (1) and (2),
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From Appendix B,  
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The initial force is calculated from the elongation at zero time.  Using (1),
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From the information above, δt = 0.0278.
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The experimental error was 0.23.


