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Abstract. Jack Christian’s contributions to the theory of transformations in metals and alloys are
distinguished by their lasting value and standard of scholarship. This paper is a short celebration of
his far–reaching influence on the theory of martensitic phase transformations.

1. INTRODUCTION

Professor John (Jack) Wyrill Christian died in Oxford on 27 February 2001, at the age of 74. He
was one of the greatest representatives of metallurgy and leaves an awesome legacy of scholarly
writings, including the inspiring Theory of Transformations in Metals and Alloys, the latest editions
of which are in press.

As a person, he was modest and courteous to all who were fortunate to meet him, irrespective
of status. He always found the time to listen; every response or comment that he made was
concise and pregnant with meaning. His immense depth and breadth of knowledge came from his
passion for the subject. His favourite subjects were probably martensitic phase transformations,
mechanical twinning and the plastic deformation of body–centred cubic metals.

Jack Christian graduated in physics but he pursued the then ill–defined subject of metallurgy to
become a Professor of Physical Metallurgy at Oxford in 1967. He was elected Fellow of the Royal
Society of London in 1975. The Society was founded in 1660. Its motto, Nullius in verba, is an
expression of its enduring commitment to evidence as the basis of knowledge about the natural
world. The founders of the Society would have been proud of Professor Christian’s contributions
in this respect.

I first met Professor Christian in 1979 at a conference on phase transformations, held at York
University [1], and shortly afterwards at ICOMAT 79 in Boston [2]. My lasting impression of those
meetings is the kindness with which he treated me, a mere student, even though there must have
been many demands on his time. This paper is a personal view from one who has benefited from
his work and from his friendship. Some moving tributes to Jack’s life can be found in Hirsch [3]
and Taylor & Bowen [4].



2. THEORY

In a complete discussion of the theory of phase changes, the following two questions must be
considered [5]:

(i) Why does a particular phase change occur?

(ii) What is the mechanism of the transformation?

To answer these questions requires a combination of thermodynamics, kinetics, crystallography
and interfacial structure.

3. THERMODYNAMICS

There is a substantial change in the free energy when martensite eventually forms at the MS

temperature from supercooled austenite; typically ∆Gγα
MS

.
= −1000 J mol−1. Some of this is

dissipated as heat, which at high rates of transformation causes recalescence with a consequent
change in microstructure. For example, the local heating causes the mode of lattice–invariant shear
to change from twinning at the centre of a plate to slip at the peripheries [6]. The average rise in
the temperature has been measured for Fe–31Ni wt.% to be about 30 ◦C from –60 ◦C.

The free energy dissipated is substantially less than that expected from independent thermody-
namic data [6]. A large fraction therefore remains as stored within the steel, frequently in the form
of elastic strains due to the shape deformation.

In 1958, Christian [7] rigourously derived the strain energy density for martensite as a function of
the transformation strains using Eshelby’s theory [8] for a constrained transformation in which the
phases remain coherent. The elastic strain energy per unit volume (Ge

V ) of a transformed region
with the same shear modulus (µ) and Poisson’s ratio (ν) as the isotropic constraining matrix is
given by [7]:
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where s is the shear strain (typically 0.2), δ (typically 0.03) the expansion normal to the habit
plane and ∆ the uniform dilatation strain. t and l are the thickness and diameter respectively of
the oblate spheroid shape used to represent the martensite plate. It is sometimes difficult for those
not involved with martensite to appreciate that the strain energy remains dependent on the plate
aspect ratio even when s = 0; this arises because δ is directed normal to the habit plane.

For typical values of the parameters in equation 1, the strain energy term of an elastically accom-
modated plate with t/l = 0.05 comes to about 600 J mol−1, which is less than typical values of
|∆Gγα

MS
|. Since this energy is stored as elastic strains in the matrix, it does not contribute to the la-

tent heat of transformation. In a later paper [9], Christian suggested that the calculation may be an
overestimate since linear elasticity theory has been applied to deal with large strains; furthermore,
the energy may be decreased by plastic deformation or by the formation of self–accommodating
packets.

Many martensites contain finely spaced transformation twins. The stored energy per unit volume
due to this internal microstructure is approximately σt/dt where σt

.
= 0.2 J m2 is the coherent



twin–boundary energy per unit area and dt

.
= 20 nm the twin spacing. This gives an energy of

about 100 J mol−1 [9].

Some martensites contain dense tangles of lattice dislocations and Christian made significant com-
ments about these in his 1979 review [9]. The dislocations are not a necessary feature of the
transformation but are probably created by the plastic accommodation of the shape deformation.
The consequent reduction in Ge

V must therefore be greater than the extra stored energy due to
the dislocation debris. The combined contributions of the elastic accommodation–strains and the
dislocation debris to the total stored energy must therefore be equal to or less than that given by
equation 1. The value calculated using equation 1 is an upper limit.

The total stored energy thus amounts to about 700 J mol−1; clearly, |∆Gγα
MS

| ≥ 700J mol−1 in
order for transformation to occur. The fact that the value of |∆Gγα

MS
| is frequently greater than

the stored energy suggests that something different happens at the nucleation stage.

4. KINETICS

Martensite can form at temperatures close to the absolute zero and at speeds approaching that
of sound in the metal; the mechanism of nucleation must be consistent with these observations.
Random phase and composition fluctuations of the type associated with classical nucleation are
not reasonable in these circumstances. The probable mechanism involves heterogeneous nucleation
with the dissociation of three–dimensional arrays of dislocations. The faulted structure between
the partials becomes the nucleus of martensite when the circumstances are right for the rapid
growth of the embryo. In most cases this means that the chemical driving force for transformation
must be large enough to allow the partials to propagate rapidly. It is interesting that theories like
these are able to explain key observations, for example, that the activation energy for nucleation
is related directly to the driving force for transformation.

There have in recent decades been proposals to explain the nucleation of martensite in terms of
lattice instabilities. Christian [9] and others [10] have pointed out some inconsistencies in this
approach; for example, the elastic constants remain finite at the MS temperature, and the very
morphology of martensite strongly suggests that the whole lattice does not become mechanically
unstable. It is still feasible that the strains in the vicinity of a defect induce a small region to
undergo a strain spinodal; however, a process like this is not essentially different from the earlier
model of heterogeneous nucleation by faulting at arrays of dislocations. In any event, there are so
many unknowns associated with these theories that convincing validation or useful application has
proved impossible.

5. MECHANISM

Christian’s 1951 paper [11] on the dislocation pole–mechanism for the martensitic transformation of
cobalt emphasised the role of interfacial structure. Indeed, interfacial structure in general continued
to be one of his key interests in the decades that followed [12,13,14].

Christian’s assessment of the structure of the martensite/austenite interface leads to considerable
constraints on the crystallography of martensitic transformations. It is obvious that the interface
must be glissile to be able to move at low temperatures and at high speeds; it must therefore be
coherent or semi–coherent. A stress–free coherent interface is rare because the lattice deformation
must be an invariant–plane strain. This leaves semi–coherent interfaces in which the interfacial
dislocations can glide as the interface moves (dislocation climb would necessitate the diffusion of
atoms). It follows that the Burgers vectors of the interface dislocations must not lie in the interface
plane unless the dislocations are screws.



A further condition for a semi–coherent interface to be glissile is that the line vectors of the
interfacial dislocations must be parallel to that which remains invariant to the lattice deformation.
It is otherwise necessary to have multiple sets of non–parallel dislocations to accommodate the
misfit, interference between which can render the interface sessile.

It follows that an essential requirement for martensitic transformation is that the lattice defor-
mation which changes the parent into the product phase must leave one or more lines invariant
(unrotated, undistorted). A deformation which leaves one line invariant is called an invariant–line

strain which is the minimum requirement for martensitic transformation.

6. MULTIPLE LATTICE–INVARIANT DEFORMATIONS

There have been attempts to introduce more than one lattice–invariant deformation in the crystal-
lographic theory [15]. In subsequent work it has sometimes not been realised that the deformations
cannot be chosen arbitrarily. As pointed out by Christian and Crocker [13], there are in fact re-
strictions on the allowed combinations. When the lattice–invariant deformation is slip, the slip
is accomplished by a set of intrinsic dislocations which are a part of the interfacial structure. To
ensure a glissile character, the glide planes of these dislocations with respect to the product lattice
must meet the corresponding glide planes of the parent lattice edge–to–edge in the interface, along
the dislocation lines.

Multiple lattice–invariant deformations necessitate more than one set of intrinsic dislocations; the
sets must either have the same line vector in the interface, or their respective Burgers vectors
must be parallel. This condition ensures that the interface can move as an integral unit. It also
follows that the net deformation can be described as a single shear on some plane which makes a
finite angle with the interface plane, and intersects the latter along the line vector of the resultant
intrinsic dislocation.

7. CRYSTALLOGRAPHY

Jack Christian was renowned for his ability to absorb scientific literature. This is typified by the
1955 paper [16], in which he demonstrated the essential similarity of the Bowles and Mackenzie,
and the Wechsler, Lieberman and Read theories of martensite crystallography. Indeed, the later
surface dislocation model of Bullough and Bilby in 1956 was also shown to be formally equivalent
to its predecessors. This is all described in the 1965 edition of Christian’s book [17].

The diagrams that Christian used in many of his publications to explain the theory led to consid-
erable clarity in the subject. His procedure, during lectures, of explaining martensite is roughly as
follows:

(a) The formation of martensite (α′) leads to a shape deformation which is described as an
invariant–plane strain (Fig. 1a). This has a large shear component, but also a dilatational
strain normal to the habit plane [18].

(b) The observed shape deformation cannot by itself effect the change in lattice [19]. There
must therefore be a missing component whose effect is not observed because it is on a
macroscopic scale cancelled by an inhomogeneous lattice–invariant deformation (slip or
twinning).

(c) The Bain strain on the other hand, is a homogeneous deformation which can alter the crys-
tal structure of the austenite into that of martensite (Fig. 2b). However, the orientation
relationship implied by the Bain deformation is not the one observed experimentally.



(d) Martensitic transformation is diffusionless. This requires the α′/γ interface to be able to
move conservatively, i.e. it must be glissile.

Fig. 2: (a) The shape deformation due to martensitic transformation is an invariant–plane strain.

The displacement vector md is inclined to the habit plane. (b) It is possible to represent austenite

as both a face–centred cubic lattice and one which is body–centred tetragonal. A pure, homoge-

neous deformation of the latter gives the body–centred cubic or body–centred tetragonal lattice of

martensite.

These are the elements of knowledge which led originally to the remarkable mathematical formu-
lations of martensite crystallography. Christian showed that the theories are in essence identical.
The basic concepts may be summarised as follows.

The Bain strain B converts the structure of the parent phase into that of the product; although
it achieves the correct lattice, the Bain strain does not give the correct orientation relationship
nor does it ensure a glissile interface. When combined with an appropriate rigid body rotation R,
the net homogeneous lattice deformation RB is an invariant–line strain (step a to c in Fig. 3).
However, the observed shape deformation is an invariant–plane strain P

1
(step a to b in Fig. 3), but

this gives the wrong crystal structure. If, however, a second homogeneous shear P
2

is combined
with P

1
(step b to c), then the correct structure is obtained but the wrong shape since

P
1
P

2
= RB

These discrepancies are all resolved if the shape changing effect of P
2

is cancelled macroscopically
by an inhomogeneous lattice–invariant deformation, which may be slip or twinning as illustrated
in Fig. 3.

This theory explains all the observed features of the martensite crystallography. It becomes easy
to predict the orientation relationship, by combining the Bain strain with a rigid body rotation
to make a net deformation which is an invariant–line strain. The habit plane does not have
rational indices because the amount of lattice–invariant deformation needed to recover the correct
the macroscopic shape is not usually rational. The theory predicts a substructure in plates of
martensite (either twins or slip steps) as is observed experimentally. The transformation goes to
all the trouble of ensuring that the shape deformation is macroscopically an invariant–plane strain
because this reduces the strain energy when compared with the case where the shape deformation
might be an invariant–line strain.



Fig. 3: Schematic illustration of the phenomenological theory of martensite crystallography.

8. PARAMILITARY TRANSFORMATIONS

In attempting to classify transformations, Jack Christian developed original theory which now has
wide applicability. He once told me that he borrowed the term ‘military’ transformations from
Professor F. C. Frank. A military transformation is one in which the rearrangement of atoms into
the new configuration occurs in an orderly and disciplined manner, rather like the case where a
queue of soldiers boards a bus without breaking rank (Fig. 4a); martensitic transformations are of
this kind. By contrast, in civilian transformations, the atoms move independently from their initial
to their final positions (Fig. 4b). The metaphor thus far is useful in visualising the transformation
mechanism, but Christian went on to develop it for transformations in which an interstitial solute
is much more mobile than the host atoms. The host atoms which define the crystal structure
are then transformed by a military mechanism, whereas the interstitial atoms can behave as do
civilians. The partial discipline inherent in this process was termed ‘paramilitary’ transformation
by Christian [12,20]. In such a process, the movement of interstitial atoms does not affect the
macroscopic shape deformation, making diffusion consistent with a displacive mechanism of lattice
change. This explains both the mechanism by which Widmanstätten ferrite forms in steels [21]
and how some metal hydrides precipitate [22].

9. MORE ABOUT THE SHAPE DEFORMATION

There has been some confusion in the literature about the interpretation of the shape deforma-
tion accompanying displacive transformations. Christian has addressed this in a few publications
[23,24,25].

Focusing attention on equivalent lattice points which define unit cells of the two structures con-
taining the same number of atoms, a change in shape will accompany transformation if the new
set of lattice points can be related to the original set by a homogeneous deformation. Particular
vectors, planes and unit cells of one structure are derived from corresponding vectors, planes and
unit cells of the other structure. There is a lattice correspondence. When interstitial atoms are



Fig. 4: Metaphors for transformation mechanisms.

present, they may move over large distances without affecting the correspondence.

The implications of the shape change on the mechanism of growth can be illustrated using the
virtual operations shown in Fig. 5. A region of the matrix is first removed (leaving behind an
equivalent hole) and then allowed to undergo unconstrained transformation with the help of a
homogeneous lattice deformation which is not in general an invariant–plane strain (Fig. 5a,b).
The particle is then allowed to have any required composition by transferring suitable numbers
of solute atoms between interstitial sites in the particle and the matrix, and/or by interchanging
atoms of substitutional species in the particle with atoms in the matrix (operation c, Fig. 5).

A number of further operations are now possible before the particle is reinserted into the hole in
the matrix, in order to reduce the strain energy:

(i) The volume and shape of the particle may be made equal to that of the hole, by transferring
atoms over long distances from the particle to sinks within the matrix or at its surface
(operation d1, Fig. 5). The strain energy then vanishes.

(ii) The total number of atoms in the particle may be conserved but its shape may nevertheless
be adjusted by the creation and removal of atom sites. The strain energy is effectively that
of a hole in the matrix filled with a compressible fluid of different natural volume.

(iii) The shape of the particle may be changed by conservative plastic deformation. The lowest
strain energy for a plate–shaped particle then occurs if the plastic deformation converts the
lattice deformation into a shape deformation which is an invariant–plane strain (IPS) on



Fig. 5: The virtual operations required to form a particle in a constraining matrix.

the habit plane (operation d3, Fig. 5).

(iv) The shape of an epitaxially coherent particle may be changed by the removal or addition of
particular planes of atoms. If there is no reconstruction of the atom sites, the shape change
may retain an appreciable shear component (operation d4, Fig. 5).

Particles of type d1 and d2 require long range diffusion or mass transport. Large scale redis-
tributions of solute atoms can occur during these processes. Transformations of this type are
reconstructive. Case (iv) requires the atoms to be mobile for the interfacial dislocations to climb;
other diffusion processes may therefore also occur to eliminate the shape deformation [20].

This leaves only the martensitic type change (iii) as a likely candidate for an IPS shape change, but
step c (Fig. 5) ensures that the shape change cannot be taken to imply diffusionless transformation.
It is easy to see how interstitial atoms can partition between the phases during growth without
affecting the IPS shape change. There may also be an interchange of substitutional atoms, but
it is likely that the migration of these atoms can only occur over a few interatomic distances –
otherwise, any longer range diffusion would destroy the shape change and its associated strain
energy at the same time. One implication of the observation of an invariant–plane strain shape
change with a significant shear component is that any diffusion of solvent or substitutional atoms
during transformation must be absent or minimal.

Suppose that there is an IPS deformation with a large shear and at the same time there is a
composition change implying diffusion in the substitutional lattice. Such a transformation has
been called diffusional–displacive transformation [23,24]. This does not negate the consequences



of the shape deformation, for example the strain energy, the plate shape, the requirement for a
glissile interface etc. The existence of the shape deformation means that the diffusion flux is not
adequate to eliminate the displacive character of the transformation, and furthermore, that most
of the atoms must move in a coordinated manner to produce the displacements in the first place.
It is a mistake to imagine that the association of diffusion with a phase transformation means that
it can be treated as a reconstructive reaction which is close to equilibrium.

10. SUMMARY

This paper is too small to describe the richness of Jack Christian’s achievements in the field of
martensite. I have, for example, neglected the discussion of his work on the relationship between
the O–lattice theory and the crystallographic theory of martensite. But his work is of lasting value;
anyone who comes across just one of his papers will inevitably seek out the others, so I need not
feel guilty about the selective coverage. It goes without saying that Jack’s passing away is a tragic
loss to his family and many friends. Nevertheless, I cannot help but feel happy at having known
him and to celebrate his work with affection.
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