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The fatigue crack growth rate of nickel base superalloys has been modelled using a neural network model
within a Bayesian framework. A ‘committee’ model was also introduced to increase the accuracy of the
predictions. The rate was modelled as a function of some 51 variables, including stress intensity range 4K,
log 4K, chemical composition, temperature, grain size, heat treatment, frequency, load waveform, atmosphere,
R-ratio, the distinction between short crack growth and long crack growth, sample thickness and yield
strength. The Bayesian method puts error bars on the predicted value of the rate and allows the significance
of each individual factor to be estimated. In addition, it was possible to estimate the isolated effect of
particular variables such as the grain size, which cannot in practice be varied independently. This demonstrates
the ability of the method to investigate new phenomena in cases where the information cannot be accessed

experimentally.
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1. Introduction

Superalloys have been used in aeroengine gas turbines
for about 50 years. Their weight percentage in engines
has increased over the years to 30%. The safe service
lives of these components are increasingly becoming
fatigue limited due to the high operating stress.! In-
deed, low cycle fatigue performance had become the
life limiting factor in over 75% of major structural
components of advanced engines by 1975.% Fatigue in
turbine discs arises from the variations in both thermal
and mechanical stress during the flight. A typical loading
cycle comprises starting up, takeoff and climb, cruising,
landing and shut-down. The highest stresses are ex-
perienced in the bore of the disc early in the flight
cycle, generally while it is in the lower temperature range
200-300°C. Stress in the rim region is lower, but at a
higher temperature, 500-600°C.*

Thus, the requirements for fatigue crack propagation
are dependent on the environment where the material is
used. Full quantification of fatigue crack growth rate is
essential in both life prediction and in the development
of new materials. However, the fatigue propagation is
affected by many factors including chemical composition,
grain size, heat treatment, temperature, atmosphere,
R-ratio and frequency. Accordingly, the modelling of
fatigue has to cover a wide range of conditions, and it
is not easy to predict the fatigue crack growth rate of
an unknown material. In this study, in view of the
complexity of the phenomena, neural network models
were applied in place of the usual regression analysis
or physical models. Neural networks are capable of
realising a variety of non-linear relationships of con-
siderable complexity. Once a network has been trained,

1373

the estimation of the outputs is very rapid.

A difficulty with neural network models is that an
over-flexible network can ‘discover’ false structure in
data, a behaviour known as ‘overfitting’. We have used
a Bayesian framework® in order to control this prob-
lem. This mitigates against excessive complexity and
permits the calculation of error bars, indicative of the
reliability of the prediction.” In addition, in this study
a committee model is introduced to make predictions
more accurate. These approaches, combined with metal-
lurgical theory have been used here to model the
fatigue crack growth rate in nickel base alloys.

2. Neural Network Framework

Figure 1 shows the structure of the neural network
used in our model. Factors such as chemical composition,
grain size, heat treatment and temperature are input from
the left hand side. To predict the output, that is, the
logarithm of the fatigue crack growth rate, hidden units
were used between the input and the outputs so that
more complex relationships could be expressed. The

chemical
- —_—
composition

grain size— fatigue crack

growth rate

hidden units
Neural network model used in this study.

Fig. 1.
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transfer function relating the inputs to the ith hidden
units is given by

lzi=tanh<2w§}’xj+05“> .................... M
j

The relationship between the hidden units and the output
is a linear:
Y=Y wBh A0 @)

The coefficients w and biases 6 of these equations are
determined in a such way as to minimize the energy
function, as explained later. Becuase the hyperbolic
function is a non-linear function, a non-linear relation-
ship can be predicted in this model.

3. The Data Base

The data base consists of 1 894 combinations of fatigue
crack growth and 51 inputs including the stress intensity
factor range AK, chemical composition, temperature,
grain size, the condition of heat treatment, frequency,
loading condition, atmosphere, R-ratio, load waveform,
sample thickness and yield strength. All these data are
from the published literature.3:¢~3% Table 1 shows the
details of the data used for the modelling.

Many of the nickel base superalloys were given three
steps of heat treatment. Each heat treatment was specified
as a combination of temperature, time and cooling rate.
When fewer than 3 steps of heat treatment were carried
out, the temperature, the duration and cooling rate of
the remaining steps were set to zero. The cooling rates
were assigned relative magnitudes as follows3:

Water Quench : Oil Quench : Air Cooling:
Furnace Cooling=60:30:10:1

The shape of load waveform was defined as shown in
Fig. 2. A sinusoidal waveform was defined as 0 and a
triangular waveform as 1. The ‘loading time’, during
which the maximum load is being applied, and the
‘unloading time’, during which the minimum load is
applied, were also selected as input factors so that the
triangular Joad waveform covers also trapezium or
square shape waveforms. The grain size was defined by
three factors: two of the three are the maximum grain
size and the minimum grain size in the distribution.
The microstructure is sometimes inhomogeneous, con-
taining some regions with a fine grain size and others
where the size is coarse. The difference between the
mean grain size in these two regions in sometimes quoted
and is used here as an input. The data for short-crack
growth were also included. Short-crack growth was
defined as 0 and long-crack growth as 1. Log4K is
included as an input factor because it has a metallur-
gical meaning and hence helps to find the optimum
relationship between the input and the output.

4. The Analysis

Both the input and output variables were first nor-
malized within the range +0.5 as follows:

Xy = I 05 e, 3)

X X

max ~ “*min

where xy is the normalized value of x, x.,, is the

Table 1. Input variables for the prediction of fatigue crack growth rate.
Variable Range Mean Standard Deviation Variable Range Mean Standard Deviation
da/dN, pm 1.0x10°8 - 0.646 Ni, wt% 40- 73 55.34 8.234
log da/dN, pm -8 - -0.1898 Cr 0.03- 19.5 14.89 5127
AK, MPa m-1/2 4.03 -246 27.16 22.47 Co 0-17 5.982 7.552
log AK, MPa m-1/2 0.605 - 2.39 1.316 0.3167 Mo 0-6 3.094 1.991
Temperature, K 293- 1123 660.3 304.5 Al 03-55 1.926 1.732
Minimum grain size, Hm 7 - 5000 295.8 1024 Ti 0.8 - 3.52 2.107 1.098
Maximum grain size, kM 7 - 5000 313.2 1022 Fe 0-35.56 12.07 12.12
Difference in grain size between 35-0 -0.8936 5.432 C 0.007 - 0.06 0.03865 0.01176
major phase and minor phase B 0-0.1 0.01418 0.02604
Ist step Heat Treatment, 1116 - 1578 1321 103.0 Zr 0-0.35 0.01907 0.04495
Temperature, K Si 0-0.31 0.05634 0.08841
Duration, hour 05-7 2.602 1.685 Nb 0-535 1.968 2.402
Cooling rate, K/sec -15-5 -5.629 3.134 Mn 0-028 0.03728 0.07740
2nd step Heat Treatment, 0-1413 955.8 292.1 Cu 0-0.06 4525 10-3 0.01401
Temperature. K P 0-0.011 8.551 x 104 2,438 x 10-3
Duration, hour 0-24 12.22 9.065 Ca 0 - 0.006 2.598 x 104 1.221x 10-3
Cooling rate, K/sec -5-0 -3.036 2.291 Mg 0 - 0.002 8.659 x 1075 4.071x 104
31d step Heat Treatment, 0- 1143 869.3 312.0 s 0-0.005 3.350 x 10-4 1.031x 10-3
Temperature, K Sn 0-0.0027 1.169 x 104 5496 x 10-4
Duration, hour 0-24 10.96 6.179 Pb 0 - 0.00004 1.732 x 106 8.143x 10-6
Cooling rate, K/sec 5.0 -4.459 1554 Bi 0- 0.0000125 5.412x 10°7 2.545x 10-6
Frequency, Hz 0.01 - 100 21.47 29.31 Ag 0 - 0.00001 4329 x 10°7 2.036 x 10-6
Loading Time, s 0- 600 15.27 71.96 w 0-65 0.4628 1.539
Unloading Time, s 0-500 7.439 55.14 Ta 0-6.5 0.3935 1.385
Load Shape Oor 1 0.7355 0.4412 Hf 0-0.1 4.488 x 1073 0.02071
Atmosphere 1% 106 - 760 691.4 2179 Re 0-3 0.1346 0.6213
R-ratio 0.05-0.8 0.171 02175 Y203 0-1.1 0.04704 0.2226
Short or long crack growth Oorl 09161 0.2774
Sample thickness, mm 44-25 11.39 4.063
Yield Stress, MPa 324 - 1690 911.9 242.3
© 1996 ISIJ 1374
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Load Shape =0

Load Shape = 1

Unloading Time Loading Time

Fig. 2. Definition of load shape.

maximum value and x,,;, is the minimum value of each
variable of the original data. This normalization is not
essential to the neural network approach but allows a
convenient comparison of the influence of individual
input variables on outputs.

Using the normalized data, the coefficients (weights)
w and bias 6 were determined in such a way as to minimize
the following energy function®:

MW)=PBEp+Y 0 Epp) wrverrverirrncenns
The minimization was inplemented using a variable
metric optimizer.*® The gradient of M(w) was computed
using backpropagation algorithm.*?) The energy function
consists of the error function, E and regularization E,,.
The error function is the sum squared error as follws:

Ep(w)= 1 Y (X W)= ™2 e,
2 m

where {x™"} is the data set. x™ represents the inputs
and ™ the targets. The m is a label of the pair. The error
function Ej, is smallest when the model fits the data well,
i.e., when y(x™;w) is close to ™. The coefficients w and
biases 8§ shown in Egs. (1) and (2) make up the parame-
ter vector w. A number of regularizers E,,, are added
to the data error. These regularizers favour functions
y(x;w) which are smooth functions of x. The simplest reg-
ularization method uses a single regularizer E, =13 w?.
Here, however, we have used a slightly more compli-
cated regularization method known as the Automatic
relevance determination model.* Each weight is assigned
to a class ¢ depending on which neurons it connects. For
each input, all the weights connecting that input to the
hidden units are in a single class. The hidden units’
biases are in another class, and all the weights from
the hidden units to the outputs are in a final class. E,,,
is defined to the sum of the squares of the weights in
class ¢.*?

Ywi

iec

1
EoW)=—)D) Wi e,
o=
This additional term favours small values of w and
decreases the tendency of a model to ‘overfit’ noise in
the data set. The control parameters «, and § together
with the number of hidden units determine the complexity
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Fig. 3. Variation of ¢, as a function of number of hidden units.
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of the model. These hyperparameters define the assumed
Gaussian noise level 02=1/8 and the assumed weight
variances o2, =1 /%0, is the noise level inferred by
the model. The parameter o has the effect of encourag-
ing the weights to decay. Therefore, a high value of ¢,
implies that the input parameter concerned explains a
relatively large amount of the variation in the output.
Thus, o, is regarded as a good expression of the
significance of each input though not of the sensitivity
of the output to that input. The values of the hy-
perparameters are inferred from the data using the
Bayesian methods of Ref. 42). In this method, the
hyperparameters were initialized to values chosen by
the operator, and the weights were set to small random
initial values (Gaussian with mean 0 and standard
deviation 0.3). The objective function M(w) was
minimized to a chosen tolerance, then the values of the
hyperparameters were updated using a Bayesian
approximation given in Ref. 42). The M(w) was mini-
mized again, starting from the final state of the
previous optimization, and the hyperparameters were
updated again, repeating 8 times.

As the number of hidden units increases, the difference
(0,) between predicted values and experimental values
decreases monotonically, as shown in Fig. 3. More com-
plex relations can be modelled with a larger number of
hidden units. However, the function may then be over-
fitted, as shown in Fig. 4, because experimental data
always contain errors. In order to reduce overfitting,
the test error (the value of the error. function for a
non-trained data set) was measured, using 942 randomly
chosen rows of data which were not included in the
training set. Figure 5 shows the change in the test error
as a function of the number of hidden units. There is a
minimum at 17 hidden units. The increase in the test
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Fig. 5. Variation of test error as a function of number of
hidden units.
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error over 17 hidden units indicates that the function
may be overfitted. However, the increase is very small.
This indicates that the distribution of data is close to the
assumed Gaussian distribution and Bayesian modelling
worked well. In principle, when the Bayesian modelling
is completely optimized, and infinite number of hidden
units could be used without overfitting.**

5. Committee Model

The same data can be modelled in many ways, for
example by varying the number of hidden units or starting
value of ¢,,. The variety of models thus produced can be
ranked according to the magnitude of the test error. The
best individual model would then have the minimum test
error. However, it is possible in principle to reduce the
test error further by using the average of predictions from
a number of models, i.e. a committee of models.

The test errors of the variety of models produced are
not very different from that of the best model, as can be
seen in Fig. 5. This indicates that these models should
lead to similar predictions. However, for some choices
of input variables the predictions are nevertheless
different because of the limitations in the training data.
Figure 6 shows the predictions using the three best
models for Astroloy at room temperature (The main
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experimental conditions*'% are summarized in the
first column in Table 2.). When 4K is less than 40 MPa
m?/2, the difference in the predictions is very small, but
when 4K is more than 40 MPam'/2, the difference is
large. In the latter region, the error bars are also large,
indicating that there are insufficient or imprecise data in
that region of input space. The error bars in this case
are for 67% confidence.

A ‘committee’ model was therefore introduced in order
to see whether more reliable predictions to be made. The
method is as follows:

(1) The individual models are first ranked via their
test errors.

(2) A committee of N models is then formed by
combining the best N models, where N=1, 2, 3---.

The mean prediction y of the committee is

1 N
}7=—N~i; Vi eerereereeernenieenreennneeees @
and the associated error in j is given by
az=l\i Gg"+ii S 7) T 8)
N =i Ni=1

Figure 7 shows the decrease in test error by combining
models. A committee of seven of the best individual
models has a minimum test error. This committee
therefore was used to make a number of predictions,
as shown later. Using the committee model, the agree-
ment between experimental data and prediction is very
high for both the training and test data, as can be seen
in Fig. 8.

6. Significance of Individual Inputs

The neural network model allows us to estimate the
significance of individual factors in influencing the fatigue
crack growth rate using the value of . A high value of
o, implies that the input parameter concerned explains
a relatively large amount of the variation in fatigue crack
growth rate in the data set. Note that it is not an
indication of the sensitivity of fatigue crack growth rate
for that input parameter.

Figure 9 shows the values of g, of the seven best
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" models. Although some scatter is observed, some strong
0.4~ Training dataset ,5""‘ tendencies are found. For example, it can be found that
S log 4K is clearly more strongly linked to fatigue crack
growth rate than 4K on its own. This is coincident with
the Paris’ law.** As expected, the fatigue crack growth
rate was found to be sensitive to the frequency, loading
time, atmosphere and yield strength.

e
()
1

e
=]
1

7. Effect of Individual Inputs

Predicted value

~0.21 The neural network permits the effect of each input

to be examined individually, which may be impossible
to do in practice. Figure 10 shows the estimated fatigue

crack growth rate of Astroloy at room temperature; the
13,14)

—0.4- o3

1 1 1 | | experimental data are from the published literature,
04 E;(;Zrimgftal V:iie 04 summarized in Table 2. The error bar is for 67%
confidence the same as before. As expected,!> the crack
= - growth rate decreases when the grain size increasii, since
044 Test dataset 5 that generally leads to more heterogeneous slip.*> As a
Y reference, although the fatigue crack growth rate seems
constant near the threshold region of the 40-50 um grain
alloy because of the error bar, the most probable value
of the prediction substantially decreases around the

region when the 4K is reduced.

In practice, changes in the grain size are usually
achieved by heat treatment. This was the case for the
experimental data shown in Fig. 10. Of course, heat
treatment may affect other features within the material.
i In fact, in addition to increasing grain size, the heat

0.4 i treatment!®!% reduced yield strength from 1021 to

‘[ 1 , , : 954 MPa. In the neural network model, the grain size

—0.4 -0.2 0.0 0.2 0.4 alone can be changed, as shown in Fig. 11, without

Experimental value altering any of the other inputs. Figure 11 is in this re-

Fig. 8. Comparison between predicted and experimental spect proof that an increase in grain size causes a re-
fatigue crack growth rate. duction in the fatigue crack growth rate.
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Table 2. Main experimental condition inputted for the
prediction of Fig. 10.

Grain size 11-13 pm 40-50 pm
1st step heat treatment 1377K, 4h, AC 1423K, 4h, AC
2nd 923K, 24h, AC 923K, 24h, AC
3rd 1033K, 8h, AC 1033K, 8h, AC
Temperature 293K 293K
Atmosphere Air Air
R-ratio 0.1 0.1
Frequency 40Hz 40Hz
Yield stress 1021 MPa 954MPa
AC: air cooling
-3
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N
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Fig. 10. Effect of grain size on fatigue crack growth rate in
Astroloy.
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Fig. 11. Effect of grain size alone on fatigue crack growth rate
in Astroloy.

value the yield strength is changed from 1 021 to 954 MPa
(Fig. 12). In the Paris regime, it is considered that fatigue
behaviour is dependent on crack-tip strain range, or the
range of crack opening displacement Ad per cycle.*®

AK?

ag

Ad=Q

cy

where @ is constant and o, should be the cyclic yield
stress (though, monotonic o, is often used as an ap-
proximation).® Accordingly

da
——0C
dN Q

AK?
) '

© 1996 IS1J-
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Fig. 12. Effect of yield strength alone on fatigue crack growth
rate in Astroloy.
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Fig. 13. Effect of heat treatment alone on fatigue crack growth
rate in Astroloy.

. 20 40

Thus, when the yield strength is reduced, the fatigue
crack growth should increase. This relation indicates that
the effect of yield strength alone, shown in Fig. 12, is
reasonably predicted.

The case where only the heat treatment is changed
without altering the grain size or yield strength is
illustrated in Fig. 13. Thus, any changes in the crack
growth should indicate the presence of other factors
affecting fatigue crack growth. There is a clear change
in the near-threshold region which is the part most
sensitive to microstructure.

The effect shown in Fig. 13 might therefore be due
to the higher solution treatment reducing coarse 7’
particles which tend to concentrate stress.!® Our model
does not include direct microstructure because such data
have not been reported frequently. This would be a good
area for future work.

8. Other Predictions

Figure 14 shows the rate of the short-crack growth. It
can be seen that the slope of the curve of short-crack
growth is very small and the short-crack growth rate is
much higher than the long-crack growth when 4K is
small.*” These predictions are also in accordance with
our experience.
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Fig. 14. Prediction of short crack growth rate in Astroloy.
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Fig. 15. Prediction of effect of addition of 0.1 wt% Re.

One can also predict the fatigue crack rate under
unusual conditions. The effect of adding 0.1 wt% to Re
is illustrated in Fig. 15. Since the error bars are large
because of the absence of experimental data, it cannot
be concluded that Re really affects fatigue crack growth.
This is a good example of the safety of the predictions
made by the model, in that the error bars are large when
the model is uncertain.

Using our model, the fatigue crack growth rate for
many kinds of superalloy can be predicted. For example,
Figs. 16-18 show the results for CMSX-4 and Inconel
718, respectively. Figure 16 shows the effect of temper-
ature in CMSX-4. The main experimental conditions
inputs are frequency: 10Hz; load shape: sinusoidal;
atmosphere: air; R-ratio: 0.1; single crystal and con-
ventional heat treatment values.!® When the tempera-
ture is raised, the fatigue crack growth increases. The
fatigue crack growth is determined by the cyclic—plas-
tic deformation at the crack tip. Plastic deformation has
a strong temperature dependency; the higher the temper-
ature, the easier the plastic deformation. Accordingly,
it is reasonable that fatigue crack growth is easier and
the growth rate faster at a higher temperature.*®

Figures 17 and 18 show the effect of addition of
Al and Nb. The main experimental inputs are tem-
perature: 923K, grain size: 30 mm; conventional heat
treatment; frequency: 20 Hz; atmosphere: air; R-ratio:

-3

log da/dN (mm/cycle)

-8 S T
4 6 8 10 . 20 40
AK (MPa m?)

Fig. 16. Temperature dependence of fatigue crack growth rate
in CMSX-4.
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-8 s T
4 6 8 10 . 20 40
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Fig. 17. Effect of addition of 0.1wt% Al to Inconel 718 on
fatigue crack growth.

log da/dN (mm/cycle)

y T T
4 6 8 10 , 20 40

AK (MPa m?)
Fig. 18. Effect of addition of 0.2wt% Nb to Inconel 718 on
fatigue crack growth.

0.1.21:22 Inconel 718 is y” strengthened material.** It is
also known that after ageing this alloy contains a small
amount of spherical y'.°? Nb is known to increase the
" phase and Al increases y'. As shown in these figures,

" Nb slightly tends to decrease the fatigue crack growth

rate, though Al does not have an significant effect.
However, at this time, it was assumed that the yield
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strength was constant even after the addition of these
elements because appropriate data were unavailable. If
the yield strength increases due to the addition of alloying
elements, the fatigue crack growth would decrease, as
mentioned before.

9. Conclusion

(1) A neural network in a Bayesian framework was
found to be an effective method of estimating the fatigue
crack growth rate of a large variety of nickel base
superalloys. A committee of models is found to give
greater reliability than the best individual model.

(2) The use of a committee appeared to reduce the test
error by about 3% compared with the best individual
network. Also, the error bars on the commiittee’s pre-
dictions are expected to be more reliable.

(3) The model can be used to examine the effect of
each variable in isolation. As a result, it was confirm-
ed that log 4K is more strongly linked to the fatigue
crack growth rate than to 4K, as expected from the Paris
law.

(4) Similarly, it was possible to determine the effect
of grain size alone. It is confirmed that an increase in
the grain size should lead to a decrease in the fatigue
crack growth rate.

(5) Usingthe neural network, it was possible to reveal
the effect of heat treatment alone on the crack growth
rate in the near-threshold regime, which is sensitive to
microstructure. This demonstrates the ability of this
method to reveal new phenomena in cases where ex-
periments cannot be designed to study each variable in
isolation.
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Appendix

Values of coefficient (weight) and bias of the functions
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of the best one model (17 hidden units). Equations (1),
(2) and these values allow us to make prediction of fatigue
crack growth. The data arranged in a continuous
horizontal sequence in the following order:
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