
1 Thermodynamic functions

1.1 INTRODUCTION

Thermodynamics facilitates the linking together of “the many observable properties so that they can

be seen to be a consequence of a few” [1]. It provides a firm basis for the rules that macroscopic

systems follow at equilibrium. When combined with phenomena associated with the approach to

equilibrium, it forms the foundations of kinetic theory. It was on this basis that Zener attempted

to rationalise the transformations that occur in steels [2, 3] so that the effect of alloying elements,

atomic mobility, nucleation and mechanism could all be incorporated into a single hypothesis.

After an introduction to some essential concepts, the remainder of this chapter deals with theory

that is relevant particularly to iron and its solutions.

1.2 DEFINITIONS

1.2.1 INTERNAL ENERGY AND ENTHALPY

The change in the internal energy ∆U of a closed system can be written as

∆U = q−w (1.1)

where q is the heat transferred into the system and w, the work done by the system. The sign

convention is that heat added and work done by the system are positive, whereas heat given off and

work done on the system are negative. Equation 1.1 may be written in differential form as

dU = dq− dw. (1.2)

For the special case where the system does work against a constant atmospheric pressure, this be-

comes

dU = dq−PdV (1.3)

where P is the pressure and V the volume.

The specific heat capacity of a material represents its ability to absorb or emit heat during a unit

change in temperature. Heat changes the distribution of energy amongst the particles in the system

(atoms, electrons, . . .) and it is these fundamental mechanisms that control the heat capacity, defined

formally as dq/dT . Since dq = dU +PdV , the specific heat capacity measured at constant volume

is given by:

CV =

(
∂U

∂T

)

V

.

It is convenient to define a new function H, the enthalpy of the system:

H =U +PV.

A change in enthalpy accounts for both the heat absorbed at constant pressure, and the work done

by the P∆V term. The specific heat capacity measured at constant pressure is therefore given by:

CP =

(
∂H

∂T

)

P

.
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2 Course on thermodynamics

Heat capacity can be measured using a variety of calorimetric methods. The data can then be used

to estimate enthalpy changes as a function of temperature and pressure:

∆H =

T2∫

T1

CP dT. (1.4)

1.2.2 ENTROPY, FREE ENERGY

In the reversible Carnot cycle, a gas is placed in contact with a heat reservoir at temperature T2,

expands isothermally on absorbing a quantity of heat q2, in the process doing work −w1. The gas

is then insulated and expands adiabatically, does work −w2 as its temperature drops to T1. It is then

placed in contact with a heat reservoir at T1, compressed reversibly and isothermally with work w3

done upon it and giving up heat −q1 to the reservoir. To complete the cycle, the gas is insulated,

compressed reversibly and adiabatically by doing work w4 upon it, causing its temperature to rise

back to T2 [4]. The change in internal energy ∆U = q1 + q2 +w on completion of the cycle is

therefore zero, where w = Σ4
i=1wi. The work output of the engine, −w, is the difference between

heat taken and heat returned to the reservoirs, i.e. −w = q2 − (−q1) so the maximum efficiency is

defined as the ratio of the work output to the heat absorbed:

efficiency =
−w

q2
=

q2 + q1

q2
.

Kelvin used this to define the absolute temperature,

efficiency =
q2 + q1

q2
=

T2 −T1

T2
so that

q2

T2
+

q1

T1
= 0. (1.5)

By considering a cyclic process in terms of infinitesimal parts [4], it can be demonstrated that the

following relationship holds for any reversible cycle,

dq2

T2
+

dq1

T1
= 0 with

∮
dq

T
= 0

making the quantity dq/T a function of state S with

dS =
dq

T
(1.6)

Clausius during the 19th century named this function S as entropy; in the absence of any change

in enthalpy, a reaction can occur spontaneously and irreversibly in an isolated system if it leads

to an increase in entropy, i.e., ∆S > 0. It is evident that in general, neither the enthalpy nor the

entropy change can in isolation be assumed to reliably indicate the whether a reaction can occur

spontaneously. The Gibbs free energy G is therefore defined as a combination of these two terms,

G = H −TS. (1.7)

The Helmholtz free energy F is the corresponding term at constant volume, when H is replaced by

U in Equation 1.7. A process can occur spontaneously if it leads to a reduction in the free energy.

Quantities such as H, G and S are all functions of state.

From an experimental perspective, a change in entropy can be measured via the heat capacity:

∆S =

∫ T2

T1

CP

T
dT.
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1.2.3 CONFIGURATIONAL ENTROPY

Figure 1.1a shows a mixture of two kinds of atoms, with like atoms segregated with no mixing; there

is only one way of achieving this arrangement. On the other hand, if they are allowed to mix ideally

then there are many more ways of configuring them, three of which are illustrated in Figure 1.1c-d.

A mixing of the atoms is obviously more probable.

(a) (b)

(c) (d)

Figure 1.1 Four different configurations of a mixture of two kinds of atoms. (a) The two kinds of atoms

are partitioned into their own spaces, without mixing. (b-d) If the atoms are allowed to mix then many more

arrangements are possible, here only three of the many are illustrated.

Suppose there are N sites amongst which are distributed n atoms of type A and N − n of type B.

The first A atom can be placed in N different ways and the second in N − 1 different ways. These

two atoms cannot be distinguished so the number of different ways of placing the first two A atoms

is N(N −1)/2. The number of distinguishable ways of placing all the atoms in this way, the number

of distinguishable ways of placing all the A atoms is

N(N − 1) . . .(N − n+ 2)(N− n+ 1)

n!
=

N!

n!(N − n)!
. (1.8)

So if the atoms behave ideally, i.e., they do not have a preference for the type of neighbour, then the

probability of a uniform distribution is much much more likely than the ordered distribution.

For a real system for which the number of atoms is very large, a parameter is needed that ex-

presses the likelihood as a function of the correspondingly large number of configurations (wc)

possible. Suppose that a term S is defined such that S ∝ lnwc, where the logarithm is taken because

it may be necessary to add two different kinds of disorder (after Boltzmann), then the S is identi-

fied as the configurational entropy S = k lnwc, where k, the proportionality constant, is known as

the Boltzmann constant which for a mole of atoms is the gas constant R. The entropy is a thermo-

dynamic function of state and it is additive. When comparing scenarios, the one that is favoured

on the basis of the degree of disorder is that which has the greater entropy. In terms of solutions,

entropy favours mixing over separation. On this basis, it can be shown quite simply that the change

in entropy when atoms mix is given by

∆S =−RΣ
j
i=1xi lnxi

where i = 1 . . . j represents the atomic species and xi its mole fraction.
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1.2.4 RELATIONSHIP BETWEEN CLAUSIUS AND BOLTZMANN ENTROPIES

The Carnot engine illustrates the spreading of energy whereas the Boltzmann approach is about

mixing. The relationship between these is quite straightforward – both involve mixing. As Denbigh

stated with admirable elegance, “As soon as it is accepted that matter consists of small particles

which are in motion it becomes evident that every large-scale natural process is essentially a process

of mixing” [p. 110, 5]. Energy transfer involves the motion of the atoms; it was not, at the time of

Carnot, known that matter consists of atoms. It really isn’t necessary to say much more.

1.3 MORE FUNCTIONS

We have seen that heat capacity data can be related directly to the thermodynamic functions of

state H, G and S. Its variation with temperature and chemical composition is therefore important in

determining the relative stabilities of the phases. A number of factors can contribute independently

to the ability of a material to absorb energy. It has been found useful to factorise the specific heat

capacities of each phase in iron, into three components with different origins.

The bulk of the contribution comes from lattice vibrations, the electrons themselves contributing

in a relatively minor way because the Pauli exclusion principle prevents all of them from partici-

pating in the energy absorption process. The third contribution, which is particularly significant for

iron, comes from temperature-induced magnetic changes. The net specific heat capacity at constant

pressure is therefore:

CP{T}=CL
V

{
TD

T

}

C1 +CeT +C
µ

P {T}

where TD is the Debye temperature and CL
V is the Debye specific heat with the function C1 correcting

CL
V to a specific heat at constant pressure. Ce is the electronic specific heat coefficient and C

µ

P the

component due to magnetism.

The Debye specific heat has its origins in the vibrations of atoms, which become increasingly

violent as the temperature rises [6]. These elastic waves (phonons) take discrete, quantised wave-

lengths consistent with being bound by the periodic lattice of atoms in the solid, although the Debye

model described here is a continuum model. The atoms do not all vibrate with the same frequency,

so a spectrum of vibrations is considered in deriving their contribution to the internal energy U .

The maximum in the spectrum is designated the Debye frequency ωD, which is proportional to the

Debye temperature TD at which the highest frequency mode is excited:

TD =
hωD

2πk

where h and k are the Planck and Boltzmann constants respectively. With the approximation that the

phonon frequency is proportional inversely to the wavelength, the internal energy due to the atom

vibrations is:

U =
9NkT 4

T 3
D

∫ xmax

0

x3

(ex − 1)
dx (1.9)

where x = hωD/(2πkT ) and N is the total number of lattice points in the specimen. Since CL
V =

dU/dT , it follows that the lattice specific heat capacity at constant volume can be specified in terms

of the Debye temperature and the Debye function (equation 1.9).

At low temperatures (T ≪ TD), U → 3NkT 4π4/(5T 3
D) so that CL

V → 12π4NkT 3/(5T 3
D) and the

lattice specific heat thus follows a T 3 dependence. For T ≫ TD, the lattice heat capacity can similarly

be shown to become temperature independent and approach a value 3Nk, as might be expected for

N classical oscillators, each with three degrees of freedom (Figure 1.2).
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Figure 1.2 The Debye function showing how the

heat capacity due to phonons varies as a function of the

absolute temperature normalised by the Debye temper-

ature.





2 Equilibrium state

2.1 CHEMICAL POTENTIAL

In a single-phase equilibrium diagram such as that for iron as a function of temperature and pressure,

the boundaries between the phase fields represent the locus of all points along which the adjacent

phases are in equilibrium, i.e., they have an identical free energy. For example, the α/γ phase

boundary is defined by setting (Figure 2.1):

Gα = Gγ. (2.1)

This is because allotropic transitions are considered here as a function of variables such as temper-

ature and pressure, where the crystal structure changes but not the chemical composition.

Temperature

F
re

e 
en

er
g
y

ferrite

austenite

transition 

temperature

Figure 2.1 The transition temperature for

an allotropic transformation.

A different approach is needed when the chemical composition is variable. Consider a single-

phase alloy consisting of two components A and B. The molar free energy G{x} of that phase will

in general be a function of the mole fractions (1− x) and x of A and B respectively, written as a

weighted mean of the free energy contributions from each component:

G{x}= (1− x)µA
︸ ︷︷ ︸

contribution from A atoms

+ xµB
︸︷︷︸

contribution from B atoms

. (2.2)

The terms µB and µB, known as the chemical potentials per mole of A and B respectively, in effect

partition the free energy G{x} into a component purely due to A atoms and another due to B atoms

alone. This equation is illustrated in Figure 2.2 by the tangent at the coordinate [G{x},x]. Consistent

with Equation 2.2, the intercepts of this tangent on the vertical axes give µA and µB. Since the slope

of the tangent depends on the composition, so do the chemical potentials. Note that the free energies

of the pure components are written µ◦
A and µ◦

B.

It should be obvious from Figure 2.2 that

µA = G{x}− x
∂G

∂x

and µB = G{x}+(1− x)
∂G

∂x

where ∂G/∂x is the slope of the tangent so the product on the right-hand side of the equations

simply represents the difference in µ and G. In general, for a system with n components [97, p. 57]:

µi = G{xi}+
n

∑
j=2

(δi j − x j)
∂G

∂x j

(2.3)
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8 Course on thermodynamics

where δi j is the Kronecker delta (δi j = 0 for i 6= j and δi j = 1 for i = j).

Figure 2.2 Illustration of the chem-

ical potential µ for a binary solution,

with µ◦ representing the free energy of

the pure component.

The chemical potential µ{x} of a component is known also as its partial molar free energy,

describing a part of the integral molar free energy G{x}. There are in fact many quantities which

can be expressed using relationships of the form implied by Equation 2.2. Thus, the volume of a

solution might be written in terms of the partial molar volumes of the components:

Vm =V AxA +V BxB (2.4)

where V i refers to the partial molar volume of component i =A,B.

2.2 EQUILIBRIUM BETWEEN SOLUTIONS

Consider now two phases α and γ that are placed in intimate contact in a binary steel. The phases

will only be in equilibrium with each other if the carbon atoms in γ have the same chemical potential

as the carbon atoms in α, and if this is true also for the Fe atoms:

µα

C = µγ

C

µα

Fe = µγ

Fe. (2.5)

In fact, in a binary solution, the chemical potentials of A and B when sharing a tangent are not

independent so this last condition is redundant. This is apparent from Figure 2.2, where the two

potentials are connected by the tangent.

If the atoms of a particular species have the same chemical potential in both the phases, then

there can be no tendency for them to migrate across the phase boundaries. The system will be in

stable equilibrium if this condition applies to all species of atoms. The way in which the free energy

of a phase varies with concentration is unique to that phase, so the concentration of a particular

species of atom need not be identical in phases which are at equilibrium. Therefore, in general,

x
αγ

C 6= x
γα

C

x
αγ

Fe 6= x
γα

Fe (2.6)

where x
αγ

i describes the mole fraction of element i in phase α which is in equilibrium with phase γ

etc.

The condition that the chemical potential of each species of atom must be the same in all phases

at equilibrium is general. For the binary alloy, two phase case, it follows that the equilibrium com-

positions can be found on a plot of free energy versus composition, by constructing a tangent that is

common to the two free energy curves as illustrated in Figure 2.3.
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Figure 2.3 The common tangent

construction giving the equilibrium

compositions xαγ and xγα of the two

phases at a fixed temperature.

2.3 ACTIVITY

The chemical potential µα

A of the A atoms in the α phase may be expanded in terms of a contribution

from the pure component A and a concentration dependent term as follows:

µα

A = µ◦α
A +RT lnaαA (2.7)

where µ◦α
A is the free energy of pure A in the structure of α, and aA is the activity of atom A in the

solution of A and B.

The activity of an atom in a solution can be thought of as its effective concentration in that

solution. For example, there will be a greater tendency for the A atoms to evaporate from solution,

when compared with pure A, if the B atoms repel the A atoms. The effective concentration of A in

solution will therefore be greater than implied by its atomic fraction, i.e., its activity is greater than

its concentration. The opposite would be the case if the B atoms attracted the A atoms.

The atom interactions can be expressed in terms of the change in energy as an A-A and a B-B

bond is broken to create 2(A-B) bonds. An ideal solution is formed when there is no change in

energy in the process of forming A-B bonds. The activity is equal to the mole fraction in an ideal

solution (Figure 2.4). If, on the other hand, there is a reduction in energy than the activity is less

than ideal and vice versa. The activity and concentration are related via an activity coefficient Γ:

a = Γx. (2.8)

The activity coefficient is in general a function of the chemical composition of all the elements

present in the solution, but tends to be constant in dilute solutions (i.e., in the Henry’s law region).

In this discussion, the activity of the solute was defined with respect to a Raoultian reference

state, i.e., a = 1 for x = 1. Other definitions are sometimes convenient. A common alternative for

dilute solutions being that the activity tends to unity as the concentration tends to 1 wt%.

Note that solutions where the enthalpy of mixing is positive tend to exhibit clustering at low

temperatures whereas those with a negative enthalpy of mixing will tend to exhibit ordering at low

temperatures. The effect of temperature is to mix all atoms since both clustering and ordering cause a

reduction in entropy (i.e., a reduction in entropy). The product −T∆S becomes increasingly positive

at high temperatures, so much so that it eventually overcomes the enthalpy effects and causes the

mixing of all atoms.
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Figure 2.4 Variation in Raoultian activity as a

function of its concentration in a binary solution.

The ideal solution represents the case where the

enthalpy of mixing is zero; the atoms are indif-

ferent to the specific nature of their neighbours.

The case where the activity is larger than the con-

centration is for solutions where the enthalpy of

mixing is greater than zero, with like atoms pre-

ferred as near neighbours. When the activity co-

efficient is less than unity, unlike atoms are pre-

ferred as near neighbours, the enthalpy of mixing

being negative.

2.4 IDEAL SOLUTION

An ideal solution is one in which the atoms at equilibrium are distributed randomly; the interchange

of atoms within the solution causes no change in the potential energy of the system. For a binary

(A-B) solution the numbers of the different kinds of bonds can therefore be calculated using simple

probability theory:

NAA =
1

2
N(1− x)2

NBB =
1

2
Nx2

NAB = N(1− x)x

where NAB represents both A-B and B-A bonds which cannot be distinguished. N is the total number

of atoms and x the fraction of B atoms. The factor of 1
2 avoids counting A-A or B-B bonds twice.

For an ideal solution, the entropy of mixing is given by Equation 3.3 with mB = mA = 1. There

is no enthalpy of mixing since there is no change in energy when bonds between like atoms are

broken to create those between unlike atoms. This is why the atoms are randomly distributed in the

solution. The molar free energy of mixing is therefore:

∆GM = NakT [(1− x) ln{1− x}+ x ln{x}]. (2.9)

Figure 2.5 shows how the configurational entropy and the free energy of mixing vary as a function of

the concentration. ∆GM is at a minimum for the equiatomic alloy because that is when the entropy

of mixing is at its largest; the curves are naturally symmetrical about x = 0.5. The form of the

curve does not change with temperature though the magnitude at any concentration scales with the

temperature. It follows that at 0 K there is no difference between a mechanical mixture and an ideal

solution.

From Equation 2.7, the chemical potential per mole for a component in an ideal solution is given

by:

µA = µ◦
A +NakT ln{1− x}

and there is a similar equation for B. Since µA = µ◦
A+RT lnaA, it follows that the activity coefficient

is unity.
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Figure 2.5 The entropy of mixing

(kJmol−1 K−1) and the free energy of

mixing (kJmol−1) as a function of

concentration in an ideal binary solu-

tion where the atoms are distributed at

random. The free energy is for a tem-

perature of 1000 K. The data are plot-

ted as dots rather than curves because

concentration is strictly a discrete vari-

able. So the slope at the vertical axes is

not ±∞ as implied by Equation 2.9, but

finite though very large.

2.5 REGULAR SOLUTIONS

There are no solutions of iron that are ideal. The iron-manganese liquid phase is close to ideal,

though even that has an enthalpy of mixing which is about −860Jmol−1 for an equiatomic solu-

tion at 1000 K, which compares with the contribution from the configurational entropy of about

−5800Jmol−1. The ideal solution model is nevertheless useful because it provides a reference. The

free energy of mixing for a non-ideal solution often is written with an additional term, the excess

free energy (∆eG = ∆eH −T∆eS) that indicates the deviation from ideality:

∆GM = ∆eG+NakT [(1− x) ln{1− x}+ x ln{x}]

= ∆eH −T∆eS+NakT [(1− x) ln{1− x}+ x ln{x}] (2.10)

One of the components of the excess enthalpy of mixing comes from the change in the energy when

new kinds of bonds are created during the formation of a solution. This enthalpy is, in the regular

solution model, estimated from the pairwise interactions between adjacent atoms. The term regular

solution was proposed by Hildebrand [98] to describe mixtures, the properties of which when plotted

varied in an aesthetically regular manner; he went on to suggest that a regular solution, although not

ideal, would still contain a random distribution of the constituents.1 Following Guggenheim [99],

the term regular solution is now restricted to cover mixtures that assume an ideal entropy of mixing

but have a non-zero interchange energy.

In the regular solution model, the enthalpy of mixing is obtained by counting the different kinds

of near neighbour bonds when the atoms are mixed at random; this information together with the

binding energies gives the required change in the enthalpy on mixing. The binding energy may be

defined by considering the change in energy as the distance between a pair of atoms is decreased

from infinity to an equilibrium separation (Figure 2.6). The change in energy during this process is

the binding energy, which for a pair of A atoms is written −2εAA. It follows that when εAA +εBB <
2εAB, the solution will have a larger than random probability of bonds between unlike atoms. The

converse is true when εAA +εBB > 2εAB since atoms then prefer to be neighbours to their own kind.

Notice that for an ideal solution it only is necessary for εAA +εBB = 2εAB, and not εAA = εBB = εAB

[99].

Suppose now that the approximation that atoms are randomly distributed is retained, even though

the enthalpy of mixing is not zero. The number of A-A, A-B and B-B bonds in a mole of solution

is then 1
2
zNa(1− x)2, 1

2
zNax2 and zNa(1− x)x respectively, where z is the co-ordination number. It
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Figure 2.6 Change in energy as a

function of the distance between a pair

of A atoms. −2εAA is the binding en-

ergy for the pair of atoms. There is a

strong repulsion at close-range.

follows that the molar enthalpy of mixing is given by:

∆HM ≃ Naz(1− x)xω where ω = εAA + εBB − 2εAB. (2.11)

The product zNaω is often called the regular solution parameter, which in practice will be temper-

ature and composition dependent. A composition dependence also leads to an asymmetry in the

enthalpy of mixing as a function of composition about x = 0.5. For the nearly ideal Fe-Mn liquid

phase solution, the regular solution parameter is −3950+ 0.489T Jmol−1 if a slight composition

dependence is neglected.

A positive ω favours the clustering of like atoms whereas when it is negative there is a tendency

for the atoms to order. This second case is illustrated in Figure 2.7, where an ideal solution curve is

presented for comparison. Like the ideal solution, the form of the curve for the case where ∆HM < 0

does not change with the temperature, but unlike the ideal solution, there is a free energy of mixing

even at 0 K where the entropy term ceases to make a contribution.

Figure 2.7 Free energy of mixing at

1000 K, as a function of concentra-

tion in a binary solution where there

is a preference for unlike atoms to be

near neighbours. The free energy curve

for the ideal solution (∆HM = 0) is in-

cluded for reference.

The corresponding case for ∆HM > 0 is illustrated in Figure 2.8, where the form of the curve

is seen to change with the temperature. The contribution from the enthalpy term can largely be

neglected at high temperatures where the atoms become randomly mixed by thermal agitation so the

free energy curve then has a single minimum. However, as the temperature is reduced, the opposing

contribution to the free energy from the enthalpy term introduces two minima at the solute-rich and

solute-poor concentrations. This is because like-neighbours are preferred. On the other hand, there

is a maximum at the equiatomic composition because that gives a large number of unfavoured unlike

atom bonds. Between the minima and the maximum lie points of inflexion which are of importance

in spinodal decomposition, to be discussed later.

For a regular solution, Equation 2.2 shows that the chemical potential per mole is given by:

µB = µ◦
A + zNax2ω +NakT ln{1− x} (2.12)

and that the activity coefficient is exp{zx2ω/kT}. Some of the properties of the different kinds of

solutions are summarised in Table 2.1.
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Figure 2.8 Free energy of mixing as

a function of concentration and tem-

perature in a binary solution where

there is a tendency for like atoms to

cluster. The free energy curve for the

ideal solution (∆HM = 0) is included

for reference.

Table 2.1

Elementary thermodynamic properties of solutions

Type ∆SM ∆HM

Ideal Random 0

Regular Random 6= 0

Quasichemical Not random 6= 0





3 Case study: mechanical

alloying

All steels are solutions. The distinction between a compound and a solution is that the free energy of

the former increases sharply with a change in its chemical composition. For a solution, the variation

in free energy with composition is much more gentle so that the range of composition over which

it can exist is greater. It is useful to examine the nature of a solution by considering its evolution as

the components are mixed together. For when is a mixture, a solution?

3.1 ALLOYING BY DEFORMATION

Mechanical alloying is a process invented by Benjamin [95], in which mixtures of fine powders

consisting of elemental metals or master alloys are changed into solid solutions, apparently without

any melting (Figure 3.1). The powders are forced to collide with each other and with much larger,

hardened steel balls whilst contained in a ball mill. The collisions are energetic, involve large contact

pressures, and lead eventually to the formation of an intimate solid solution. Refractory oxides can

also be introduced into the mechanically alloyed powder for dispersion strengthening. The alloyed

powder is finally extruded to form full density bulk samples in rod, sheet or other useful shapes. The

process has been used commercially to make iron alloys containing large amounts of aluminium for

oxidation resistance, and yttria particles to guard against creep.

Figure 3.1 Mixture of metallic

powders and compounds ball-milled

together until alloying occurs. The top

part shows a cylindrical drum contain-

ing a mixture of elemental powders

and large steel balls. When the drum

is rotated the balls collide causing the

powder particles to coalesce and frag-

ment repeatedly. The resulting pow-

ders are then canned and hot-extruded

to produce solid metal.

3.2 CHEMICAL STRUCTURE

An alloy can be created without melting, by violently deforming mixtures of different powders. The

intense deformation associated with mechanical alloying can force atoms into positions where they

may not prefer to be at equilibrium.

A solution which is homogeneous will nevertheless exhibit concentration differences of increas-

ing magnitude as the size of the region which is chemically analysed decreases. These are random

fluctuations which obey the laws of stochastic processes, and represent the real distribution of atoms

in the solution. These equilibrium variations cannot usually be observed directly because of the lack

of spatial resolution and noise in the usual microanalytical techniques. The fluctuations only become

apparent when the resolution of chemical analysis falls to less than about a thousand atoms block.

15



16 Course on thermodynamics

Figure 3.2 illustrates the variation in the iron and chromium concentrations in fifty atom blocks,

of the ferrite in a commercial alloy. There are real fluctuations but further analysis is needed to show

whether they are beyond what is expected in homogeneous solutions

Figure 3.2 The variation in the iron and chromium concentrations of 50 atom samples of an alloy

For a random solution, the distribution of concentrations should be binomial since the fluctua-

tions are random; any significant deviations from the binomial distribution would indicate either the

clustering of lik–atoms or the ordering of unlike pairs.

The frequency distribution is obtained by plotting the total number of composition blocks with a

given number of atoms of a specified element against the concentration. Figure 3.3 shows that the

experimental distributions are essentially identical to the calculated binomial distributions, indicat-

ing that the solutions are random.

Figure 3.3 Frequency distribution curves for iron, chromium and aluminium in a mechanical alloy.

This does not mean that the solutions are thermodynamically ideal, but rather that the alloy

preparation method which involves intense deformation forces a random dispersal of atoms. Indeed,

Fe–Cr solutions are known to deviate significantly from ideality, with a tendency for like atoms to

cluster. Thus, it can be concluded that the alloy is in a mechanically homogenised nonequilibrium

state, and that prolonged annealing at low temperatures should lead to, for example, the clustering

of chromium atoms.
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3.3 SOLUTION FORMATION

The preparation of a binary alloy by this route can be considered in terms of the two elemental

powders (‘A’ and ‘B’) which are mixed such that the mole fraction of B is x. The pure powders

have the molar free energies µ◦
A and µ◦

B respectively, Figure 3.4. The free energy of this mechanical

mixture of powders is given by:

G{mixture}= (1− x)µ◦
A + xµ◦

B+∆SM (3.1)

where ∆SM is the accompanying change in configurational entropy. It has been assumed here, that

there is no change in enthalpy in the process, i.e., the atoms in the context of bonding, are indifferent

to the type of neighbouring atom.

Figure 3.4 Plot of free energy ver-

sus composition, both for mechanical

mixtures and a solid solution. ∆GM is

the free energy of mixing when the

mechanical mixture turns into a solid

solution.

The change in configurational entropy as a consequence of mixing can be obtained using the

Boltzmann equation S = k ln{wc} where wc is the number of configurations. Suppose that there are

mA atoms per powder particle of A, and mB atoms per particle of B; the powders are then mixed in

a proportion which gives an average concentration of B which is the mole fraction x.

There is only one configuration when the heaps of powders are separate. When the powders are

mixed randomly, the number of possible configurations for a mole of atoms becomes [96]:

(
Na([1− x]/mA+ x/mB)

)
!

(Na[1− x]/mA)! (Nax/mB)!
. (3.2)

The numerator in equation 3.2 is the total number of particles and the denominator the product

of the factorials of the A and B particles respectively; Na is Avogadro’s number. Using Stirling’s

approximation, the molar entropy of mixing is:

∆SM

kNa
=

(1− x)mB+ xmA

mAmB
ln

{

Na
(1− x)mB + xmA

mAmB

}

−
1− x

mA
ln

{
Na(1− x)

mA

}

−
x

mB
ln

{
Nax

mB

}

(3.3)

subject to the condition that the number of particles remains integral and non-zero.1

The largest reduction in free energy occurs when the particle sizes are atomic, Figure 3.5, which

shows the molar free energy of mixing for a case where the average composition is equiatomic.
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Such a composition maximises configurational entropy. When it is considered that phase changes

often occur at appreciable rates when the accompanying reduction in free energy is just 10Jmol−1,

Figure 3.5 shows that the entropy of mixing cannot be ignored when the particle size is less than a

few hundreds of atoms. In commercial practice, powder metallurgically produced particles are typi-

cally 100µm in size, in which case the entropy of mixing can be entirely neglected, though solution

formation must be considered to be advanced when the processing reduces particle dimensions to

some 102 atoms. These comments must be qualified due to the neglect any enthalpy change during

mixing.

Figure 3.5 The molar Gibbs free energy

of mixing, ∆GM =−T ∆SM, for a binary al-

loy, as a function of the particle size when

all the particles are of uniform size in a mix-

ture, the average composition of which is

equiatomic. T = 1000K.

3.4 ENTHALPY OF MIXING FOR PARTICULATE MIXTURES

The enthalpy of mixing will not in general be zero as was assumedabove. Equation 2.11 gives the

molar enthalpy of mixing for atomic solutions. For particles which are not monatomic, only those

atoms at the interface between the A and B particles will feel the influence of the unlike atoms. It

follows that the enthalpy of mixing is not given by Equation 2.11, but rather by

∆HM = zNaω2δSVx(1− x)

where SV is the amount of A-B interfacial area per unit volume and 2δ is the thickness of the

interface, where δ represents a monolayer of atoms.

A further enthalpy contribution, which does not occur in conventional solution theory, is the

structural component of the interfacial energy per unit area, σ :

∆HI =VmSVσ

where Vm is the molar volume.

Both of these equations contain the term V, which increases rapidly as the inverse of the particle

size m. The model predicts that solution formation is impossible because the cost due to interfaces

overwhelms any gain from binding energies or entropy. And yet, as demonstrated by atom-probe

experiments, solutions do form during mechanical alloying, so there must be a mechanism to re-

duce interfacial energy as the particles are divided. The mechanism is the reverse of that associated

with precipitation (Fig. ??). A small precipitate can be coherent but the coherency strains become

unsustainable as it grows. Similarly, during mechanical alloying it is conceivable that the particles

must gain in coherence as their size diminishes. The milling process involves fracture and welding

of the attrited particles so only those welds which lead to coherence might succeed.
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Figure 3.6 The change in coherence as a function of particle size. The lines represent lattice planes which

are continuous at the matrix/precipitate interface during coherence, but sometimes terminate in dislocations for

the incoherent state. Precipitation occurs in the sequence a→c whereas mechanical alloying is predicted to lead

to a gain in coherence in the sequence c→a.

3.5 SHAPE OF FREE ENERGY CURVES

There are many textbooks which emphasise that free energy of mixing curves such as that illustrated

in Fig. 2.2 must be drawn such that the slope is either −∞ or +∞ at x = 0 and x = 1 respectively.

This is a straightforward result from equation 19 which shows that

∂∆SM

∂x
=−kNa ln

{
x

1− x

}

so that the slope of −T ∆SM becomes ±∞ at the extremes of concentration. Notice that at those ex-

tremes, any contribution from the enthalpy of mixing will be finite and negligible by comparison, so

that the free energy of mixing curve will also have slopes of ±∞ at the vertical axes corresponding

to the pure components. Note that the intercepts at the vertical axes representing the pure compo-

nents are nevertheless finite, with values µ0
A and µ0

B. It follows that the free energy of mixing of any

solution from its components will at first decrease at an infinite rate.

However, these conclusions are strictly valid only when the concentration is treated as a contin-

uous variable which can be as close to zero or unity as desired. The discussion here emphasises that

there is a discrete structure to solutions. Thus, when considering N particles, the concentration can

never be less than 1/N since the smallest amount of solute is just one particle. The slope of the free

energy curve will not therefore be ±∞ at the pure components, but rather a finite number depending

on the number of particles involved in the process of solution formation. Since the concentration is

not a continuous variable, the free energy ‘curve’ is not a curve, but is better represented by a set

of points representing the discrete values of concentration that are physically possible when mixing

particles. Obviously, the shape approximates to a curve when the number of particles is large, as is

the case for an atomic solution made of a mole of atoms. But the curve remains an approximation.





4 Computer calculation of

phase diagrams

The thermodynamic methods described thus far in this chapter are revealing and have been applied

towards the understanding and modelling the behaviour of iron and its alloys. It nevertheless is too

complicated in the context of multicomponent steels where individual solute concentrations can vary

over a large range. Therefore, methods have been developed for doing this in a seamless manner;

these methods have been so successful that they now represent the first step in any alloy development

project. The subject of the computer calculation of phase diagrams based on experimental data has

been reviewed extensively, e.g., [124–129]. The focus here is on the framework for such generic

calculations, which necessarily involves a degree of educated, clever empiricism. The process has

also led to the systematic compilation and assessment of experimental data on a scale that is perhaps

unique in science. All this was initiated by like-minded scientists long before “big data” or computer

modelling became fashionable.

One possibility is to represent thermodynamic quantities by a series expansion with sufficient ad-

justable parameters to adequately fit the experimental data. There has to be a compromise between

the accuracy of the fit and the number of terms in expansion. However, such expansions do not

generalise well when dealing with complicated phase diagram calculations involving many com-

ponents and phases. Experience suggests that the specific heat capacities for the pure elements are

better represented by a polynomial with a form that describes most of the known experimental data:

CP = b8 + b9T + b10T 2 +
b11

T 2
. (4.1)

If the fit with experimental data is found not to be good enough, the polynomial is applied to a

range over which the fit is satisfactory, and more than one polynomial is used to represent the full

dataset with care exercised to ensure continuity over the range. A standard element reference state

is defined with a list of the measured enthalpies and entropies of the pure elements at 298 K and one

atmosphere pressure, for the crystal structure appropriate for these conditions. With respect to this

state, the Gibbs free energy is obtained by integration to be:

G = b12 + b13T + b14T ln{T}+ b15T 2 + b16T 3 +
b17

T
. (4.2)

This free energy is defined with respect to a reference (included in b12) i.e., relative to the enthalpy at

298.15 K and entropy at 0 K of the stable states of the element(s) concerned at 298.15 K. Allotropic

transformations can be included if the transition temperatures, enthalpy of transformation and the

CP coefficients for all the phases are known.

Any specific contributions to CP, such as due to magnetic transitions, are dealt with separately, as

are the effects of pressure. Once again, the equations for these effects are chosen carefully in order

to maintain generality.

The excess Gibbs free energy for a binary solution with components A and B is written:

∆eGAB = xAxB

j

∑
i=0

LAB,i(xA − xB)
i. (4.3)

For i = 0 this gives a term xAxBLAB,0 which is familiar in regular solution theory, where the coeffi-

cient LAB,0 is, as usual, independent of chemical composition and to a first approximation describes

21
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the interaction between components A and B. If all other LAB,i are zero for i > 0 then the equation

reduces to the regular solution model with LAB,0 as the regular solution parameter. Further terms

(i > 0) are added to allow for any composition dependence not described by the regular solution

constant.

In the first approximation, the excess free energy of a ternary solution can be represented purely

by a combination of the binary terms in Equation 4.3:

∆eGABC = xAxB

j

∑
i=0

LAB,i(xA − xB)
i

+xBxC

j

∑
i=0

LBC,i(xB − xC)
i + xCxA

j

∑
i=0

LCA,i(xC − xA)
i.

The advantage of the representation embodied in Equation 4.3 is clear, that for the ternary case, the

relation reduces to the binary problem when one of the components is set to be identical to another,

e.g., B≡C [130].

Experimental data may indicate significant ternary interactions, in which case a term

xAxBxCLABC,0 is added to the excess free energy. If this does not adequately represent the devia-

tion from the binary summation, then it can be converted into a series which properly reduces to a

binary formulation when there are only two components:

xAxBxC

[
LABC,0 +

1

3
(1+ 2xA− xB− xC)LABC,1

+
1

3
(1+ 2xB− xC− xA)LBCA,1 +

1

3
(1+ 2xC− xA − xB)LCAB,1

]
.

This method can be extended to any number of components as long as appropriate thermody-

namic data are available, with the advantage that few coefficients have to be changed when the data

due to one component are improved. The information necessary to derive the coefficients become

sparse for systems with more than three components.



5 Thermodynamics of

irreversible processes

Thermodynamics as a subject is limited to the equilibrium state. Properties such as entropy and

free energy are, on an appropriate scale, static and time-invariant during equilibrium. There is an

extension of the subject to systems that are close to equilibrium so that they can be divided into

subsystems where the rules of equilibrium can be applied locally [139]. Parameters not relevant

to the discussion of equilibrium, such as thermal conductivity, diffusivity and viscosity, then enter

the picture because they can describe a second kind of time independence, that of the steady state.

For example, the concentration profile does not change during steady-state diffusion, even though

energy is being dissipated during diffusion.

The thermodynamics of irreversible processes deals with systems that are not at equilibrium but

are nevertheless stationary. The theory in effect uses thermodynamics to deal with kinetic phe-

nomena. There is nevertheless, a distinction between the thermodynamics of irreversible processes

and kinetics. The former applies strictly to the steady-state, whereas there is no such restriction on

kinetic theory.

5.1 REVERSIBILITY

A process, the direction of which can be changed by an infinitesimal alteration in the external condi-

tions is called reversible, because an exact reversal leads to no net dissipation of energy. Figure 5.1

shows the response of an ideal gas contained at uniform pressure within a cylinder, any change be-

ing achieved by the motion of the piston. For any starting point on the pressure-volume curve, the

application of an infinitesimal force may cause the piston to move to an adjacent position still on

the curve, while the removal of the infinitesimal force restores the system to its original state. This

process is reversible because there is no net dissipation in displacing and recovering the frictionless

piston.

If the motion of the piston in the cylinder entails friction, then deviations occur from the P/V

curve as illustrated by the cycle in Figure 5.1. An infinitesimal force cannot move the piston because

energy must be dissipated to overcome the friction; this energy is the area enclosed by the cycle

on the P/V plot. A process such as this, which involves the dissipation of energy, is classified

as irreversible with respect to an infinitesimal change in the external conditions. More generally,

gas
Figure 5.1 The curve represents the

variation in pressure within the cylin-

der as the volume of the ideal gas is al-

tered by the frictionless positioning the

piston. The cycle represents the dissi-

pation of energy when the motion of

the piston causes friction.

reversibility means that it is possible to pass from one state to another without appreciable deviation

from equilibrium. Real process are not reversible so equilibrium thermodynamics can only be used

23
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approximately, though the same principles define whether or not a process can occur spontaneously

without ambiguity.

For irreversible processes the equations of classical thermodynamics become inequalities. For

example, at the equilibrium melting temperature, the free energies of the liquid and solid are identi-

cal (Gliquid = Gsolid) but not so below that temperature (Gliquid > Gsolid). Such inequalities are much

more difficult to deal with though they indicate the natural direction of change. For steady-state

processes however, the thermodynamic framework for irreversible processes as developed by On-

sager [140] is particularly useful in obtaining relationships even though the system may not be at

equilibrium.

5.1.1 LINEAR LAWS

There is no change in entropy or free energy at equilibrium. An irreversible process dissipates energy

and entropy is created continuously. In the example illustrated in Fig. 5.1, the dissipation was due to

friction; diffusion ahead of a moving interface is dissipative. The rate at which energy is dissipated

is the product of the temperature and the rate of entropy production:

T Ṡ = JX (5.1)

where J is a generalised flux of some kind, and X a generalised force. In the case of an electrical

current, the heat dissipation is the product of the current (J) and the electromotive force (X).

As long as the flux-force sets can be expressed as in Equation 5.1, the flux must naturally depend

in some way on the force. It may then be written as a function J{X} of the force X . At equilibrium,

the force is zero. J{X} can be expanded in a Taylor series about equilibrium (X = 0):

J{X} =
∞

∑
0

anXn

= J{0}+ J′{0}
X

1!
+ J′′{0}

X2

2!
. . . (5.2)

In this expansion, J{0}= 0 because there is no flux in the absence of force. If the high order terms

are neglected then a proportionality between the force and flux is revealed:

J ∝ X .

Therefore, the forces and their conjugate fluxes are linearly related whenever the dissipation can

be expressed as in Equation 5.2, at least when the deviations from equilibrium are not large. This

caveat is illustrated nicely by the relationship between the rate at which an interface moves and the

driving force. In Chapter ??, Equation ??, which is limited to small driving forces, shows a linear

relationship between the two quantities, whereas Equation ?? which is derived without limits on

the magnitude of the driving force, shows that the rate and driving force are not in general linearly

related.

In another example, consider a closed system in which a quantity dH of heat is transferred in a

time interval dt across an area A in a direction z normal to that area, from a region at temperature Th

to a lower temperature Tℓ. The receiving part increases its entropy by dH/Tℓ whereas the depleted

region experiences a reduction dH/Th, so the change in entropy is

dS = dH

(
1

Tℓ
−

1

Th

)

.

The rate of entropy production per unit volume is therefore

Ṡ =
1

V

dS

dt
=

1

V

dH

dt

(
1

Tℓ
−

1

Th

)

. (5.3)
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The flux of heat J is defined as A−1dH/dt so Equation 5.3 becomes

Ṡ = J
A

V

(
1

Tℓ
−

1

Th

)

≡ J

(

−
1

T 2

)
dT

dz

or TṠ = J
︸︷︷︸

flux

(

−
1

T

)
dT

dz
︸ ︷︷ ︸

force

Some examples of forces and fluxes in their generic form are listed in Table 5.1.

Table 5.1

Examples of forces and their conjugate fluxes. z is the distance over which the gra-

dient exists, φ is the electrical potential and µ the chemical potential.

Force Flux

− ∂φ
∂ z

Electrical Current

− 1
T

∂T
∂ z

Heat flux

− ∂ µi

∂ z
Diffusion flux

Stress Strain rate

5.1.2 MULTIPLE IRREVERSIBLE PROCESSES

There are circumstances whereby a number of irreversible processes occur together. In a ternary

Fe-Mn-C alloy, the diffusion flux of carbon depends not only on the gradient of carbon, but also

on that of manganese. A uniform distribution of carbon will tend to become inhomogeneous in

the presence of a manganese concentration gradient. Similarly, the flux of heat may not depend on

the temperature gradient alone; heat can be driven also by an electromotive force (Peltier effect).1

Electromigration involves diffusion that is driven by an electromotive force. When there is more

then one dissipative process, the total energy dissipation rate can still be written

TṠ = ∑
i

JiXi. (5.4)

In general, if there is more than one irreversible process occurring, it is found experimentally that

each flow Ji is related not only to its conjugate force Xi, but is also linearly related to all other forces

present. Thus,

Ji = Mi jX j (5.5)

with i, j = 1,2,3 . . .. Therefore, a given flux depends on all the forces causing the dissipation of

energy.

5.1.3 ONSAGER RECIPROCAL RELATIONS

Equilibrium in real systems is dynamic on a microscopic scale. It seems obvious that to maintain

equilibrium under these dynamic conditions, a process and its reverse must occur at the same rate on

the microscopic scale. The consequence is that provided the forces and fluxes are chosen from the

dissipation equation and are independent, Mi j = M ji. This is known as the Onsager theorem, or the
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Onsager reciprocal relations. It applies to systems near equilibrium when the properties of interest

have even parity, and assuming that the fluxes and their corresponding forces are independent. An

exception occurs with magnetic fields in which case there is a sign difference Mi j =−M ji [141].



6 Quasichemical solution

The regular solution model assumes a random distribution of atoms even though the enthalpy of

mixing is not zero. whereas in reality a random solution is only expected at high temperatures when

the entropy term overwhelms any tendency for ordering or clustering of atoms. It follows that the

configurational entropy of mixing should therefore vary with the temperature. The quasichemical

solution model has a better treatment of configurational entropy which accounts for a non-random

distribution of atoms. The model is so-called because it has a mass-action equation that has similar-

ity to chemical reactions [100]. However, the presentation below follows derivations by Christian

[101] and Lupis [97].

Recalling that zNAB represents the number of A-B bonds, the total energy of the assembly for a

particular value of NAB is UNAB
=−z(NAεAA +NBεBB −NABω) where ω = εAA + εBB−2εAB. In a

non-random solution there are many values that NAB can adopt; each value corresponding to one or

more arrangement of atoms with an identical value of U is therefore associated with a degeneracy

gNAB
which is the number of arrangements possible for a given value of U . The partition function is

therefore the sum over all possible NAB:

Ω = ∑
NAB

gNAB
exp

{

−
UNAB

kT

}

= ∑
NAB

gNAB
exp

{
z(NAεAA +NBεBB −NAB)ω

kT

}

. (6.1)

For a given value of NAB, the different non-interacting pairs of atoms can be arranged in the follow-

ing number of ways (N = NA +NB)

gNAB
∝

( 1
2 zN)!

( 1
2
z[NA −NAB])! (

1
2
z[NB −NAB])! (

1
2
zNAB)! (

1
2
zNBA)!

(6.2)

where the first and second terms in the denominator refer to the numbers of A-A and B-B bonds

respectively, and the third and fourth terms the numbers of A-B and B-A pairs respectively. This

is not an equality because the various pairs are not independent, as illustrated in (Figure 6.1); the

distribution of pairs is not random. Guggenheim addressed this difficulty by using a normalisation

Figure 6.1 Why pairs of atoms cannot be distributed at random on lattice sites

which are marked as small dots. Once the bonds connecting the coordinates (i, i+

1), (i + 1, i + 2), (i + 2, i + 3) are made as illustrated, the final bond connecting

(i, i+3) is necessarily occupied by a pair AB. Adapted from Lupis [97].

factor such that the summation of all possible degeneracies equals the total number of possible

configurations as follows.

Suppose that the number of arrangements of pairs of atoms possible in a random solution is

identified with an asterix, then from the proportionality 6.2, it is seen that

g∗ ∝
( 1

2
zN)!

( 1
2
z[NA −N∗

AB])! (
1
2
z[NB −N∗

AB])! (
1
2
zN∗

AB)! (
1
2
zN∗

BA)!
. (6.3)
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This again will overestimate the number of possibilities (Figure 6.1), but for a random solution it is

known already that

g∗ =
N!

NA! NB!
. (6.4)

It follows that gNAB
can be normalised as

gNAB
=

( 1
2
z[NA −N∗

AB])! (
1
2
z[NB −N∗

AB])! (
1
2
zN∗

AB)! (
1
2
zN∗

BA)!

( 1
2
z[NA −NAB])! (

1
2
z[NB −NAB])! (

1
2
zNAB)! (

1
2
zNBA)!

×
N!

NA! NB!
. (6.5)

With this, the partition function Ω is defined explicitly and the problem is in principle solved. It

is usual however, to simplify first by assuming that the sum in Equation 6.1 can be replaced by

its maximum value. This is because the thermodynamic properties that follow from the partition

function depend on its logarithm, in which case the use of the maximum is a good approximation.

The equilibrium number Ne
AB of A-B bonds may then be obtained by setting ∂ ln{Ω}/∂NAB = 0

[97, 101]:

Ne
AB =

2Nzx(1− x)

βq + 1
(6.6)

with βq being the positive root of the equation

β 2
q − (1− 2x) = 4x(1− x)exp{2ω/kT}, (6.7)

so that

Ne
AB =

2Nzx(1− x)

[1− 2x+ 4x(1− x)exp{2ω/kT}]
1
2 + 1

.

The percentages of the different pairs are plotted in Figure 6.2. Equation 6.6 obviously corresponds

to the regular solution model if βq = 1 with a random arrangement of atoms. As expected, the

number of unlike pairs is reduced when clustering is favoured, and increased when ordering is

favoured.

Figure 6.2 Calculated percentages of

pairs for the quasichemical model with

x = (1− x) = 0.5. The result is indepen-

dent of the coordination number z.

The free energy of the assembly is

G = F =−kT ln{Ω}=UNe
AB

− kT lngNe
AB

(6.8)

so that the free energy of mixing per mole becomes

∆GM = zNe
ABω −NakT lngNe

AB

=
2zωNax(1− x)

βq + 1
︸ ︷︷ ︸

molar enthalpy of mixing

−RT lngNe
AB
. (6.9)
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The second term on the right-hand side has the contribution from the configurational entropy of

mixing. By substituting for gNe
AB

, and with considerable manipulation, Christian has shown that this

can be written in terms of βq so that the molar free energy of mixing becomes:

∆GM =
2zωNax(1− x)

βq + 1

+RT
[
(1− x) ln{1− x}+ x ln{x}

]

+
1

2
RTz

{

(1− x) ln
βq + 1− 2x

(1− x)(βq + 1)
+ x ln

βq − 1+ 2x

x(βq + 1)

}

The second term in this equation is the usual contribution from the configurational entropy of mixing

in a random solution, whereas the third term can be regarded as a quasichemical correction for the

entropy of mixing because the atoms are not randomly distributed.

It is not possible to give explicit expressions for the chemical potential or activity coefficient

since βq is a function of concentration. Approximations using series expansions are possible [97]

but the resulting equations are not as easy to interpret physically as the corresponding equations for

the ideal or regular solution models.

The expressions in the quasichemical (or first approximation) clearly reduce to those of the reg-

ular solution (or zeroth approximation) model when βq = 1. Although a better model has been

obtained, the first approximation relies on the absence of interference between atom-pairs. How-

ever, each atom in a pair belongs to several pairs so that better approximations can be obtained by

considering larger clusters of atoms in the calculation. Such calculations are known as the “cluster

variation” method proposed originally by Kikuchi [102]. The improvements obtained with these

higher approximations are usually rather small though there are cases where pairwise interactions

simply will not do.

It is worth emphasising that although the quasichemical model has an excess entropy, this comes

as a correction to the configurational entropy. The excess entropy from this model is always negative;

as Lupis pointed out [97], there is more disorder in a random solution than in one that is biased.

Therefore, the configurational entropy from the quasichemical model is always less than expected

from an ideal solution. Thermal entropy or other terms such as magnetic or electronic are additional

contributions.

The procedure in the development of the quasichemical models is illustrated in Figure 6.3.
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Categorise and count the variety of atom-

atom or atom-vacancy pairs possible

Estimate the configurational energy aris-

ing from the pairwise interactions

Write the configurational partition function

Discover the degeneracy for each configuration

Normalise the degeneracy function to ensure that the grande summation

of all degeneracies is the total number of possible configurations

Replace the summation in the partition function by its largest term

Derive required thermodynamic functions from partition function

Deal with any excess thermodynamic quantities

not described by a consideration of configurations

Figure 6.3 Steps in the construction of a quasichemical solution model.
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135. B. Sundman, and J. Ågren: ‘A regular solution model for phases with several components

and sublattices, suitable for computer applications’, Journal of the Physics and Chemistry of

Solids, 1981, 42, 297–301.

136. L. F. Bates: Modern Magnetism: Cambridge, U. K.: Cambridge University Press, 1963.

137. M. V. Nevitt, and A. T. Aldred: ‘Ferromagnetism in V-Fe and Cr-Fe alloys’, Journal of Applied

Physics, 1963, 34, 463–468.

138. G. Inden, and W. O. Meyer: ‘Approximate determination of the Curie temperatures of bcc

Fe-Co alloys’, Zietschrift für Metallkunde, 1975, 66, 725–727.

139. K. G. Denbigh: The thermodynamics of the steady state: New York, USA: John Wiley &

Sons, Inc., 1955.

140. L. Onsager: ‘Reciprocal relations in irreversible processes – i’, Physical Review, 1931, 37,

405–426.

141. D. G. Miller: ‘Thermodynamics of irreversible processes: The experimental verification of the

Onsager reciprocal relations.’, Chemical Reviews, 1960, 60, 15–37.

142. J. Z. Jiang, U. Gonser, C. Gente, and R. Bormann: ‘Mössbauer investigations of mechnical
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Notes
1Hildebrand’s definition: “A regular solution is one involving no entropy change when a small amount of one of its

components is transferred to it from an ideal solution of the same composition, the total volume remaining unchanged” [98].
1This equation reduces to the familiar

∆SM =−kNa[(1− x) ln{1− x}+ x ln{x}] (6.10)

when mA = mB = 1.
1In the Peltier effect, the two junctions of a thermocouple are kept at the same temperature but the passage of an electrical

current causes one of the junctions to absorb heat and the other to liberate the same quantity of heat. This Peltier heat is

found to be proportional to the current.


