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Theabilities of artificial neural networks and Gaussian processes to model the yield strength of nickel-base
superalloys as a function of composition and temperature have been comparedon the basis of simple

weli-known metallurgical trends (influence of Ti, Al, Co, Mo, W, Ta, of the Ti/AI ratio, y' volume fraction

and the testing temperature). The methodologies are found to give similar results, and are able to predict

the behaviou~ of materials that were not shownto the models during their creation. The Gaussian process
modelling method is the simpier method to use, but its computational cost becomeslarger than that of

neural networks for large data sets.
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1.
Introduction

Modern meta]lic materials usually contain a large

numberof alloylng e]ements added to satlsfy an array
of design criteria. The influence of indlvldual solutes on
their mechanical properties can easlly be measuredand
understood under given conditions; sometlmes simple
interactlons between two or three elements can be ra-

tionalised, but taking all the interactions into account
at the sametime is generally not possible. Recent pa-
persl ~3) have emphaslsed the possibility to use "learn-

ing machines", such as artificial neural networks (ANN),
to model the behaviour of complex materials as a func-

tion of thelr compositlon and/or thermomechanical treat-

ments. Artificlal neural networks perform a non-linear

parametric regression of an output (yield strength, ulti-

mate tensile strength, elongation, creep properties
. .

.) as

a fLmction of a numberof inputs (composition, ther-

momechanlcal treatments, temperature, etc.). For the

modelllng to be effective, one must use a database
containlng a large numberof measurements, covering

a wide range of alloy compositions. ANNare "trained"

on the daiaset by fitting a complex parametrical func-

tion, consisting of a weighted sumof hyperbolic tan-

gents, to the data. Trainlng involves an optimisation of

the parameters through a progressive reduction in the

sum of squared errors derived by comparing predic-

tions against the measured values of the output pa-

rameter. This error tends to becomesmaller as the com-
plexity of the fitting function increases. There is thus a
danger of overfitting the data and creating modelswhich
generalise badly. To contro] the complexity of the func-

tion produced by the network, additional terms, called

regularlzers or weight decay fLmctions, are added to
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the sumof squared errors. These regularizers penalise

functions of high complexlty, with the strength of the

penaity being control]ed by a set of parameters called

hyperparameters or weight decay rates. In the Bayesian
Interpretation of neural networks optimization, these

hyperparameters control the prior probability distri-

bution over functions. They express the degree of non-
linearity expected in the function. The Bayesian frame-
work allows the complexity of a model to be con-

4)trolled automatlcally.

While it is possible to optimise the parameters and
hyperparameters of just one neural network, it is usually

found that better results are obtained by optimising
multiple neural networks differing in the number of

parameters and in the random initia] condition of the

optimlsation. A subset of these networks is selected to

form a commlttee of models, the average of whose
predictions is taken. The selection of the models in the

committee is madeby testlng the performance of each
network on a validation set, that Is, a set from the data
points held out from the training set. Because of all

these procedures, the creation of good neural network
predictions involves the study of a large number of

models, and subsequently, the choice of a good com-
mittee, making the entire process very laborlous.

An alternative, simllar, but simpler approach Is the

Gaussian process method.5.6) As in the Bayeslan neural

network model, a prior distribution is assumedon the

function underlying the data, but instead of defining this

prlor distribution in terms of a prlor on the parameters
of the function, weput a Gaussianprocess prior directly

on the function itself. This prior expresses smoothness
properties and iong-range correlations that the function
is expected to have. Given such a prior, and assurning a
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noise model that is Gaussian, predictions of newdata
values, given a data set of size N, can be obtained by
inversion of an N> matrix. Typically, we will not
know precisely what smoothness propertles or com-
p]exity to expect the function to have, so, as in the

neural network method, we introduce hyperparameters
that control the expected complexity of the function.

And, as in the neural network method, these hyper-

parameters can be inferred from the data using Bay-
esian methods. The results obtained from a Gaussian

process optimised in this way are usually found to be
satisfactory without the creation of a committee of

Gaussian process models, so the need for a validation

set is eliminated.

However, while ANNhave proved to be very efficient

in modelling the behaviour of metallic alloys,1~3)

Gaussian processes have rarely been used in metal-
lurgy,7.8) and their ability to recognise metal]urgical

laws is still unknown.
The aim of this paper is to comparethe performance

of GPwith that of ANNin modelling the tensile prop-
erties of nickel-base superalloys over a wide range of

compositions, and to assess their respective abilities to

recognise well-known metallurgical trends, as a function

of test temperature, solute elements, etc. Finally their

ability to perform extrapolations will also be discussed.

2. The Database

Thedatabase consists of the yield strength of thirty-six

INCOwrought nickel-base superalloys tested in traction

between21'C and I093'C9) (Astroloy; D-979; Hastelloy

X; Inconel 600, 601, 617, 625, 690, 706 and X750;
UnitempAF2-lD; IN587; M-252; Nimonic 75, 80A, 81

,

90, 105, 115, 263, 942. PEI l, PE16and PK33; Pyromet
860; Rene41 and 95; RGT4and 13; Udimet 400, 500,

520, 630, 700and71O; Waspaloy). Thecomposition range
is defined in Table 1. The database contains a total of

192 measurements.The inputs are the concentrations in

various elements (in weight ~/.) and the test temperature.
A11 the inputs and outputs have beennormalised linearly

between -0.5 and +0.5, corresponding respectively to

the lowest and the highest value of each input or output
in the database. This allows an easier visualisation of the

importance of each variable in explaining changes in the

output parameter.

3. ANNand GPTraining and Optimisation

3.1. Artificial Neural Networks
A11the results obtained with ANNcomefrom reference

lO), where a complete description of the model can be
found. A committee of five ANNindividually trained

and optimised on one half of the data and tested on the

other half had been used.

3.2. Gaussian Processes

GPshave a statistical structure that needs to be briefly

exposed. Let's consider the data, D, as constituted of N
L-dimensional input vectors {~l,~ • • • ~N} =[XN] and2, ,

corresponding outputs, or targets, {ti, t2, ' ' ',
tN}=t'N,

Consider now the joint probability distribution, in an

Table l. Input and output (yield strength) ranges for the

data.

In put Minimumvalue Maximumvalue Unit

Ni 38 76

Cr 12 30
Co o 20

Mo o lO

W o 6
Ta o 1.5

Nb o 6.5

Al o 4.9 weight o/o

Ti O 5
Fe o 40

Mn o 0.5

si o 05
c 0.03 0.35

B o O. 16
Zr o 0.2

~~~T~~~~ ~~~2~1~~~ ~l09~ ~~~ ~~~~~~~
Output

Yield strengih 28 1310 MPa

N-dimensional space, of the N output values in the

database given the Ninputs, P(t'N [XN]). Similarly, the

joint probability distribution of both the Ndata polnts

and of the single newpoint with input vector ~N+l,
for

which we want to predict the output tN+1' is P(tN+1,
t~Nl~N+1, [XN]). Whatwe are looking for is the one-
dimensional probabillty distribution over the pre-

ldicted point, P(tN+1 ~N+1, D), given that weknowthe

corresponding input vector, ~N+i' and the data D=
{t~N, [XN]}. The relationship between the above quanti-
ties iss):

p(t j~ D)=
P(tN+1, t'N ~N+1, [XN])

- .....(1)
N+1 xN+1, P(t+N [XN])

In Bayesian neural networks, this joint distribution
Is a complex function involving integration over all pos-
sible settings of the parameters weighted by their prior

probability dlstribution. In the Gaussian process ap-
proach we define this distribution directly to be a
Gaussian process. TheGPmodel assumesthat the joint

probabillty distribution of any N output values is a
multivariate Gaussian,

1021

+ -+ -i + -+1P(t'Nl[XN]' 6')ocexp -.(tN kt)T[CN] (tN ~)

.

(2)

where fi is the mean, [CN] a covariance matrix which is

a function of [XN], and e a set of parameters which will

be discussed later. Consequently, a similar equation-
with N+I variables-holds for tN+ I = (tN, tN+ 1)' andEq.
(1) reduces to a univariate Gaussian of the forms)

P(tN
+ I I~N+ 1' D) I (t f)

(3)
-=

^

~2N+1
Ji~a exp

2(T

where f is the posterior meanand a~ the standard
deviation given by:

f= [k]T[CN]~ it'N
......... .........

(4)

and

ci~=k-[k]T[CN]~1[k]
......... ..........

(5)

where
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[k] = [C(~l, iN+ 1). C(j~2, ~N+l)'
' ' " C(;~N, iN+ 1)]

"
(6)

and

k=C(~N+1,~N+1) "-"" """"'
(7)

Equation (3) gives the probability distribution of the

output, tN+ 1,
given the set of inputs, ~N+1, and the data,

D. Both the prediction, t, and its standard deviation, crf,

dependon the covariance matrix, [CN], whoseelements
Cij are given by the covariance function. C. The form
of this function is essential since it embodies our as-
sumptions about the nature of the underlying input-

output function wewant to model. Basically, it defines

howstrongly any input will influence the value of the

output and the lengthscales of trends in the function
underlying the data. The covariance function weuse is

= r~
l L (xi-xj)2l~ e exp -- ~ +02+a~2~ijC(j~i, j~j O) 1 2 l=1

.(8)

where e= {rl (1= I to L), Ol, e2, (T,,}.

This function gives the covariance between any two
outputs, ti and tj, with corresponding input vectors ~i

and j~j. The closer the inputs, the smaller the exponent
of the first term in Eq. (8) the larger the first term, and
the stronger the outputs will be correlated, making it

probable that they have similar values. This first term
also includes the length scale, rl' over whlch the function
varies in the Ith input dimension, which is an indication

of the smoothnessof the interpolant in this dimension.
This covariance function expects there to be no long-

range correlations in the data on lengthscales much
bigger than rt'

Thesecondterm, 02, is an offset, allowing the functions

to have a non-zero mean value. In our case, this

parameter has been set to zero. The last term, a~28ij, is

the noise model, with ~ij being equal to I if i=j and to

Ootherwise. Wehave thus an input-dependent noise

modelof variance a,2, for the output, and weare assuming
the inputs to be noise-free.

The set of parameters 0={rl (1= I to L). O1, 02,a,,}

are called the hyperparameters because they define the

probability distribution over functions rather than the
interpolating function itself. They are equivalent In role

to the hyperparameters in a Bayesian neural network.
The hyperparameters, O, the dataset, [XN], tN, and the

new input vector, ~N+1,
define completely the value of

the predlction, t, and of its standard deviation, (T~ The
optimum values of the hyperparameters are inferred

during the training of the model by maximizing the
probability of the hyperparameters given the data,

P(O D), which is done numerica]ly within a Bayesian
framework.5)

As a matter of comparison with the ANNmodel, the

Gaussian process programhas been trained on one half
of the data and tested on the other half. Whereasthe

ANNmethoduses the test error to rank the models for

inclusion In a committee the GPmethodused here has

no need for a test set.
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4. Making Predictions

Both the ANNcommittee model and the GPwere
used to perform some predictions on situations pre-
viously "unseen" by the mode], and to verify somewell-

knownmetallurgical trends:

- infiuence of temperature between21'C and I 093'C on
the Nimonic ll5 alloy (60Ni-14.3Cr-13.2C0-3.3-
Mo~L9Al-3.7Tl-O. 15C-O.16B-0.04Zr, wto/o).

-
influence of the y' phase volume fraction at 21'C and
700'C in the Ni-AI system.

- Individual effects of Ti and Ai additlons on a
Ni-20Cr-1 OCo-lAl-1 Ti-O.03C wto/o alloy at 21'C.

-
influence of the Ti/AI atomic ratlo on a Ni-13.7Cr-
0.046C-0.0052B wto/o alloy at 21'C when the total

atomic content (Ti +Al) is kept constant and equal to

7ato/o
.

-
effect of reducing the Co content on a Ni-19Cr
4MOI .

3Al-3Ti-O .03 5C-O.03 B-O
.
006Zrwt o/o alloy

(Waspaloy) at 21'C and 538'C.

- individual effects of Mo, Wand Ta on a Ni-20Cr-10
C0-3.3Al-3.3Ti-0.03C wto/o alloy at 21 'C.
In general, the influences of the variables have been

tested on the maximumrange covered by the database,
i,e. normalised values from -O.5 to +0.5.

5. Results and Discussion

5.1. Training and Test

Figure I shows comparisons between the measured
yield strength and that predicted by the modeis (ANN
and GP) for the training and the test sets. A small
dispersron of the pomts alound the ")c=y" Iine means
a srnall error, i.e, a good prediction. It can be seen that
in both cases the dispersion is similar.

Error bars are also very similar for ANNand GP.
The error bars given by ANNinclude the predictive

uncertainty, the typlcal error between the prediction and
the supposed"true" value of the output, and the lcr error
due to the inferred level of noise in the database. Gaussian
processes give error bars corresponding to the l(T dis-

persion of the calculated probability distribution of
the output, that Include both the predictive uncertainty
and the noise level, which is equivalent to the error bars
given by the ANNmodel.

Consequently, ANNandGPseemto havevery similar
ievels of confidence in predicting values of the training

and test sets.

5.2. Temperature

The predicted influence of temperature on the yield

strength of Nimonic I15 is presented in Fig. 2, as well

as the actual measured values. Predictions indicate a
slight decrease in the yield strength with temperature,
then a peak and a strong drop above 800'C. This is

aimost the actual variation, due to a competition be-

tween the decreasing and increasing yield strengths of
the y matrix and of the y' inclusions with temperature

up to 900'C, respectively.11) However, there is a sig-

nificant discrepancy between the ANNand GPpre-
dictions in the range 21-500'C, associated wlth larger

error bars. Indeed, the measurementsincluded in the
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database have beenmadeat 21'C and above 538'C. As
a consequence, error bars are larger in the range 21-
538'C, acting as a warning signal indicating that the

models are not confident in this domain, Nevertheless,

ANNand GPgive similar results and describe correctly

the actual variation in the range covered by the database.

5.3. V' VolumeFraction

Both models predict an increase in roomtemperature
yield strength with the y' volumepercent, Vf' mthe Ni-Al
system (Fig. 3). This is almost in agreementwith results

published by Cornwell et al.,12) as well as with classical

precipitation strengthening models.13'14) However, the

actual trend is not perfectly predicted, becausethe Ni-AI
system is rather far from the complexcommercial alloys

of the database. The GPresult is closer to the ex-
perimental trend than the ANNone.

5.4. y' Forming Elements: Al and Ti

They' forming elements usually have the largest effect

on the yield strength of nickel-base superalloys, since

precipitation hardening is the mostefficient strengthening

mechanismin these materials. The predicted influences

of Ti and A1 additions on the yield strength of a Ni-
20Cr-lOC0-1Al-1Ti~).03C wto/o alloy at 21'C are pre-
sented in Fig. 4. Oncemore the predictions of ANN
and GPare very similar. It can be seen that the models
predict a stronger influence of titanium. This fact is

confirmed by Fig. 5, where the infiuence of the Ti/Al
ratio on the yield strength of a Ni20Cr10Co-0.03C
wto/o alloy at 21'C is plotted. In this graph, the total

atomic content of Ti +Al has been kept constant and
equal to 7ato/o, as in the experiment of Miller et al.,15)

whoseresults are also presented in Fig. 5.

First, both models are less well defined for the low
and high values of Ti/AI (large error bars), reflecting the

1023 C 1999 ISIJ
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lack of data in these ranges: only a few alloys of the

database contain either a lot of Ti and very little Al, or
a lot of Al and no Ti.

Secondly, even if the experimental results of Miller et
al. Iie within the predicted error bars, the values are
frequently lower than those predicted. This can be
explained by the fact that the materials used by Mil]er

et al, were simple cast alloys, whereas the alloys in the

database were commercial wrought alloys whoseprop-
erties havebeenoptimized by complexheat treatments.

Finally, as both titanium and aluminum partition

mainly to the y' phase, it can be assumed, as a first

approximation, that the V' volume fraction is constant.
This figure thus indicates that, for a constant y' volume
fraction, replacing an aluminumatomby a titanium atom
gives an increase in the yield strength. This is in agreement
with theoretical considerations.

Since titanium atoms are bigger than aluminum
(+40/0), they induce an increase of the y' Iattice pa-
rameter, of the y/y' Iattice mismatch, and thus of the
strain fields. Moreover, it has been shownthat titanium
increases the anti-phase boundaryenergy of the y' phase,
which renders moredifficult the cutting of inclusions by
dislocations.13'16) Titanium is thus expected to give

moreeffective strengthening effects than aluminum, and
this has been recognised by both the artificial neural
networks and the Gaussian processes.

5.5. Cobalt

The predicted role of cobalt on the yield strength
of a Ni-19Cr-4Mol .3Al-3Ti-0.035C-0.03B-0.006Zr
wto/o alloy (Waspaloy) at 21'C and 538'C is presented
in Fig. 6for both ANNand GP. Oncemore the resu]ts

are similar. Coba]t is expected to have a small influence

on the yield strength of this alloy at 21'C and 538'C, in

agreement with the experimental data published by
Maurer et al.17) (Fig. 6). However, although having no
strengthening effect, cobalt is often necessary, in spite of
its high price, to improve the hot corrosion resistance of
the alloys.18)

5.6. The Refractories: Mo, W,Ta
The predicted effects of molybdenum,tungsten and

tantalum additions to a Ni-20Cr-10C0-3.3A1-3,3Ti-
0.03C alloy at 21'C are shown in Fig. 7. ANNand
GPpredictions are still in quite good agreement in the

case of Moand W,but the trend is not very well defined
in the case of Ta. It can be seen that error bars are longer
in the case of Ta and W, due to the small numberof
alloys in the database containing these elements. These
error bars are very large in the case of Ta, indicating a
low leve] of confidence in both cases.

Mo, W(and Ta) are predicted to induce an almost
linear strengthening. However, since they partition
differently to the yand y' phases,lo) their strengthening
mechanismsare also different. Molybdenumpartitions

mainly to the y phase, hence giving a solid solution
strengthening of the matrix. The predicted ~ffect cal-

culated from Fig. 7 is about 40MPa/ato/o, which is

close to 35MPa/ato/o found by Mishima et al. for Moin

pure Ni.19) Tungsten partitions about equally to y and
y', and yields both a solid solution strengthening of the
matrixl9) and an increase of the anti-phase boundary
energy of the inclusions.20) The role of tantalum is more
complex. It partitions mainly to the y' phase, thus
increasing its volume fraction.21) It also increases the
anti-phase boundary energy of the y' phasel6,20) as well

as the y/y' misfit by increasing the y' Iattice parameter.22)

A small fraction of Ta partitions to the matrix, yield-

ing a little solid solution strengthening effect.21) Tan-
talum should thus be expected to be the most efficient

strengthener, which has been inferred by the ANN,

C 1999 ISIJ 1024
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but not by the GP. However, it should be kept in mind
that these predictions are associated to large error bars,

i.e. a very low level of confidence.

5.7. Extrapolation

Thedlfference betweenneural networks and Gaussian

processes for extrapolation outside the database is of
theoretical concern. AnANNwill extrapolate by keeping
the trend it had Inferred just at the end of the database.

This can produce good results if the inferred trend is

reasonable, but may also be wrong in the case of a
deviation of the true trend from the inferred one beyond
the database. A GPwill keep this "last" trend for a
while, but the covariance function that weuse assumes
that trends do not persist beyond lengthscales defined by
the hyperparameters, {rl}' so in the case of extrapola-

tion to large distances the predictions tend to a default

value determined by the prior (zero in the present case-
in normalised values). In both cases, predictions become
unreliable, and the models indicate iow levels of con-
fidence through large error bars. If an extrapolation
is to be made, the results must be understood as a simple
indication, and experimental verification will always be

necessary. However, ANNare more likely to perform
better extrapolations in the case of monotonic trends,

and, if GPextrapolations are disatisfactory, the co-
variance function of the GPcan be altered so that the

model expects trends of the deslred form.

5.8. Labour and ComputingTime
Becausethe two techniques seemto give similar results,

the choice between them could often be a question of

howmuchlabour and/or computing time is needed to

optlmize the model and to makepredictions.

The first part of the problem is optimizing-or
training-the model. This step is always very laborious
in the case of neural networks, since it implies training

and testing manydifferent networks with different in-

titial conditions and complexities, choosing the best ones
amongstthem, andmakingacommittee of them. In these

conditions, computing time can often be neglected with

respect to the humanlabour, even with databases of
several thousands of points. Typically, optimising a
goodcommittee of neural networks would need an "in-

compressible" humanwork of several days or weeks.

By contrast, tralning Gaussian processes is relatively

simple, and in our experience it is sufficient to train just

one model. However, the optimisation computing time
increases approximately as the cube of the database
size. Thus, optimisation times can be very fast (minutes or
hours) for small databases (a few hundred points) but

1025 @1999 ISIJ



ISIJ International, Vol. 39 (1999), No. 10

can becomevery long and prohibitive for databases of
several thousand points (for example, in another prob-
lem, approximately 20 days for a database with 2OOO
points and 30 inputs on a 300MHZCPU).

Thesecond part of the problem is makingpredictions.

Once they are trained, neural networks don't use the

database to perform predictlons, but just a mathematical
equation anda set of optimised parameters, or "weights".
Thus, predictions can be very fast, the computing time
is independent of the database size, and just dependson
the numberof inputs, the numberof parameters in the

model and, of course, the numberof predictions to be
made. In the present problem (16 inputs), the committee
of ANNmakesabout 560 predictions per minute on a
300MHZCPU.

Gaussian processes use the database to makepre-
dlctions, with a computing time increasing either as
the cube, the square or linearly with the database size,

depending on the implementation (if we choose not to
ask for error bars, the complexity can be reduced to
linear).5) In the present case, with 16 inputs, and using
only the training set (96 points) as the database to make
predictions, the model performs about 1500 predictions

per minute, which is faster than the committee of neural
networks. But if the whole database is used to make
predictions (192 points), the speed drops downto 240
predictions per minute, and downto 10 predictions per
minute whenusing a database of 384 points.

6. Conclusions

The abilities of a committee of artificial neural
networks and of a Gaussian process to produce an
empirical model of the yield strength of commercial
nickel-base superalloys as a function of composition and
test temperature have been compared. The comparison
criterion was the ability to recognise and predict some
well-known metallurgical trends. Both ANNand GPare
able to predict correctly, with asimilar level of confidence,
the influences of test temperature, of a number of
individual alloying elements (Al, Ti, Co, W,Mo), of the
y' volumefraction, andof the Ti/AI ratio. Thepredictions

are in goodagreementwith published measurementsand
theoretical expectations.

In all cases, ANNand GPgive similar results, and
display a low level of confidence in the regions where
data are missing or widely separated (temperature range
21-538'C, effect of Ta). In these regions of the database,

error bars act as a warning signal.

Themain advantage of Gaussianprocesses is to avoid
the labour of selecting optimummodels, as is necessary
in the case of artificial neural networks. Moreover, our
methodmadeuse of a test set to choose the committee
of ANN.The GPmethodhas no need for a test set, so
the GPcan be trained just once, on the wholedatabase.

However,GPcan be computationally time-comsuming
for large databases, slnce the computing time grows as

the cube of the database size for optimlsation and as the

square for prediction (in our case). Onthe other hand,
the calculation time for ANNto makepredictions is

independent of the training database size. Consequently,
because they are simple to use, GPcan be preferred for
small databases (typically less than one thousand
input-output pairs), and ANNpreferred for large
databases. Nevertheless, due to the rapid increase in

computer power and speed, Gaussian processes may
becomethe methodof choice in the future.
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