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The abilities of artificial neural networks and Gaussian processes to model the yield strength of nickel-base
superalloys as a function of composition and temperature have been compared on the basis of simple
well-known metallurgical trends (influence of Ti, Al, Co, Mo, W, Ta, of the Ti/Al ratio, y' volume fraction
and the testing temperature). The methodologies are found to give similar results, and are able to predict
the behaviour of materials that were not shown to the models during their creation. The Gaussian process
modelling method is the simpler method to use, but its computational cost becomes larger than that of

neural networks for large data sets.
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1. Introduction

Modern metallic materials usually contain a large
number of alloying elements added to satisfy an array
of design criteria. The influence of individual solutes on
their mechanical properties can easily be measured and
understood under given conditions; sometimes simple
interactions between two or three elements can be ra-
tionalised, but taking all the interactions into account
at the same time is generally not possible. Recent pa-
pers' ~¥ have emphasised the possibility to use “learn-
ing machines”, such as artificial neural networks (ANN),
to model the behaviour of complex materials as a func-
tion of their composition and/or thermomechanical treat-
ments. Artificial neural networks perform a non-linear
parametric regression of an output (yield strength, ulti-
mate tensile strength, elongation, creep properties. . .) as
a function of a number of inputs (composition, ther-
momechanical treatments, temperature, ezc.). For the
modelling to be effective, one must use a database
containing a large number of measurements, covering
a wide range of alloy compositions. ANN are “trained”
on the dataset by fitting a complex parametrical func-
tion, consisting of a weighted sum of hyperbolic tan-
gents, to the data. Training involves an optimisation of
the parameters through a progressive reduction in the
sum of squared errors derived by comparing predic-
tions against the measured values of the output pa-
rameter. This error tends to become smaller as the com-
plexity of the fitting function increases. There is thus a
danger of overfitting the data and creating models which
generalise badly. To control the complexity of the func-
tion produced by the network, additional terms, called
regularizers or weight decay functions, are added to
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the sum of squared errors. These regularizers penalise
functions of high complexity, with the strength of the
penalty being controlled by a set of parameters called
hyperparameters or weight decay rates. In the Bayesian
interpretation of neural networks optimization, these
hyperparameters control the prior probability distri-
bution over functions. They express the degree of non-
linearity expected in the function. The Bayesian frame-
work allows the complexity of a model to be con-
trolled automatically.*

While it is possible to optimise the parameters and
hyperparameters of just one neural network, it is usually
found that better results are obtained by optimising
multiple neural networks differing in the number of
parameters and in the random initial condition of the
optimisation. A subset of these networks is selected to
form a committee of models, the average of whose
predictions is taken. The selection of the models in the
committee is made by testing the performance of each
network on a validation set, that is, a set from the data
points held out from the training set. Because of all
these procedures, the creation of good neural network
predictions. involves the study of a large number of
models, and subsequently, the choice of a good com-
mittee, making the entire process very laborious.

An alternative, similar, but simpler approach is the
Gaussian process method.>*®’ As in the Bayesian neural
network model, a prior distribution is assumed on the
function underlying the data, but instead of defining this
prior distribution in terms of a prior on the parameters
of the function, we put a Gaussian process prior directly
on the function itself. This prior expresses smoothness
properties and long-range correlations that the function
is expected to have. Given such a prior, and assuming a
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noise model that is Gaussian, predictions of new data
values, given a data set of size N, can be obtained by
inversion of an N x N matrix. Typically, we will not
know precisely what smoothness properties or com-
plexity to expect the function to have, so, as in the
neural network method, we introduce hyperparameters
that control the expected complexity of the function.
And, as in the neural network method, these hyper-
parameters can be inferred from the data using Bay-
esian methods. The results obtained from a Gaussian
process optimised in this way are usually found to be
satisfactory without the creation of a committee of
Gaussian process models, so the need for a validation
set is eliminated.

However, while ANN have proved to be very efficient
in modelling the behaviour of metallic alloys,'™¥
Gaussian processes have rarely been used in metal-
lurgy,”® and their ability to recognise metallurgical
laws is still unknown.

The aim of this paper is to compare the performance
of GP with that of ANN in modelling the tensile prop-
erties of nickel-base superalloys over a wide range of
compositions, and to assess their respective abilities to
recognise well-known metallurgical trends, as a function
of test temperature, solute elements, etc. Finally their
ability to perform extrapolations will also be discussed.

2. The Database

The database consists of the yield strength of thirty-six
INCO wrought nickel-base superalloys tested in traction
between 21°C and 1093°C® (Astroloy; D-979; Hastelloy
X: Inconel 600, 601, 617, 625, 690, 706 and X750;
Unitemp AF2-1D; IN587; M-252; Nimonic 75, 80A, 81,
90, 105, 115, 263, 942, PE11, PE16 and PK33; Pyromet
860; Rene 41 and 95; RGT 4 and 13; Udimet 400, 500,
520, 630, 700 and 710; Waspaloy). The composition range
is defined in Table 1. The database contains a total of
192 measurements. The inputs are the concentrations in
various elements (in weight %) and the test temperature.
All the inputs and outputs have been normalised linearly
between —0.5 and +0.5, corresponding respectively to
the lowest and the highest value of each input or output
in the database. This allows an easier visualisation of the
importance of each variable in explaining changes in the
output parameter.

3. ANN and GP Training and Optimisation

3.1. Artificial Neural Networks

All the results obtained with ANN come from reference
10), where a complete description of the model can be
found. A committee of five ANN individually trained
and optimised on one half of the data and tested on the
other half had been used.

3.2. Gaussian Processes

GPs have a statistical structure that needs to be briefly
exposed. Let’s consider the data, D, as constituted of N
L-dimensional input vectors {*,,%,, - - -, ¥y} =[Xy] and
corresponding outputs, or targets, {tl, ty, " " -,tN}=fN.
Consider now the joint probability distribution, in an

Table 1. Input and output (yield strength) ranges for the

data.
Input Mini value | Maximum value Unit
Ni 38 76
Cr 12 30
Co 0 20
Mo 0 10
w 0 6
Ta 0 1.5
Nb 0 6.5
Al 0 49 weight %
Ti 0 5
Fe 0 40
Mn 0 0.5
Si 0 0.5
C 0.03 0.35
B 0 0.16
Zr 0 02 L
I Y 1093 | °C
Output
Yield strength 28 1310 MPa

N-dimensional space, of the N output values in the
database given the N inputs, P(7y|[Xy]). Similarly, the
joint probability distribution of both the N data points
and of the single new point with input vector Xy, , for
which we want to predict the output ty,,, 1S P(tys+ 1,
le)?NH, [Xy]). What we are looking for is the one-
dimensional probability distribution over the pre-
dicted point, P(ty | %y, D), given that we know the
corresponding input vector, Xy,;, and the data D=
{iy,[Xy1}. The relationship between the above quanti-

ties is™:

Pty 41, ;N|XN+17[XN])
P(iy| [Xy])

In Bayesian neural networks, this joint distribution
is a complex function involving integration over all pos-
sible settings of the parameters weighted by their prior
probability distribution. In the Gaussian process ap-
proach we define this distribution directly to be a
Gaussian process. The GP model assumes that the joint
probability distribution of any N output values is a
multivariate Gaussian,

Pty y|Xy+y D)=

R |G R
P(’N| [Xn], @)OCCXP<“7 (tN—ﬁ)T[CN]_l(tN_/I))

where [ is the mean, [Cy] a covariance matrix which is
a function of [X ], and @ a set of parameters which will
be discussed later. Consequently, a similar equation—
with N+ 1 variables—holds for 7y, ; = (fy, Ly + 1), and Eq.
(1) reduces to a univariate Gaussian of the form®

1 _(1N+1_i)2:l
\/ﬂafexp[ 207 . (3)

where 7 is the posterior mean and o7 the standard
deviation given by:

O K ik @)

Piy 41| Xn+1, D)=

and
02 =k—[KTT[CyT ] oovverrerreeeeone 5)

where
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[K]1=[C(X, Xy 1), C(R, Xy i 1), o CEy, Xy s )] - (6)
and
E=C(Ry g1y XNat1) coerremrrmmrnenieenne (7

Equation (3) gives the probability distribution of the
output, #y, 1, given the set of inputs, Xy, , and the data,
D. Both the prediction, /, and its standard deviation, o
depend on the covariance matrix, [Cy], whose elements
C;; are given by the covariance function, C. The form
of this function is essential since it embodies our as-
sumptions about the nature of the underlying input—
output function we want to model. Basically, it defines
how strongly any input will influence the value of the
output and the lengthscales of trends in the function
underlying the data. The covariance function we use is

—xly?

.. 1 & (xf
C(x, %;|©)=0, exp ——7;172

Fy

:|+62+a,,25ij

where ©@={r, ({=1to L), 0,,0,,0,}.

This function gives the covariance between any two
outputs, 7, and ¢;, with corresponding input vectors X;
and X;. The closer the inputs, the smaller the exponent
of the first term in Eq. (8) the larger the first term, and
the stronger the outputs will be correlated, making it
probable that they have similar values. This first term
also includes the length scale, r,, over which the function
varies in the /th input dimension, which is an indication
of the smoothness of the interpolant in this dimension.
This covariance function expects there to be no long-
range correlations in the data on lengthscales much
bigger than ;.

The second term, 6,, is an offset, allowing the functions
to have a non-zero mean value. In our case, this
parameter has been set to zero. The last term, 6729, is
the noise model, with §;; being equal to 1 if i=; and to
0 otherwise. We have thus an input-dependent noise
model of variance o7 for the output, and we are assuming
the inputs to be noise-free.

The set of parameters ©® ={r, (/=1 to L), 0,,0,,0,}
are called the hyperparameters because they define the
probability distribution over functions rather than the
interpolating function itself. They are equivalent in role
to the hyperparameters in a Bayesian neural network.
The hyperparameters, @, the dataset, [Xy], 7y, and the
new input vector, Xy, ,, define completely the value of
the prediction, 7, and of its standard deviation, o;. The
optimum values of the hyperparameters are inferred
during the training of the model by maximizing the
probability of the hyperparameters given the data,
PO \ D), which is done numerically within a Bayesian
framework.>

As a matter of comparison with the ANN model, the
Gaussian process program has been trained on one half
of the data and tested on the other half. Whereas the
ANN method uses the test error to rank the models for
inclusion in a committee, the GP method used here has
no need for a test set.
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4. Making Predictions

Both the ANN committee model and the GP were
used to perform some predictions on situations pre-
viously “unseen”” by the model, and to verify some well-
known metallurgical trends:

- influence of temperature between 21°C and 1093°C on
the Nimonic 115 alloy (60Ni-14.3Cr-13.2Co0-3.3-
Mo-4.9A1-3.7Ti-0.15C-0.16B-0.04Zr, wt%).

- influence of the y’ phase volume fraction at 21°C and
700°C in the Ni—-Al system.

- individual effects of Ti and Al additions on a
Ni—20Cr-10Co-1A-1Ti-0.03C wt% alloy at 21°C.

- influence of the Ti/Al atomic ratio on a Ni~13.7Cr—
0.046C-0.0052B wt% alloy at 21°C when the total
atomic content (Ti+ Al) is kept constant and equal to
7 at%.

- effect of reducing the Co content on a Ni-19Cr-
4Mo-1.3A1-3Ti-0.035C-0.03B-0.006Zr wt% alloy
(Waspaloy) at 21°C and 538°C.

- individual effects of Mo, W and Ta on a Ni-20Cr-10
Co-3.3A1-3.3Ti-0.03C wt% alloy at 21°C.

In general, the influences of the variables have been
tested on the maximum range covered by the database,
i.e. normalised values from —0.5 to +0.5.

5. Results and Discussion

5.1. Training and Test

Figure 1 shows comparisons between the measured
yield strength and that predicted by the models (ANN
and GP) for the training and the test sets. A small
dispersion of the points around the “x=y" line means
a small error, i.e. a good prediction. It can be seen that
in both cases the dispersion is similar.

Error bars are also very similar for ANN and GP.
The error bars given by ANN include the predictive
uncertainty, the typical error between the prediction and
the supposed “true” value of the output, and the 1o error
due to the inferred level of noise in the database. Gaussian
processes give error bars corresponding to the lo dis-
persion of the calculated probability distribution of
the output, that include both the predictive uncertainty
and the noise level, which is equivalent to the error bars
given by the ANN model.

Consequently, ANN and GP seem to have very similar
levels of confidence in predicting values of the training
and test sets.

5.2. Temperature

The predicted influence of temperature on the yield
strength of Nimonic 115 is presented in Fig. 2, as well
as the actual measured values. Predictions indicate a
slight decrease in the yield strength with temperature,
then a peak and a strong drop above 800°C. This is
almost the actual variation, due to a competition be-
tween the decreasing and increasing yield strengths of
the y matrix and of the y' inclusions with temperature
up to 900°C, respectively.!? However, there is a sig-
nificant discrepancy between the ANN and GP pre-
dictions in the range 21-500°C, associated with larger
error bars. Indeed, the measurements included in the
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g. 2. Predicted and actual evolution of the yield strength of a
Nimonic 115 alloy as a function of temperature (the
experimental points were included in the database).

database have been made at 21°C and above 538°C. As
a consequence, error bars are larger in the range 21—
538°C, acting as a warning signal indicating that the
models are not confident in this domain. Nevertheless,
ANN and GP give similar results and describe correctly
the actual variation in the range covered by the database.

5.3.

Both models predict an increase in room temperature
yield strength with the y’ volume percent, V', in the Ni-Al
system (Fig. 3). This is almost in agreement with results
published by Cornwell et al.,*? as well as with classical
precipitation strengthening models.’*!% However, the
actual trend is not perfectly predicted, because the Ni—Al
system is rather far from the complex commercial alloys
of the database. The GP result is closer to the ex-
perimental trend than the ANN one.
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Fig. 3. Predicted and experimental influence of the ' volume

percent on the yield strength in the Ni-Al system at
21°C (experimental points from Cornwell e al.*)).

5.4.

The 7' forming elements usually have the largest effect
on the yield strength of nickel-base superalloys, since
precipitation hardening is the most efficient strengthening
mechanism in these materials. The predicted influences
of Ti and Al additions on the yield strength of a Ni—
20Cr-10Co-1A-1Ti-0.03C wt% alloy at 21°C are pre-
sented in Fig. 4. Once more the predictions of ANN
and GP are very similar. It can be seen that the models
predict a stronger influence of titanium. This fact is
confirmed by Fig. 5, where the influence of the Ti/Al
ratio on the yield strength of a Ni-20Cr-10Co0-0.03C
wt% alloy at 21°C is plotted. In this graph, the total
atomic content of Ti+ Al has been kept constant and
equal to 7at%, as in the experiment of Miller et al.,"”
whose results are also presented in Fig. 5.

First, both models are less well defined for the low
and high values of Ti/Al (large error bars), reflecting the

y’ Forming Elements: Al and Ti

© 1999 ISIJ
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lack of data in these ranges: only a few alloys of the
database contain either a lot of Ti and very little Al, or
a lot of Al and no Ti.

Secondly, even if the experimental results of Miller et
al. lie within the predicted error bars, the values are
frequently lower than those predicted. This can be
explained by the fact that the materials used by Miller
et al. were simple cast alloys, whereas the alloys in the
database were commercial wrought alloys whose prop-
erties have been optimized by complex heat treatments.

Finally, as both titanium and aluminum partition
mainly to the y phase, it can be assumed, as a first
approximation, that the y’ volume fraction is constant.
This figure thus indicates that, for a constant 7’ volume
fraction, replacing an aluminum atom by a titanium atom
gives an increase in the yield strength. This is in agreement
with theoretical considerations.

Since titanium atoms are bigger than aluminum
(+4%), they induce an increase of the y’ lattice pa-
rameter, of the y/y’ lattice mismatch, and thus of the
strain fields. Moreover, it has been shown that titanium
increases the anti-phase boundary energy of the y’ phase,
which renders more difficult the cutting of inclusions by
dislocations.**'® Titanium is thus expected to give
more effective strengthening effects than aluminum, and
this has been recognised by both the artificial neural
networks and the Gaussian processes.
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5.5. Cobalt

The predicted role of cobalt on the yield strength
of a Ni-19Cr-4Mo~1.3A1-3Ti-0.035C~0.03B~0.006Zr
wt% alloy (Waspaloy) at 21°C and 538°C is presented
in Fig. 6 for both ANN and GP. Once more the results
are similar. Cobalt is expected to have a small influence
on the yield strength of this alloy at 21°C and 538°C, in
agreement with the experimental data published by
Maurer et al.'” (Fig. 6). However, although having no
strengthening effect, cobalt is often necessary, in spite of
its high price, to improve the hot corrosion resistance of
the alloys.*®

5.6. The Refractories: Mo, W, Ta

The predicted effects of molybdenum, tungsten and
tantalum additions to a Ni—20Cr-10Co-3.3A1-3.3Ti—
0.03C alloy at 21°C are shown in Fig. 7. ANN and
GP predictions are still in quite good agreement in the
case of Mo and W, but the trend is not very well defined
in the case of Ta. It can be seen that error bars are longer
in the case of Ta and W, due to the small number of
alloys in the database containing these elements. These
error bars are very large in the case of Ta, indicating a
low level of confidence in both cases.

Mo, W (and Ta) are predicted to induce an almost
linear strengthening. However, since they partition
differently to the y and 7’ phases,’® their strengthening
mechanisms are also different. Molybdenum partitions
mainly to the y phase, hence giving a solid solution
strengthening of the matrix. The predicted effect cal-
culated from Fig. 7 is about 40MPa/at%, which is
close to 35MPa/at% found by Mishima ez al. for Mo in
pure Ni.'® Tungsten partitions about equally to y and
y', and yields both a solid solution strengthening of the
matrix'® and an increase of the anti-phase boundary
energy of the inclusions.2? The role of tantalum is more
complex. It partitions mainly to the y' phase, thus
increasing its volume fraction.?! It also increases the
anti-phase boundary energy of the y’ phase!®29 as well
as the y/y’ misfit by increasing the y’ lattice parameter.??
A small fraction of Ta partitions to the matrix, yield-
ing a little solid solution strengthening effect.?) Tan-
talum should thus be expected to be the most efficient
strengthener, which has been inferred by the ANN,

1024



ISIJ International, Vol. 39 (1999), No. 10

1000
T = 21°C o
950 . T = 538°C Gp
¢ ° d ———ANN

900" "¢ LR LR EE T L S PR e M
- P 'T aurer
B | |
g 850 |
$ l I et
5 800 i AR SRR T it Attt zom— 7
2 ! | . z
E """""""""""" kSt g i
2 750 l
Y |

700 ——GP l

ANN R R £ """""""" E A
650 ¢ Maurer
600
0 5 10 0 5 10 15
Co (wt. %) Co (wt. %)

Fig. 6. Predicted and actual effects of reducing the cobalt content of a Ni~Cr-Co-Mo-Al-Ti-C-B-Zr alloy at
21°C and 538°C (experimental points from Maurer et al.'#).

1200

Molybdenum -

1100
1000

900 |f

Yield stress (MPa)

800 [

700

1100 o~ Tungsten
1000

900 |

Yield stress (MPa)

800 l,,':"' N

700

1100 Tantalum

1000

900 ||,
il
800

Yield stress (MPa)
g

—GP
ANN

700

0 1 2 3 4 5 6
Refractory content (at.%)

Fig. 7. Predicted individual influences of Mo, W and Ta

additions on a Ni-Cr-Co-Ti-Al-C alloy at 21°C.

but not by the GP. However, it should be kept in mind
that these predictions are associated to large error bars,
i.e. a very low level of confidence.

5.7. Extrapolation

The difference between neural networks and Gaussian
processes for extrapolation outside the database is of
theoretical concern. An ANN will extrapolate by keeping
the trend it had inferred just at the end of the database.

1025

This can produce good results if the inferred trend is
reasonable, but may also be wrong in the case of a
deviation of the true trend from the inferred one beyond
the database. A GP will keep this “last” trend for a
while, but the covariance function that we use assumes
that trends do not persist beyond lengthscales defined by
the hyperparameters, {r,}, so in the case of extrapola-
tion to large distances the predictions tend to a default
value determined by the prior (zero in the present case—
in normalised values). In both cases, predictions become
unreliable, and the models indicate low levels of con-
fidence through large error bars. If an extrapolation
is to be made, the results must be understood as a simple
indication, and experimental verification will always be
necessary. However, ANN are more likely to perform
better extrapolations in the case of monotonic trends,
and, if GP extrapolations are disatisfactory, the co-
variance function of the GP can be altered so that the
model expects trends of the desired form.

5.8. Labour and Computing Time

Because the two techniques seem to give similar results,
the choice between them could often be a question of
how much labour and/or computing time is needed to
optimize the model and to make predictions.

The first part of the problem is optimizing—or
training—the model. This step is always very laborious
in the case of neural networks, since it implies training
and testing many different networks with different in-
titial conditions and complexities, choosing the best ones
amongst them, and making a committee of them. In these
conditions, computing time can often be neglected with
respect to the human labour, even with databases of
several thousands of points. Typically, optimising a
good committee of neural networks would need an “in-
compressible” human work of several days or weeks.

By contrast, training Gaussian processes is relatively
simple, and in our experience it is sufficient to train just
one model. However, the optimisation computing time
increases approximately as the cube of the database
size. Thus, optimisation times can be very fast (minutes or
hours) for small databases (a few hundred points) but

© 1999 ISlJ



ISIJ International, Vol. 39 (1999), No. 10

can become very long and prohibitive for databases of
several thousand points (for example, in another prob-
lem, approximately 20 days for a database with 2000
points and 30 inputs on a 300 MHz CPU).

The second part of the problem is making predictions.
Once they are trained, neural networks don’t use the
database to perform predictions, but just a mathematical
equation and a set of optimised parameters, or “weights™.
Thus, predictions can be very fast, the computing time
is independent of the database size, and just depends on
the number of inputs, the number of parameters in the
model and, of course, the number of predictions to be
made. In the present problem (16 inputs), the committee
of ANN makes about 560 predictions per minute on a
300 MHz CPU.

Gaussian processes use the database to make pre-
dictions, with a computing time increasing either as
the cube, the square or linearly with the database size,
depending on the implementation (if we choose not to
ask for error bars, the complexity can be reduced to
linear).” In the present case, with 16 inputs, and using
only the training set (96 points) as the database to make
predictions, the model performs about 1500 predictions
per minute, which is faster than the committee of neural
networks. But if the whole database is used to make
predictions (192 points), the speed drops down to 240
predictions per minute, and down to 10 predictions per
minute when using a database of 384 points.

6. Conclusions

The abilities of a committee of artificial neural
networks and of a Gaussian process to produce an
empirical model of the yield strength of commercial
nickel-base superalloys as a function of composition and
test temperature have been compared. The comparison
criterion was the ability to recognise and predict some
well-known metallurgical trends. Both ANN and GP are
able to predict correctly, with a similar level of confidence,
the influences of test temperature, of a number of
individual alloying elements (Al, Ti, Co, W, Mo), of the
7" volume fraction, and of the Ti/Al ratio. The predictions
are in good agreement with published measurements and
theoretical expectations.

In all cases, ANN and GP give similar results, and
display a low level of confidence in the regions where
data are missing or widely separated (temperature range
21-538°C, effect of Ta). In these regions of the database,
error bars act as a warning signal.

The main advantage of Gaussian processes is to avoid
the labour of selecting optimum models, as is necessary
in the case of artificial neural networks. Moreover, our
method made use of a test set to choose the committee
of ANN. The GP method has no need for a test set, so
the GP can be trained just once, on the whole database.

However, GP can be computationally time-comsuming
for large databases, since the computing time grows as
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the cube of the database size for optimisation and as the
square for prediction (in our case). On the other hand,
the calculation time for ANN to make predictions is
independent of the training database size. Consequently,
because they are simple to use, GP can be preferred for
small databases (typically less than one thousand
input-output pairs), and ANN preferred for large
databases. Nevertheless, due to the rapid increase in
computer power and speed, Gaussian processes may
become the method of choice in the future.
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