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MODELLING OF MATERIALS (1) – possible Answers

SECTION A

1. (a)

(b) Atomic ordering is favoured in systems where the enthalpy of mixing
is negative. However, there is also an increase in free energy due
to a reduction in entropy as disorder is replaced by order. As the
temperature increases, the free energy increase caused by the reduced
entropy of ordering dominates, because it scales with T (i.e. ∆G =
∆H − T∆S). This is why disordering occurs as the temperature is
increased.



     

Page 2 of 15

(c) Main point: synergy means a coupled approach intended to produce
a more reliable result than any of the individual methods would
alone. There is an interplay between theory, modelling and ex-
periment. Each approach can provide support for the other two.
Modelling should not be performed in a vacuum. Experimental ob-
servation should be connected to an established theory or computer
model.

This approach serves to validate the model (or theory) and confirm
the interpretation of the experiment.

A coupled approach is possible now because of a convergence of capa-
bilities: improved theories, more efficient algorithms, more powerful
computers, more sophisticated experimental tools.

“materials by design” the use of a coupled approach to guide in the
design of a material with specific properties (e.g. high strength, high
conductivity, efficient luminescence).

“ab initio materials science” the use of a first principles model (in-
volving no parametric fitting) to explain or predict a phenomenon
in materials science.

“intelligent processing of materials” the use of a coupled approach
to process materials optimally.

(d) The Ziman model considers the reflection of electron waves from a
crystal lattice represented by a periodic crystal potential.

The band gaps originate from the constructive interference between
electron (or Bloch) waves in the material as they are reflected by
this potential.

For critical values of the wave vector given by the Bragg condition,
the Bloch waves change from being travelling waves to being standing
waves.

Travelling wave solutions to the Schrodinger equation therefore do
not exist at the Bragg condition, i.e. on the Bragg planes or Brillouin
zone boundaries, and there is a gap in the allowed electron energy
levels.

At k = ±nπ/a (the Bragg condition in 1–D where a is the lattice
spacing), it can be shown that the two standing waves have different
charge densities proportional to cos2(πx/a) and sin2(πx/a) and thus
two different energies. This creates the discontinuity in the electron
energy spectrum.
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(e)

real function trace (a, b)

real sum

real a(3,3), b(3,3)

integer i, k

sum = 0.0

do 10, i = 1, 3

do 10, k = 1, 3

sum = sum + a(i,k) * b(k,i)

10 continue

trace = sum

return

end

(f) Since, ∆S◦ ' −∆S◦O2
for the oxidation reaction is a negative quan-

tity, and the standard free energy change for the above reaction is
given by: ∆G◦ = ∆H◦ − T∆S◦, as T is increased, the value ∆G◦

also increases.

(g) The grand partition function is defined as the sum of the Boltzmann
factors over all microstates of an atomistic system Z. The formal
definition as below (β is 1/kBT , Ei is energy of microstate, µ is
chemical potential and ni is number of particles in each microstate):

Z =
∑

i

exp{−β(Ei − µni)}

Although every thermodynamic state function can in principle be
calculated from the derivatives of Z, the energy of each microstate
could potentially be a function of the position and velocity of every
particle in the system. This makes the calculation of expectation
values of the state functions, which determine materials properties,
intractable in practice even if the partition function is known in full.

An alternative method is to use computer simulation to sample the
microstates of the system. As the total number of states of real sys-
tems is huge, the sampled states must be representative of those of
the real system. In the Monte Carlo method, this is achieved by sam-
pling microstates with a probability proportional to their Boltzmann
factor. In the molecular dynamics method, Newton’s equations of
motion are solved for a system in equilibrium with a heat and particle
reservoir. In both cases, the expectation values of the state functions
are given by simply averaging over the sampled states. Extra marks
for including proviso that if the simulations are ergodic, averaging
over configurations in MC and over time in MD should give the same
answer.

(h) A mesoscale level can be defined if at that length (and associated
time) scale one can safely make the assumption that certain degrees
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of freedom pertaining to a smaller scale will always be in the equi-
librium state when seen from that scale, i.e. have a relaxation time
much shorter than the time scale of interest.

A common example of a mesoscopic phenomenon is Brownian mo-
tion. This can be observed in small soot particles viewed under
the microscope, where the net result of small, uncorrelated collisions
of gas molecules cause the soot particles to execute random motion
with a mean–squared displacement which is proportional to the time
period of observation, as predicted by Einstein. Although the soot
particle is thermally equilibrated with respect to the fast motions of
the gas molecules, the observations occur over a much longer time
scale and so Brownian motion provides a direct link between the
microscopic jumps of the particle and its macroscopic diffusivity. It
can occur in any physical situation in which a process is observed
over a sufficiently long time scale that the microscopic degrees of
freedom have time to equilibrate.

(i) The Deborah number gives the ratio of the longest relaxation time
of the polymer to the time scale of the process. Under the conditions
described, the process is an order of magnitude slower than the re-
laxation time, and so the flow through the die will be viscous. This
means that the swelling of the extrudate should be fairly isotropic, as
the polymer has no memory of its previous configuration. However,
tripling the molecular weight will increase the viscosity, and there-
fore the relaxation time. Since the molecular weight is already high
enough so that the polymer melt is entangled then η ∝M3.3, so the
viscosity will increase by a factor of 33.3 = 37.5. This will change the
Deborah number to 3.75, resulting in an elastic flow through the die.
The polymer melt will retain a memory of its configuration before
compression, and there is likely to be appreciable die swell.
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(j) There is in general a change in density or electrical resistance during
a phase transformation. This can be used to monitor transition
temperatures or pressures in pure systems. In alloys, the chemical
composition of the phases in equilibrium does not change with the
overall composition. The lattice parameters can be monitored (using
X–ray, electron or neutron diffraction) as a function of the overall
composition; a lack of change indicates phases in equilibrium, where
only their proportions change according to the lever rule.

The chemical compositions of phases can also be monitored directly
using the variety of microanalytical techniques available in mod-
ern electron–optical instruments (energy dispersive X–ray analy-
sis, wavelength dispersive X–ray analysis, electron energy loss spec-
troscopy etc. ).

Thermodynamic data (heat capacity, enthalpy changes) can be mea-
sured using calorimetry (differential scanning calorimetry or differen-
tial thermal analysis). These can then be used to construct databases
which are analysed using solution models to construct phase dia-
grams.
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SECTION B

2. Taylor series expansions about the point xi

Ti+1 = Ti + ∆xT ′i +
∆x2

2!
T ′′i +

∆x3

3!
T ′′′i + . . .

Ti−1 = Ti −∆xT ′i +
∆x2

2!
T ′′i −

∆x3

3!
T ′′′i + . . .

on adding these equations, rearranging and truncating the series gives a
central difference approximation

T ′′i =
Ti+1 − 2Ti + Ti−1

∆x2

The 1–D Fourier (heat conduction) equation

∂T

∂t
= α

∂2T

∂x2

can be written in finite difference form by using forward and central
difference approximations for the two derivatives:

Ti,j+1 − Ti,j
∆t

= α

[
Ti,j+1 − 2Ti,j + Ti−1,j

∆x2

]

which leads to the explicit recurrence relation:

Ti,j+1 = Ti,j +
α∆t

∆x2

[
[Ti+1,j − 2Ti,j + Ti−1,j

]

The equation can be written:

Ti,j+1 = A
(
Ti+1,j + Ti−1,j

)
+ (1− 2A)Ti,j

where A is given by α∆t/∆x2. It is clear that (1 − 2A) should not be
negative, since this would mean that an increase in the current value of T
at a particular point would decrease the new value at that point, which
would lead to oscillations. A criterion for numerical stability therefore
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arises with an explicit solution scheme, which corresponds to a maximum
value being imposed on the time increment:

∆t ≤ ∆x2

2α

A physical interpretation of how numerical instability arises if this con-
dition is not satisfied is that ∆t is then so long that the heat flow,
which should act to reduce the curvature of the temperature profile, over–
corrects and starts to reverse the sign of the curvature. This is physically
impossible. It arises because, in an explicit scheme, the temperature of
each element is assumed to stay at its current value until the end of the
time increment.

3. Thermal history is important as follows:

• in maximising throughput (e.g. to check that increases in speed do not
lead to problems): e.g. in DC casting it is necessary to avoid going too
fast and causing a ”break-out” of molten metal;

• in controlling thermally-induced stresses, which lead to billet end-
cracks in DC casting and distortion/warpage/cracking in extrusion

• in controlling microstructure evolution: e.g. dendrite spacing, grain
size and segregation in DC casting; full dissolution during extrusion, and
avoidance of coarse precipitation during subsequent cooling (quench sen-
sitivity).

Numerical methods are particularly necessary to capture the following:

• in DC casting: many materials in the problem (liquid and solid alu-
minium, steel starting block, copper mould) and complex thermal bound-
ary conditions (liquid and solid against copper mould, water quench,
turning to steam)

• in extrusion: complex 3D geometry of the extruded profile and the
interior cavity in the die, giving complex metal flow paths; also contact
with steel dies (friction and heat transfer) followed by some combination
of air and water cooling.

Refinements to the Jominy model for greater accuracy:

• more elements in the length direction, and grade the mesh to be finer
near the quenched end where cooling rates are high;

• axisymmetric mesh with a few elements across the radius, to allow for
some radial heat flow and convective/radiative heat transfer on the sides
of the bar; temperature-dependent thermal properties;

• good but not perfect heat transfer boundary condition on quenched end
(with a suitable heat transfer coefficient);
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• adjust time stepping to give temperature values which are sufficiently
close together in time (at the positions of interest) to give a smooth
temperature-time profile.

Transformations to ferrite, pearlite and bainite occur in the higher tem-
perature region (the nose of the C–curve). Avoiding these transforma-
tions to produce martensite is the purpose of the quench, so it is in this
area that greatest accuracy is needed. These transformations usually do
not occur below 350 ◦C, so accurate cooling histories are not important.

4. The three examples might include: nucleation of crystals in liquid, rele-
vant for metal casting in which equiaxed grains are preferred; intragran-
ular nucleation of acicular ferrite in a solid–state transformation; and
nucleation of magnetic domains, relevant for ease of reversal of magneti-
sation.

The work of formation W of a critical nucleus is given by

W = (4π/3)r3∆GV + 4πr2σ

where ∆GV is taken to be a positive quantity. This form has a maximum
value of W at r∗ = 2σ/∆GV , a value readily found by setting ∂W/∂r = 0.
The critical radius is r∗ because clusters smaller than this diameter just
dissolve, while larger clusters can grow naturally.

Homogeneous nucleation takes place without any pre–existing substrate;
heterogeneous nucleation occurs on a substrate, and a drawing of a spher-
ical cap nucleus would be an expected part of the answer. The contact
angle of the spherical cap is important in determining the ease of nucle-
ation. The critical radius of curvature of the solid–liquid interface is the
same for heterogeneous as for homogeneous nucleation under the same
conditions, but the volume of the heterogeneous nucleus is less, reducing
the critical work of nucleation W ∗. Heterogeneous nucleation is dominant
because systems in industrial processing offer many potential substrates.

Problems in quantitative modelling are lack of precision in the values
of input parameters, notably in the values of σ. Modelling approaches
include use of standard macroscopic values of ∆GV and σ, use of the
density functional to calculate W ∗, and use of molecular dynamics to
probe nucleation kinetics.

5. The DREIDING force field contains three different types of bonded (or
intramolecular) forces: bond stretching, bond bending and bond tor-
sion. Bond stretching forces are defined between each pair of bonded
atoms, and are approximated by a harmonic function with an equilib-
rium separation and force constant. They describe the force required
to displace the bonded atoms from their equilibrium separation. Bond
bending forces are defined between each triplet of bonded atoms, and are
approximated by a harmonic function with an equilibrium bond angle
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and force constant. They describe the force required to change the bond
angle from its equilibrium value. Bond torsions are defined between each
quartet of bonded atoms, and are approximated by a sinusoidal function
with a number of different force constants and phase shifts depending on
the macromolecule being simulated. They describe the force required to
change the dihedral angle between the atoms, which normally has three
minimum energy states (one trans, two gauche).

The parameters of the intramolecular force field terms can be determined
from experimental measurements and ab initio quantum calculations, and
it turns out that there is a wide spread in frequency between the degrees of
freedom involving different numbers of atoms. That is, the bond stretch-
ing motions are faster than the bond bending, which are faster than the
bond torsions. This makes it possible to achieve a saving in efficiency if
the slower forces are evaluated using a longer time step than the faster
forces. This is the principle of a multiple time step algorithm, in which
the slower degrees of freedom of a macromolecule are evolved in the mean
field of the faster varying ones. The separation is only rigourously accu-
rate if the different degrees of freedom are truly independent, but it is a
good approximation for most systems.

For a graphene sheet comprised of N independent atoms, there are 3N/2
distinguishable bond stretching terms, 3N bending terms and 6N tor-
sional terms, giving 21N/2 bonded terms in total. Using the MTA, the
torsional terms are evaluated 50 times less often and the angle terms 10
times less often than the bond stretching terms. This gives a factor of f
time saving, where:

f =
21N

2
×
(

6N

50
+

3N

10
+

3N

2

)−1

= 5.47
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SECTION C

6. For a binary (A–B) solution the numbers of the different kinds of bonds
can be calculated using simple probability theory. Given a concentra-
tion x of B and a lattice coordination number z, and the fact that the
probability of finding a B atom in a random solution is x, it follows that

NAA = z
1

2
N(1− x)2

NBB = z
1

2
Nx2

NAB +NBA = zN(1− x)x

(1)

where NAB represents both A–B and B–A bonds which cannot be dis-
tinguished. N is the total number of atoms. Notice that the unlike bonds
A–B and B–A cannot be distinguished and hence have been consolidated.

An ideal solution is one where the atoms mix at random because there
is no enthalpy change on mixing (∆HM ) the components (Table 1). The
configurational entropy of mixing is (∆SM ) is easily derived because the
probabilities can be estimated assuming a random distribution of atoms.
The enthalpy of mixing is finite for a regular solution, so that the atoms
at low temperatures may not be randomly mixed. Nevertheless, as a con-
venient approximation, the entropy of mixing is assumed to be ideal. A
quasichemical model avoids this latter approximation. Note that the reg-
ular solution may be considered as a zeroth approximation quasichemical
model.

Type ∆SM ∆HM

Ideal Random 0

Regular Random 6= 0

Quasichemical Not random 6= 0

Table 1: Elementary thermodynamic properties of solutions

Consider an alloy consisting of two components A and B. For the phase
α, the free energy will in general be a function of the mole fractions
(1−X) and X of A and B respectively:

Gα = (1−X)µA +XµB (2)

where µA represents the mean free energy of a mole of A atoms in α.
The term µ is called the chemical potential of A, and is illustrated in
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Fig. 1a. Thus the free energy of a phase is simply the weighted mean
of the free energies of its component atoms. Of course, the latter varies
with concentration according to the slope of the tangent to the free energy
curve, as shown in Fig. 1.

Consider now the coexistence of two phases α and γ in our binary alloy.
They will only be in equilibrium with each other if the A atoms in γ have
the same free energy as the A atoms in α, and if the same is true for the
B atoms:

µαA = µγA

µαB = µγB

If the atoms of a particular species have the same free energy in both the
phases, then there is no tendency for them to migrate, and the system
will be in stable equilibrium if this condition applies to all species of
atoms. Since the way in which the free energy of a phase varies with
concentration is unique to that phase, the concentration of a particular
species of atom need not be identical in phases which are at equilibrium.
Thus, in general we may write:

Xαγ
A 6= Xγα

A

Xαγ
B 6= Xγα

B

where Xαγ
i describes the mole fraction of element i in phase α which is

in equilibrium with phase γ etc.

The condition the chemical potential of each species of atom must be the
same in all phases at equilibrium is quite general and obviously justifies
the common tangent construction illustrated in Fig. 1b.

Diffusion is driven by gradients of chemical potential (i.e. free energy)
rather than chemical concentration. By analogy with Fick’s first law:

JA = −MA

∂µA
∂x

so that DA = MA

∂µA
∂CA

where the proportionality constant MA is known as the mobility of A.
In this equation, the diffusion coefficient is related to the mobility by
comparison with Fick’s first law.

The relationship is remarkable: if ∂µA/∂CA > 0 then the diffusion coef-
ficient is positive and the chemical potential gradient is along the same
direction as the concentration gradient. However, if ∂µA/∂CA < 0 then
the diffusion will occur against a concentration gradient.
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Fig. 1: (a) Diagram illustrating the meaning of a chemical

potential µ. (b) The common tangent construction giving

the equilibrium compositions of the two phases at a fixed

temperature.

7. Assumptions:

(i) Solid is modelled as a gas of negatively charged electrons plus a
positively charged background charge (a jellium). The background
charge serves to maintain charge neutrality.

(ii) Explicit electron–ion interactions are ignored (the free electron ap-
proximation).

(iii) Explicit electron–electron interactions are ignored (the independent
electron approximation).

Quantisation of the electron energies: Let the jellium be contained
in a box of side L. From wave–particle duality, the free electrons have
wave functions ψ and satisfy the following wave equation:

h̄2

2m
∇2ψ(r) = −Eψ(r)
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where E are the electron energy eigenvalues. By substitution it can be
seen that solutions of this equation have the form:

ψ(r) = Cik.r

where k is a vector normal to the wavefront with magnitude k =√
2mE/h̄.

Periodic boundary conditions are now applied to the box. This confines
the electrons to the box and avoids unwanted surface effects. It also leads
to travelling (rather than standing) wave solutions which are better for
describing charge transport properties.

The boundary conditions require that

ψ(x, y, z + L) = ψ(x, y, z)

ψ(x, y + L, z) = ψ(x, y, z)

ψ(x+ L, y, x) = ψ(x, y, z)

and must satisfy ψ(x, y, z) = Cei(kxx+kyy+kzz), i.e. eikxL = eikyL = eikzL

so that

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

, where n is an integer

Hence k is quantised and so therefore is E(k).

The Fermi Energy: the quantised wavevector k = (kx, ky, kz) defines a
3–D reciprocal space. In this k–space all allowed electron energies fall
within a sphere of radius kF (the magnitude of the Fermi vector).

The spacing between k points is 2π/L. Thus the volume per k–point
is (2π/L)3. Therefore the volume of the Fermi sphere of radius kF is
1
2N

(2π)3

V where the factor of a half accounts for the fact that 2 electrons
can occupy each k state, N is the number of electrons in the box and
V = L3. Thus

1

2
N

(2π)3

V
=

4

3
πk3

F so that

kF = (3π2nc)
1/3 where nc = N/V (the electron density)

Hence the Fermi energy becomes

EF =
h̄2k2

F

2m
=

h̄2

2m
(3π2nc)

2
3

The Fermi Energy of Copper: For Cu, the electron density is given
by

nc =
(4 atoms/cell)(1 electron/atom)

(3.62× 10−10)3
= 8.432× 1028 m−3
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Hence by substitution EF = 1.12× 10−18J ≡ 7.01eV

The Fermi wavelength of Copper: The magnitude of the wave vector
is kF = (3π2nc)

1
3 . The Fermi wavelength is therefore λF = 2π/kF =

0.46 nm.

The Fermi velocity of Copper: Use de Broglies relation, momentum
p = h/λ. Hence the Fermi velocity vF =

pf
m = h

mλF
= 2πh̄

mλF
= 1.57 ×

106 m s−1.

Failure of the Free Electron Model: The model works quite well for
metals because it is assumed that the density of electrons is uniform. This
is the case, at least for simple metals, and accounts for a wide range of
metallic properties, for example, good electrical and thermal conductivity,
close–packed structures (no directional bonding) and ductility (uniform
density).

It fails for other classes of materials, e.g. semiconductors and insulators,
because here the valence electron density is not uniform (in semiconduc-
tors it is localised along certain directions and in insulators it is localised
around the atoms). In order to predict the non–localisation of electron
density, crystal structure has to be incorporated into the model. This
leads to a fragmentation of the electron energy spectrum and the appear-
ance of allowed bands of energy separated by gaps of forbidden energy.

Thus one property of a semiconductor that the free electron model can-
not predict is the observed band gap (e.g. 1 eV in Si). The presence of
a band gap affects all other electronic and optical properties of semicon-
ductors, e.g. the dependence of conductivity on doping and temperature,
the wavelength of emitted light in LEDs and lasers.

The effect of a periodic crystal potential: The incorporation of crys-
tal structure into the model means that the electrons will interact with a
periodic crystal potential. It can be shown that for certain critical values
of the electron wave vectors, the crystal potential will reflect the electrons
such that the incident and reflected waves interfere constructively. In this
situation, the electron travelling waves of a single energy split into two
standing waves with different energies. One standing wave concentrates
electrons on the atoms while the other standing wave concentrates elec-
trons in the space between atoms (this can be shown mathematically by
considering the probability density of each wave but this is not asked for
in the question). The energy of the standing wave which concentrates
electrons between the atoms will be higher than the standing wave which
concentrates electrons on the atoms since the crystal potential is strongest
between the atoms. Thus for the critical wave vectors, the electron ener-
gies will assume two values, one higher than the free electron value and
one lower than the free electron value. This creates a discontinuity in
the electron energy spectrum at these k-vectors, which collectively form
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a plane in k–space known as a Brillouin zone boundary.

Electron energy spectrum near a BZ boundary:


