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Abstract

In industry, stainless steel strip is produced by a system of casting, followed by hot and
cold rolling. The steel, at this stage may be unacceptably hard for its final use. To alleviate
this problem the steel is annealed in order to soften it and improve its ductility. Softening
occurs mainly via a process of recrystallization, involving the process of nucleation and growth

of new, more perfect crystallites which consume the deformed structure.

The kinetics of this process have been represented by overall transformation kinetics theory
(also known as KJIMA or Avrami theory). This theory was first developed in the late 1930s
and since then has been proven to be applicable in a number of different scenarios, from
recrystallization to simultaneous multiphase transformations. Overall transformation kinetics
was taken as the starting point for this study, but, as demonstrated in chapter 6, the simple
version of the theory failed to properly describe the process of recrystallization. The problem
could be resolved by taking into account the fact that recrystallization initiates at the grain
boundaries. The bulk of the kinetics modelling in this work is therefore based on Cahn’s
theories for grain boundary nucleated phase transformations. It will be demonstrated that

these give a physical and analytically sound description of the recrystallization process.

With recent dramatic increases in available computing power, it has become possible
to apply regression techniques which previously would have been too complicated and time
consuming. Neural networks are an example of such a regression technique. Historically,
numerical analysis has been carried out using methods such as linear regression. The methods
produce a line of ‘best fit’ for the data and are describe in chapter 3, however they are often
not sufficiently flexible to capture the complexity in the data. In this study, non-linear neural

networks have been used to model the annealing behaviour of different types of stainless steel.

The initial neural network model (as described in chapter 5) was trained using a laboratory
dataset as an illustration of the flexibility and power of this method. The neural network
models described in chapter 7 are an application of this technique to a dataset gathered from
the furnaces of an industrial supplier of stainless steels. Here, the models were trained so as to
predict the variation of certain commercially important considerations, such as strip hardness,
ultimate tensile strength and recrystallized grain size. The results and success of the models

are also described.

All models produced are viewed in the light of their applicability to the industrial process

of annealing, and how this may improve the efficiency of stainless steel production.
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The final chapter of this dissertation indicates the conclusions that may be drawn from
this work. Furthermore, it illustrates where this work may be extended and highlights any

points still requiring development.

Included in the appendix is a full copy of the original FORTRAN77 computer code for

the overall transformation kinetics model.
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CHAPTER 1

BRIEF INTRODUCTION TO STAINLESS STEEL
AND REASONS FOR STUDY

1.1 Stainless steel

Stainless steels are iron base alloys which contain a minimum of 10.5 wt.% chromium.
The beneficial effects of chromium additions for corrosion and oxidation resistance were known
in a limited way in the mid 19** century, but significant commercial exploitation started only
in the second decade of the 20" century.

A wide range of further alloying elements can be used to control the mechanical, physical
and corrosion resisting properties of stainless steels. As a result, there is a large family of
compositions which can be classified in broad terms by the crystal structures of their matrices.

Stainless steels are used in many high and low technology applications, from the manu-
facture of cutlery to components for advanced satellites. It has become part of the fabric of

modern living and is used daily by almost every member of the developed world.

1.2 Physical properties of stainless steels

The phases (crystal structures) that may be observed in a simple iron, nickel, chromium
ternary alloy at ambient pressure are a/d, v, 0 and o'. a and § are both referred to as
ferrite and are structurally identical i.e. body-centred cubic. + is commonly referred to as
austenite and is face-centred cubic (cubic close-packed). o is an intermetallic compound of iron
and chromium and is body-centred tetragonal. o’ is either body-centred cubic or tetragonal
(depending on the exact composition). However, unlike « or §, o' (known as martensite)
is formed by a displacive decomposition of 7, leading to a metastable and highly strained
microstructure consisting of laths or plates. The Fe~Cr phase diagram is illustrated in Fig. 1.1.

A commercially produced stainless steel will usually fall into one of the following classes:
i) Austenitic stainless steels with a face-centred cubic crystal structure.

ii)  Ferritic stainless steels with a body-centred cubic crystal structure.
iii)  Martensitic stainless steels with a body-centred cubic or body-centred tetragonal
crystal structure and being formed by displacive decomposition of austenite.

iv)  Duplex stainless steels containing both austenite and ferrite.

Commercial stainless steels are usually designed not to contain ¢ phase. This is because
it has a bad influence on mechanical properties at room temperature e.g. poor ductility

(Honeycombe and Bhadeshia, 1995).



Chapter 1 — bhltor INTHODUCTLTION 10U STAINLESS STLEEL

2000
1800

1400

16001539 C

&~ ~0+L

Y S
1400 C

1800 C

TemperatureY C

600

Chromium / wt% Cr

Fig. 1.1 The Cr-Fe phase-diagram (adapted from Honeycombe and Bhadeshia
1995)

Whilst chromium is a key element in stainless steels, other elements also influence their
characteristics. Therefore, stainless steels are often classified by reference to a Schaeffler-
Schneider diagram (Fig. 1.2). This gives the expected final microstructure for a given chemistry
after cooling from a high temperature, such as in the welding process, by inspecting nickel and

chromium equivalents which may be calculated thus:

Cr equivalent = x o, + 2xg; + 1.5Xp10 + 59Xy + 5.5xa1 + 1.75xn1, + L.5xTi + 0.75xw

(1.1)

Ni equivalent = xn; + Xco + 0-5Xavm + 03Xy + 25xn + 30x¢ (1.2)

wherein y,. is the weight percentage of element z present (Honeycombe and Bhadeshia, 1995).

Of the four microstructural classes, the most widely used family is the austenitic steels.
Additions of principally nickel, but also manganese with nitrogen, are used to stabilise the
austenitic structure to room temperature or below. There are many compositions based
around additions of 18 wt% chromium and 9 wt% nickel to iron within an early patent from
Krupp (1912), whose investigations may be credited with the introduction of austenitic stain-
less steels. A significant later development was the recognition of the beneficial effect of

molybdenum in improving corrosion resistance. Stainless steels are corrosion resistant because

the chromium spontaneously forms a thin, protective passive film on the surface of the steel.

2
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Fig. 1.2 Schaeffler-Schneider diagram giving the basic effect of alloying addi-

tions on the structure of Cr-Ni stainless steels (Schneider and Climax Molyb-
denum Co., 1960)

Molybdenum enhances this passive film by making it stronger and helping it to re-form quickly
if it is disrupted by chlorides. Increasing the molybdenum content increases the pitting and
crevice corrosion resistance of stainless steels. From Krupp’s early work a wide range of com-
positions have been developed with increasing chromium and molybdenum contents, resulting
in high alloy austenitic stainless steels which, with iron contents of around 50 wt%, lie on the
borderline between the austenitic stainless steels and nickel-base corrosion resistant alloys.
The family of austenitic stainless steels, studied in this thesis, ranges from an 18 wt%
chromium — 8 wt% Nickel low carbon steel to those containing higher levels of chromium
and nickel (20 wt% and 25 wt% respectively in this work), with other principle additions of

molybdenum, manganese, nitrogen, copper, tungsten, silicon, niobium and titanium.

1.3 Dislocation theory

1.3.1 Dislocations in close-packed metals

This study is concerned with austenitic stainless steels which have a cubic close-packed
structure. Slip deformation generally occurs on the {111} close-packed planes and in the
(110) close-packed directions, which are parallel to the shortest lattice vectors. Slip occurs

via a dislocation mechanism with a Burgers vector b = 2£(110), wherein a;, is the lattice

3
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parameter. A dislocation is an imperfection in the lattice and will have associated strain fields.

The strain distribution around an edge dislocation is illustrated in Fig. 1.3.

Compressive
strain
field Dislocation
Slip plane
Tensile
strain

field

Fig. 1.3 Schematic illustration of strain fields around an edge dislocation

If two different dislocations of a similar sign lie on adjacent planes they may align if they
are free to do so. The motion of the dislocations is caused by the strain fields indicated in
Fig. 1.3. Compressive strain fields are attracted to tensile strain fields and vice versa. This is

illustrated in Fig. 1.4.

Legend

Compressive strain field

> Tensile strain field

/

~ _I_ Dislocation

/

Fig. 1.4 Two dislocation of the same sign but on different planes

Assuming that dislocation 1 is pinned in some way (e.g. by an impurity atom) and that
dislocation 2 is free to move along the lower plane, if angle x is less than 45°, then dislocation
2 is attracted to dislocation 1 and will move towards it until it reaches a stable position at

k = 0°. If angle k is greater than 45°, then dislocation 2 is repelled and moves away towards

4
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infinity (x = 90°). If the two dislocations have opposite signs, they would repel if £ < 45° and
attract if kK > 45°, with a stable position kK = 45°. Dislocations of the same sign on the same
plane will repel each other, however, dislocations of opposite signs on the same plane attract

and will annihilate one another. These interactions will eventually cause the formation of walls

and clusters of dislocations. This process is called polygonisation and is illustrated in Fig. 1.5.

Fig. 1.5 Edge dislocations on adjacent slip planes lining up, forming tilt

boundaries and hence a dislocation substructure. A form of polygonisation.

Close-packed metals are made up of close-packed planes (Fig. 1.6) stacked up on top of
each other in a periodic fashion.

A cubic close-packed (ccp) metal has its close-packed {111} planes in a stacking sequence
...ABCABC ..., which is in contrast to the corresponding sequence in a hexagonal close-
packed (hcp) metal which has its close-packed {001} planes in the sequence ...ABAB ....
The Burgers vector, b, in a ccp metal is generally (a;/2)(110), which, on Fig. 1.6 corresponds

to B,B,. The energy per unit length of a dislocation £},; may be approximated as:

1 2
Epp = §H|b| (1.3)
where p is the shear modulus of the matrix. This means that the energy may be lowered
by splitting the Burgers vector from B, B, into components B,C and CB,. The latter two
have smaller Burgers vectors which are not lattice vectors and hence are referred to as “partial
dislocations”. Between the two partial dislocations there will be an area where the atoms do not

have the correct stacking sequence; this is called a stacking fault with an energy per unit area

5
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Fig. 1.6 A close-packed plane A, above which B and C represent the possible

positions of atoms in the layer above.

of v¢rp. Materials with a low value of y¢r 5 will, at equilibrium, have widely spaced partial
dislocations and those with a high value of y¢5 5, will have closely spaced partial dislocations
or the dislocation may even remain undissociated.

Dislocation annihilation is minimal for materials with low vz since dissociation hinders
climb and cross slip which are the basic mechanisms of recoveryi (Humphreys and Hatherly
1996). Moreover, materials with a low value of ygpy will not tend to polygonise because
the dislocations cannot easily climb or cross slip and the strain fields associated with partial

dislocations are much more diffuse than for discrete dislocations.

1.3.2 Work hardening

When a single crystal sample of a cubic close-packed metal such as aluminium or stainless
steel is stressed, at first it will deform elastically with the stretching of bonds, after which
dislocations within the sample will start to move. As discussed in the previous section, cubic
close-packed systems slip on the {111}(110) system. Of the twenty four equivelent slip systems,
the one that is activated depends on the orientation of the tensile axis, in general it will
be the system with the highest Schmidt factor cos¢cos A where ¢ is the angle between the

plane normal and the tensile axis and A is the angle between the slip direction and tensile

i There is no formal definition of recovery, however, a generally applicable definition would
be; “...any modification of properties, during annealing, which occurs before the appearance of
new strain-free recrystallized grains, regardless of how refined the experimental technique used

to detect the new grains...” (Byrne 1965)
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axis. As deformation progresses, the tensile axis rotates towards the slip direction thereby
activating other slip systems.This leads to work hardening. Strain compatibility requirements
in a polycrystalline sample can require the simultaneous operation of five separate slip systems
in each grain.

Cold work therefore induces a high density of dislocations and defects in general, leading

to an increase in hardness and a decrease in ductility. These changes may be undesirable but

can be “reversed” by annealing to induce recrystallization.

1.4 Recrystallization

Because each dislocation is a defect with an associated energy, a material with a high
dislocation density contains stored energy which drives recovery and recrystallization. Recrys-
tallization is the process by which new grains of low dislocation density form in a deformed
material and consume those with high dislocation density. This process may be split into the

two processes of nucleation and growth, as illustrated in Fig. 1.7.

Deformed microstructure

Nucleation of new grains

Growth of new grains giving
recrystallized microstructure

Fig. 1.7 Schematic of recrystallization process

In materials such as aluminium and austenitic stainless steel there are no phase transfor-
mations which can be utilised to control important physical and mechanical properties after
casting. Therefore recrystallization is the principal way by which these properties may be
manipulated.

The main aim of this work is to model the recrystallization process with particular atten-

tion to anisothermal annealing as used in industry. This is expanded upon in chapter 2.

7
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1.5 Industrial annealing of stainless steel

The majority of stainless steel produced is in the form of wide (> 1000 mm), thin (< 5 mm)
strip. A typical process route for strip is as follows:

Liquid stainless steel is cast continuously and cut into slabs which are subsequently re-
heated and hot-rolled from a thickness of approximately 200 mm to within the range 3-10 mm
to provide coils of “hot band”. These coils are then annealed at approximately 1050 °C to
produce a softened, equiaxed grain structure before descaling and cold-rolling. Typical cold-
rolling reductions are between 10% and 90%. In addition to the reduction in gauge, cold-rolling
also improves surface finish and the geometrical tolerances of the strip as compared with the
hot-rolled product.

As discussed in §1.2, austenitic stainless steels work harden during deformation. The
degree of work hardening will be a function of the chemical composition and deformation
history. Unless the material is required in the work hardened state (e.g. spring steels), one or
more annealing stages will be needed.

In a modern steel plant, strip is generally annealed on a continuous basis as a part of the
process cycle. It is therefore imperative that the correct furnace calibration is achieved so as to
move the steel through the furnace at a rate which keeps pace with the rest of the production
cycle, whilst still producing the desired microstructure for the fixed strip geometry.

Modern continuous annealing furnaces are usually of a multi-zone configuration and must
necessarily be able to satisfactorily anneal a wide range of steels. This includes a whole
spectrum of compositions as well as a number of different thicknesses, rolling histories and,
possibly, surface conditions. A schematic diagram of a multi zone furnace for continuous

annealing is shown in Fig. 1.8.

Direction of Strip ——— >

— > 1150C |1170°C |1150C |»1170C | 1190C | 1170C (> 1160C | 1180C | 1160C >

I |1 |1 |

1.5m 1.5m
15m 17.5m 17.5m

Fig. 1.8 Schematic layout of zones in a production furnace. The nominal

temperatures indicated for each section may be varied to suit the strip gauge.

This furnace configuration is quite typical of those used around the world in the production
of stainless steel. The full annealing line consists of three banks, each consisting of three gas

fired furnaces separated by small air gaps. A coil of steel is unwound and passed through the

8
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furnace and then wound up again on the other side. Once one coil is exhausted, a second
is welded onto the tail of the first and the process is thereby made truly continuous. The
temperatures of the individual furnaces are chosen to provide a rapid heating rate followed by
a period of roughly isothermal annealing.

Secondly, because of pressure considerations, the inner of each bank of three furnaces is
set to a higher temperature than the outer furnaces. This limits the number of settings that
the annealing line as a whole may take up, the final settings are an optimisation between the
target strip heating curve and furnace operating constraints.

Direct measurement of the strip temperature inside the furnace is difficult. A common
method of monitoring the temperature of any particular furnace is with thermocouples em-
bedded in the furnace walls. However, it cannot be guaranteed that the part of the furnace
which is monitored is at the same temperature as the region containing the strip.

A schematic temperature profile for strip passing through a furnace of this type is given

in Fig. 1.9.

Air gap

First bank of
furnaces

Exit

Second bank Third bank
of furnaces of furnaces

Temperature

Distance through furnace

Fig. 1.9 Schematic of the variation of strip temperature as it passes through

an annealing line. (Backhouse 2000, private communication)

The principal control parameters in the annealing process are the “line speed” i.e. the
speed at which the strip travels through the furnace, and the temperature/fuel/air and oxygen
input settings for each of the individual zones. The factors which are expected to effect the

annealing behaviour of a strip are:
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i) Gauge (thickness of material).

ii) Chemical composition of the coil.

iii) Initial microstructure.

iv) Deformation history.

v) Surface characteristics (which control heating rate).

vi) Thermal properties

In current practice accumulated knowledge of response to the annealing process is used to
specify conditions. It is clear therefore that modelling the industrial annealing process is far
from trivial and certain of the key parameters are difficult to quantify and/or measure on-line.
Thus the main objective of this programme of work was to develop models which might be used
to help in the prediction of the response of a given strip feedstock to an available annealing

cycle and, conversely, to select annealing conditions to optimise strip output characteristics.

1.6 Forward to main body of work

In the industrial process described in this chapter, there is a need for a model which fully
describes the annealing behaviour of stainless steels. Properties such as hardness, which are
important to the end user, may then be modelled and controlled. This thesis contains work on
two different models; a kinetic model, based on the physics of recrystallization and an empirical
model based on data fitting techniques.

The following two chapters describe the current status of each method followed by chapters

dealing with experiments and models.

10
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CHAPTER 2

KINETIC MODELLING

Kinetic modelling has been at the forefront of the analysis of recrystallization since Kol-
mogorov published the first of overall transformation theory paper in 1937. This chapter
focuses on the development of this theory from 1937 onwards and how recrystallization is

driven by the stored energy of the dislocations.

2.1 Thermodynamics

When a fuel is burnt it releases energy, this energy may be harnessed to drive a motor, a
reaction or left to dissipate into the surroundings. Everyday, we see reactions which liberate
energy which provide heat, work or is squandered by letting it dissipate into the surround-
ings. This energy may come from any source, from fuel in an internal combustion engine, to a
chemical battery cell, to the heat liberated when a dislocation is annihilated (c.f. §1.3). Ther-
modynamics, the study of energy transformations, is the mathematical tool used to quantify

and compare these observations.

2.1.1 The laws of thermodynamics

The mathematics of thermodynamics can be expressed in the following series of laws

(summarised by Atkins 1994):

Law N° Description

0 If A is in thermal equilibrium with B and B is in thermal

equilibrium with C, then A is in thermal equilibrium with C

1 The internal energy of an isolated system is constant

2 The entropy (disorder) of an isolated system

increases in the course of a spontaneous reaction

3 At absolute zero temperature the entropy (disorder) of a perfect solid is zero

2.1.2 Application of theory

Looking at the second law of thermodynamics, and defining entropy (S,) as a measure of
disorder of the universe, we see that a reaction will occur if, and only if, the entropy of the
universe increases as a consequence, i.e. AS, > 0. In this case the isolated system is the

universe, which comprises the reaction components and the surroundings. If we consider the

11
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entropy of the universe to be made up of the entropy of the reaction components S, and the

entropy of the surroundings S, we see:
AS, =AS, +AS, (2.1)

According to the first law of thermodynamics, the internal energy (in this case enthalpy) of
a closed system is constant, i.e. AH, = —AH_, wherein AH_ is the change in enthalpy of
the reaction and AH, is the change in enthalpy of the surroundings. Assuming the surrounds
are large as compared with the reaction components, the temperature T" may be considered

constant, and therefore the effect of the reaction on the surroundings will be reversible i.e.

AS, = AH_/T. Therefore we see that:

AH
AS, =AS, - =2 2.2
Su=AS, - — (2.2)
—TAS, = —TAS, + AH, (2.3)

The advantage of equation (2.3) is that all calculations regarding the surroundings have been

eliminated and only the reaction need be considered. If we define:
AG =AH,-TAS, (2.4)

knowing that the first law of thermodynamic states that AH, = 0 and combining equations

(2.3) and (2.4) we see that AG is simply calculated as:
AG =AH,—-TAS, (2.5)

AG (the change in Gibbs free energy) represents the driving force for the reaction. This
derivation is rigourous for any isothermal closed system and has the advantage that, so long as
the temperature of the surroundings is constant, the thermodynamic universe may be analysed

by simple inspection of the reaction components.

2.2 The driving force for recrystallization

As described in chapter 1, when a material is deformed, the density of dislocations and
other defects increases, often by two or more orders of magnitude. The energy associated with
these defects means that a recrystallized structure is thermodynamically more stable than one

that is deformed. This energy difference provides the driving force for recrystallization AG.

AG = (pp — Prx) X Epr, + Epgp (2.6)

12
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wherein pp, is the dislocation density before recrystallization, ppy is the dislocation density
after recrystallization, F,; is the energy per unit length of a dislocation (equation 1.3) and
Epp is the energy of other defects and inhomogeneities such as vacancies and grain boundaries
extended during deformation. Generally ppy < pp and therefore, ppy may by neglected,
giving:

AG =ppEpr, + Epcp (2.7)

It is difficult to measure AG. It may however be estimated using direct methods or determined

indirectly by monitoring some physical or mechanical property.

2.2.1 Direct methods

2.2.1.1 Calorimetry

The stored energy may be measured directly using a differential scanning calorimeter
(DSC). In this method, a sample is heated continuously and the energy flux required to main-
tain the sample at the same temperature as the reference material is measured. Upon recrys-
tallization the energy stored in the dislocations will be expressed as heat. This heat will affect
the energy flux into the sample and thereby may be evaluated. A number of authors have
utilised this method (e.g. Schmidt 1989, Haessner 1990, Ryde et al. 1990). Schmidt (1989) has
thereby confirmed quantitatively the relationship between recovery and v ¢ as described in
chapter 1. His results for metals with differing values of y¢ 5 as a function of shear strain are

given in Table 2.1.

Material studied Al Pb Cu Ag
Purity 99.999 at% | 99.999 at% | 99.997 at% | 99.999 at%

Yspp / J m™? 26 15 4.7 2.6

Shear strain 6.75 5.97 6.75 5.2

Stored energy / kJ mol~! 69.6 21.5 216 220

Energy expended during deformation / J mol~! 3151 1400 5592 4914
Stored energy / Energy expended 0.022 0.015 0.039 0.045

pp (calculated) / m=2 x 10'° 3.1 1.7 10 8.7

Table 2.1:
mation at 77 K (Schmidt 1989)

Calorimetric data for recrystallization of materials after defor-

As expected, a high value of y¢, disfavours dissociation of dislocations and therefore

promotes cross-slip and climb. This leads to a reduced value of stored energy in aluminium

13
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and lead. Moreover, in copper and silver (lower v¢pp), the ratio of stored energy to energy
expended during deformation is higher than in aluminium and lead (higher v¢zy). This too
can be explained by the fact that dissociated dislocations have less freedom of motion than
undissociated dislocations. This is reflected in the higher values of dislocation density for lower

v¢pp Materials.

2.2.1.2 X-Ray line broadening

X-ray diffraction works by “reflecting” radiation off crystallographic planes within the
sample. Different planes in the lattice reflect by different angles. When a material is deformed
the crystallographic lattice is strained and therefore this will have an effect on the reflection
obtained in X-ray analysis. Homogeneous lattice strains will simply change the size of the
unit cell and hence the position of the diffraction peak. However, inhomogeneous strains will
alter the lattice size differently in different crystallites, it will also alter the size of the lattice
differently as a function of direction within one crystallite. This means that, upon forming
a diffraction pattern from many such crystallites, the observed peak becomes broader. The
reason for this is because each unit cell is a slightly different size and therefore will diffract at a
subtly different angle, leading to a spreading of the peak. The increase in the breadth (5,,,.)

of this peak and the diffraction angle 6 may be directly related to the internal strain in

Bragg

the system e,;, . such that:

ﬁdinc = 2€dinc tan HBragg (28)

A full appraisal of this technique has been given by Jeffrey (1971).

The differences in stored energy measured this way and via calorimetry can be striking.
For example a heavily cold worked metal will have a value of stored energy in the range 8-80
J mol~! when measured using X-Ray line broadening. A similar metal when examined using

calorimetry may have a value of 250-800 J mol~! (Humphreys and Hatherly 1996)!

2.2.1.3 TEM observations

Dislocations may be counted directly in a transmission electron microscope, hence the
stored energy may be calculated. This method can be inaccurate, since many dislocations can
be introduced during sample preparation and handling (Fig. 2.1). Moreover, dislocations may
escape from the surface of the sample because of its small size. Furthermore, after relatively
small amounts of cold work (upwards of 5% strain), the dislocation density can be so high
so as to make identification and counting of dislocations difficult using transmission electron

microscopy.

14
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Fig. 2.1 TEM micrograph of a sample of a type 302 stainless steel annealed
for 30 minutes at 720 °C showing dislocations in a recrystallized grain. No
deliberate deformation was applied to the sample after annealing. These dislo-
cations all lie on a single plane within the observed crystallite, therefore they
are almost certainly deformation induced. Hence it may be concluded that
these dislocations were induced during grinding or handling of the sample

after the annealing procedure was terminated. (Hopkin, unpublished work)

2.2.1.4 Comparison of different direct methods

Transmission electron microscope dislocation counting methods are inapplicable to heavily
deformed materials because observing single dislocations is all but impossible.

The difference between calorimetric and X-ray diffraction methods is a cause for concern
and caution must be exercised when interpreting the data. A possible explanation for the
discrepancy lies in what each method actually measures. Calorimetry measures heat flux
directly, whereas X-ray diffraction measures internal lattice strains. As described in §1.3,
dislocations align themselves so as to minimise strain energy. This will have no effect of factors
such as the core energy of the dislocation. The core energy of an edge dislocation is associated
with the core distortions, these are so large that they cannot be accounted for using elastic
theory. The X-ray method takes no account of this core energy, whereas, it is included in
the calorimetric measurements. Generally, in calculations of the energy of a dislocation, the
core energy is neglected (e.g. Cottrell 1975). Whilst this may be applicable for an isolated
dislocation, it is likely not to be so for a tangle of dislocations. Therefore, the calorimetric

measurements are likely to be the more accurate of these two methods.

2.2.2 Indirect methods

2.2.2.1 Calculation of stored energy from sub-grain structure

If the deformed microstructure consists of sub-grains, the stored energy may be calculated
by considering the density and misorientation of the sub-grain boundaries. This work was
pioneered by Dillamore et al. (1972). However, the method is not applicable in this work since

the low value of 745 in austenitic stainless steels prevents the formation of a clear sub-grain
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.

Fig. 2.2 TEM micrograph showing a sample of 302 stainless steel annealed
for 30 minutes at 720 °C showing an indistinct sub-grain structure. (Hopkin,

unpublished work)

structure (Fig. 2.2).

2.2.2.2 Calculation of stored energy from mechanical properties

As discussed in §2.2.2.1, the dislocation density in materials with even a small amount
of cold work can be impossible to measure (Fig. 2.2). However an estimate of the dislocation
density (and hence the stored energy) may be made from the flow stress o:

o = cyufblpyy’ (2.9)

where ¢, is a constant of the order of 0.5. This equation has been shown to hold for a wide range
of materials (McElroy and Szkopiak 1972, Dingley and McClean 1967). Combining equation
(2.9) and equation (2.7) and assuming Fpp. may be neglectedi giving:

20 \*
AG=F (—) 2.10
DL ,u|b| ( )

Combining equation (2.10) with equation (1.3):

1 402
AG = —pub* x [ =2
G = gulbl <u2|b|2)

202

AG = 2.11
. (2.11)

The answers obtained from this model are generally quite low, comparable with the data

obtained through X-ray diffraction. However, the trends in the data are accurately reproduced.

2.2.3 Application of these data to modelling

Kinetic modelling using overall transformation kinetics has been studied since the theory
was first developed in the 1930s. A large number of general review papers exist on the sub-

ject (e.g. Speich and Fisher 1966, Humphreys 1992, Humphreys 1997, Doherty et al. 1997,

i This approximation should hold true for the recrystallization process as illustrated by
Schmidt (quoted by Haessner 1990). Point defects tend to anneal out prior to recrystallization.

Therefore they do not contribute to AG during the process of recrystallization.
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Bhatia 1997, Rollett 1997, Bhadeshia 1997, Carr 1997, Vandermeer 2000) these give data from
recrystallization experiments, however little progress on practical modelling has been made
over and above overall transformation kinetics. This will be discussed further in the follow-
ing sections (overall transformation kinetics are reviewed comprehensively in §2.5). All of
the papers detailed above rely on thermodynamic data to calibrate and power their models.
It is clear therefore, that only through the study of thermodynamics can a model of kinetic

microstructural evolution may be produced.

2.3 The kinetics of grain growth

The kinetics of grain boundary motion are well understood. (e.g. Christian 1975, Putnis

1992).

2.3.1 Mathematical description

The velocity T of a grain boundary is controlled by the thermally activated migration of

atoms across the grain boundary and its associated energy barrier @:

= oy () 1 exn (-29)] 12

where §_ is the jump distance across the boundary (see Fig. 2.3). v is the characteristic
frequency (KT /h in Eyring’s theory), AG is the driving force grain boundary motion, in the
present work this is the difference in stored energy between the grains o and 3 on either side
of the boundary (Fig. 2.3). T is the absolute temperature, R is the ideal gas constant, k is the
Boltzmann constant and £ is the Planck constant.

This equation is a simple product of a number of factors. Firstly v is the frequency
with which the jump across the boundary is attempted, but this will not always be successful

because the atom must have sufficient energy to overcome the energy ); the probability of

Q

success is expected to be exp (—ﬁ) giving the overall rate of transfer of atoms from « to 3

). However, atoms may also undertake jumps across the higher

activation barrier Q4+AG from (3 to «, this will occur at a rate proportional to v exp (— Q-}%?G) .

as proportional to v exp <—%

Therefore the net flux of atoms (J) from «a to 3 is given by:

J=Ja—=p)-J(B— a) (2.13)
1= oo (2] - oo (- 252)] 210
1= von (-2) [i- o (-29)] 219
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Free energy

jac

A

-
|

Oc

B a

Fig. 2.3 Schematic of the free energy for atom transfer across the /3 interface

To convert this from a rate of atom transfer into a velocity simply requires multiplication by

the distance jumped by each atom as it crosses the boundary ¢, thus:

Q AG
T =45 vexp (_ﬁ 1 —exp T (2.16)
if AG is small then this may be approximated to:
o.v Q

The term multiplying AG is also known as the mobility M such that:

T = MAG (2.18)

2.3.2 Solute drag

Stainless steels contain large quantities of solutes, far in excess of those known to influence
grain boundary mobilities via a solute drag mechanism. The effect of small changes in solute
concentration are expected to be small when compared with the profound effect of solute
atoms on pure materials. Even a small amount of solute which segregates (or desegregates)
to the grain boundaries is enough to decorate that boundary and therefore dramatically slow

grain boundary migration. In fact, many authors simply ignore this effect completely (e.g.
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Sha and Bhadeshia 1997). However, there exists a mathematical framework to describe solute
drag developed initially by Liicke and Detert in 1957 for dilute solutions. This model has
subsequently been extended upon by Cahn (1962) and Liicke and Stiiwe (1963) and then
further extended by Bauer (1974), Hillert and Sundman (1976) and Hillert (1979) to account
for high alloy materials.

The Cahn-Liicke-Stiiwe (CLS) model is, to this day, the most widely accepted of all of the
models of the effects of solute on grain boundary mobility. It is the starting point for most
semi-quantitative modelling in this area.

The basis of CLS theory is that the energy of an atom at or near the boundary is different
in energy by a factor U,; to similar atoms in the bulk. It follows that there will be a force of
value dU,,;/d A, between the boundary and the solute atom, where A, is the distance between
the solute atom and the boundary. This force may be positive or negative depending on the
value of U,,. The total force on the grain boundary (F) will be the equal and opposite to the

sum of the forces on all the individual solute atoms interacting with that boundary, such that:

dU
F= sd 2.19
2 (2.19)

The result of this interaction is that an excess (or possibly a deficit) of solute builds up

in the region of the grain boundary, this is commonly referred to as an atmosphere. The
concentration of solute element z near a grain boundary (x,) within a material having an

average concentration x, of solute z may be calculated as:

Us
Xe = Xro €xp (_ k;) (220)

The variation of U,,;, F, and x, as a function of A ; are shown schematically in Fig. 2.4.

When a boundary begins to move the atmosphere of solute will, initially, be left behind
and hence will exert a retarding force on the boundary. As the boundary velocity increases,
this atmosphere will lag still further behind the boundary.

At low velocities, the relationship between the retarding force on the boundary (F, ., 4)

and the velocity is found to be:

T .
Freta'rd = M + IgéLSXxOT (221)

where M is the mobility as defined in the previous section, x, is the average concentration of
solute = and K, ¢ is a constant. It should be noted that the activation energy for boundary

migration () is dependent on the exactly how the diffusivity of the solute varies with A ; and
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-
Mgy

Fig. 2.4 Schematic variations of U, (a), F (b), and X, (c) with A , for a
stationary boundary. The dotted line on Fig. 2.4 ¢) illustrates the expected

shape of the curve if the boundary was moving from left to right. (after Liicke
and Detert (1957), Cahn (1962) and Liicke and Stiiwe (1963))

also how U,, varies with A ;. Both of these profiles must be assumed, Hillert (1979) has
demonstrated that choice of these parameters has a profound effect on the final results the
model gives. In the same paper, Hillert assumed that diffusivity was not constant across the

sample, but was in fact higher at the boundary than in the bulk. Using this approach the
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author found that the amount of drag expected was much lower than for diffusivity is assumed

to be constant.

At intermediate velocities, the retarding force is very difficult to calculate and most models
of this behaviour differ greatly in their predicted values. However, at high velocities i.e. when

the solute atoms can no longer keep pace with the boundary another limiting case is found.

T Xz,

F, ., =—+-—%0
retard M + I(éLST

(2.22)

where K%, ¢ is a constant
As might be expected for a situation where solute has no time to partition to the grain
boundary and the solute concentration profile remains flat, M and () remain at values which

approximate to those in a pure metal.

Cahn (1962) and Liicke and Stiiwe (1963) combined the models for low and high velocity thus:

F _ T KlpsXa, ¥
retard AL T 1 4 KL o K2 Y2

(2.23)

As expected, the retarding force is a function of boundary velocity, being zero at T = 0 and
increasing rapidly with increasing Y, reaching a maximum and then dropping off as T continues

to increase.

2.3.3 Zener drag

The previous section dealt with the interaction of solute in a coherent solid solution with
the motion of a grain boundary. A distribution of incoherent particles hinder can also the
motion of a grain boundary. If a spherical particle of radius r,_, is diametrically intersecting a

grain boundary then the total area of grain boundary will be reduced by 7r%_ . Hence the total
2

Zen- This means that it is energetically

energy of that grain boundary will be reduced by ~7r

favourable for particles to sit at the grain boundary and hence exert a retarding force.

Zener (originally reported by Smith, 1948) calculated the pinning pressure (F,,, ) due to
a random distribution of incoherent second phase particles as:
P, = S50 (2.24)
2r

where ¢, is the volume fraction of incoherent second phase particles. As reviewed by Nes et al.
other authors have tried to extend upon this original analysis, however, the essence of Zener’s

model remains the same.
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2.4 Nucleation

A generally accepted definition of a recrystallization nucleus (Humphreys and Hatherly,
1996) is: ‘a crystallite of low internal energy growing into deformed material from which it is
separated by a high angle grain boundary’. 7 Conventional nucleation theory supposes that the
nucleus is formed by random thermal atomic fluctuations. This is unlikely for the following
reasons:-

e the driving force for recrystallization is generally very small so that the critical size which
has to be generated by thermal fluctuation is so large that it can be optically visible. Such
large fluctuations are incredibly improbable;

e the interfacial energy of the required grain boundary is very high.

The actual measured nucleation rate is greater by a factor of approximately 10°° (Rollett,
1997) than that calculated by homogeneous nucleation theory. It is now generally accepted
that recrystallization nuclei consist of small pre-existing volumes within the deformed structure,
which are relatively free from defects. There are three predominant theories consistent with

this idea.

2.4.1 Strain induced grain boundary migration (SIGBM)

Strain induced grain boundary migration is a process by which a defect-free area at a high
angle grain boundary in the deformed microstructure, may bulge over into an adjacent higher
energy grain (Fig. 2.5).

If two adjacent grains ['; and ', have different stored energies per unit volume AG
and AG -, respectively, then there will be a driving force per unit volume AG gy =
AG 1 — AG p, for the lower energy grain (I'y) to grow at the expense of the higher energy
grain (I';). This can occur by a bulge forming as shown in Fig. 2.6.

For a nucleus to grow freely it must, at the point where it becomes hemispherical (Bunn et
al.1997), release more energy through creating new volume of recrystallized material than it
needs to consume to create the new interface between it and the unrecrystallized material. For
the geometry illustrated in Fig. 2.6, the interfacial energy associated with this capped region

(E'g) at the hemispherical condition is given by:

Eg =21 Ry (2.25)

i The term“high angle” may be misleading, since it is well known that for certain high
misorientation boundaries such as 3 = 3 coincidence site lattice, the boundary energy is low
and hence mobility is low. “High mobility” grain boundary would be a better term to use in

this context.
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g

Fig. 2.5 Optical micrograph showing strain-induced grain boundary migration

in aluminium (Bellier and Doherty, 1977)

[M1

Fig. 2.6 Schematic mechanism of strain-induced grain boundary migration

where Ry and L are as given in Fig. 2.6 and ~ is the surface energy per unit area. Therefore:

—= =8nRpgy

dRy

(2.26)

Also there has been a lowering of energy for the system because a section of low energy grain

(['y of energy AG 1,) has replaced a section of high energy grain (I'; of energy AG ;). This

will lead to an free energy change associated with the capped region G :

2
Therefore:
4G,
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where AG g;5pa is the difference in energy per unit volume between the two grains (i.e.

AGUFI - AG’UF2 ) .

For the bulge to grow it is necessary for 31%; % and hence
2
R ’Y

> e
B
AG(SIGBM

i.e. for the hemispherical condition:

2y

L> ——-7—7
AGsiaBm

(2.29)

(2.30)

This model has been extended by Bate and Hutchinson (1997) who postulated that during

boundary bulging from a low energy into a high energy region the sub-grain structure will be

“dragged” behind the advancing bulge as illustrated in Fig. 2.7.

energy grain (small sub-grains) dragging the sub-grain structure with it as it

bulges (adapted from Bate and Hutchinson, 1997)

High energy grain
(small subgrain size)

Grain boundary

\/Subgrain boundary

Lower energy grain

(larger subgrain size)
Fig. 2.7 Lower energy grain (larger sub-grains) bulging into an adjacent higher

This will tend to retard the bulging process. However this model can only be applied to

materials where a sub-grain structure exists (e.g. high stacking fault energy materials such as

aluminium).
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The reason that the substructure must be dragged along as the grain boundary bulges is
that behind the bulging grain boundary are a number of subgrains, each with a slightly different
misorientation. As the grain boundary bulges, the subgrains behind the advancing boundary
will also advance as illustrated in Fig. 2.7. These subgrains are, however, still misoriented with
respect to one another. It follows that it is geometrically necessary to have a boundary between
such subgrains. Hence, with each incremental grain boundary advance, a subgrain boundary
will form between the advancing subgrains. The authors of the paper drew no conclusions as

to the exact mechanism of the formation of this boundary.

2.4.2 Sub-grain coalescence model

In the SIGBM model the required “high angle” grain boundary is assumed to be present,
but in practice nuclei have also been observed to form in regions of the material located away
from grain boundaries. This observation can be explained by sub-grain rotation and sub-grain
boundary migration. In this model, several sub-grains coalesce to form a nucleus above a
critical size for abnormal sub-grain growth, the coalescence also leads to a large misorientation
so that the nucleus is bordered by a mobile grain boundary.

Subgrain rotation, which is a component of the coalescence process, is dependent on the
stability of sub-grain structures which determine the time taken for the creation of a nucleus
for a number of reasons:

Firstly, an array of sub-grains, separated boundaries having misorientations of less than
10°, is an intrinsically unstable microstructurei, but significant sub-grain growth will occur
only in the absence of fast growing, high energy, high angle grain boundaries.

Secondly, an array of grains/sub-grains separated by high angle grain boundaries will
undergo stable continuous growth if all grains/sub-grains are of approximately equal size.

This can be explained using the Read-Shockley equation (Read and Shockley 1950) for

energy of a low angle tilt grain boundary (v 4):-

6 6
Yoa= 'ya (1 —In 0—) (2.31)

m

where v and 6, are the values of boundary energy and misorientation when the boundary takes

on high angle characteristics (6,, is usually taken to be about 15°). This equation is based on

m

the assumption that the boundary consists of a wall of dislocations wherein the greater the

number of dislocations in the wall, the greater angle of tilt of the boundary.

i FEach subgrain boundary has an associated energy, the energy of the array will be min-

imised by growth and/or eradication of these boundaries
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This calculation omits one aspect of high angle grain boundaries. It assumes that at any
angle above about 15° the boundary can be considered as ‘high angle’ and hence mobile. But
for certain well defined orientations there will be a good fit between adjacent grains. This
occurs at low values of coincidence site lattice parameters (Reed-Hill and Abbaschian, 1994).
This means that strictly the terms “high angle grain boundary” and “high mobility grain
boundary” are not necessarily interchangeable.

By inspection of Fig. 2.8, which is a graphical illustration of equation (2.31) , we see
that a boundary of angle 5° has an energy (as a fraction of the high angle grain boundary
energy) of 0.700. If we consider two grain boundaries, both initially having a misorientation
of 5° the average normalised energy of these boundaries will also be 0.700. If a number
of dislocations migrate from one boundary to the other, then sub-grain rotation will occur.
Consequently, the misorientation angles of both boundaries will change. A rotation of 1°,
changes the misorientations of the above two boundaries to 4° and 6°having boundary energies
of 0.619 and 0.767 respectively, giving an average energy of 0.693. The rotation is thus favoured
by a reduction in energy of 0.007. However, the activation energy for a dislocation to migrate
across the grain boundary may be quite high (c.f. in heavily worked materials, the yield stress
may go up beyond much as 400 MPa making dislocation motion difficult) and therefore this
process will be slow. Moreover, if the initial boundaries to have a misorientation of 10°, the
energetic advantage of dislocation migration to form two boundaries at 9° and 11° would only
be 0.003. This means that sub-grain rotation time increases as the average misorientation

angle increases.

0.0

0 5 10 15 20
Tilt angle® /degrees

Fig. 2.9 Graph showing the variation of the normalised value of grain bound-

ary energy as a function of misorientation across a low angle grain boundary
(adapted from Read, 1953)
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In a Monte Carlo model by Hayakawa and Spuznar (1997), the nucleation process was
based upon sub-grain rotation as described by Li (1962). Nucleation was permitted only near
the grain boundaries and a total of five sub-grains were deemed to coalesce during the forma-
tion of the nuclei. It was possible to estimate the recrystallization texture, assuming that the
grains have different values of stored energy proportional to their Taylor factor (experimental
data suggests that an adjustment should be used for large Taylor factors where this relationship
breaks down). Hence, certain grains with a higher Taylor factor will have higher dislocation
densities than others and thus smaller sub-grain sizes. These smaller sub-grains will coalesce
more quickly, since the diffusion distance is relatively small. It follows that nuclei derived
from heavily deformed material will dominate the recrystallized structure. It should, there-
fore, be possible to predict not only the fraction recrystallized but also the texture following

recrystallization.

2.4.3 Preformed nucleus model

There is no generally accepted definition of what the “preformed nucleus model” phys-
ically means. Many authors take this to encompass any model where classical nucleation is
not occurring e.g. Humphreys and Hatherly 1996, who suggest that recrystallization nuclei
must originate from the deformed microstructure since the recrystallized texture is related to
the original texture (e.g. Hutchinson 1998). This approach would therefore consider SIGBM
and sub-grain coalescence as subdivisions of the preformed nucleus model. In this disserta-
tion, the preformed nucleus model will be used to describe the theory that there are certain
“non-deformed” (or lightly deformed) volumes within the deformed microstructure which upon
annealing are free to grow.

Cahn (1949), was the first to postulate the nucleus to be a single sub-grain having at least
one high mobility grain boundary and also being sufficiently large as to have an energetic ad-
vantage over its neighbours and hence to grow at their expense. Doherty (1974) illustrated that
the major problem was finding out why exactly one subgrain should suddenly grow abnormally
at the expense of the surrounding material. He also showed that for a moderately deformed
aluminium showing a subgrain size of 1 um, the final observed grain size after recrystallization
was 100 ym. This means that only 1 subgrain in a million makes the transition from a subgrain
to a recrystallization nucleus.

There is little evidence to suggest that there are viable nuclei already present in a deformed
structure and no modern literature that supports this view. Furthermore, the preformed
nucleus model is directly contradicted by the observations of several others (e.g. Anderson

and Mehl 1945) who observed an incubation period before which nucleation was not apparent,
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hence a pre-existing viable nucleus could not be present.

Moreover, others (Hayakawa and Spuznar, 1997 and Li, 1962) assume that the smaller
sub-grains will form the new nuclei via coalescence; the smaller the sub-grain, the smaller the
diffusion distance for dislocations and hence smaller sub-grains can coalesce more easily. This
means that for a sub-grain to form a recrystallization nucleus, it must be in a region where
no larger sub-grains exist, otherwise its growth might be stifled. This would imply an area of
high dislocation density build-up, e.g. grain boundaries and transition bands, having a smaller
sub-grain size is more predisposed to sub-grain coalescence and hence nucleus formation (see
Fig. 2.10). This is borne out by experimental observations and therefore also suggests that a

single large subgrain will not make a viable recrystallization nucleus.

Grain 1 Grain Boundary Grain 2

/
| /

*subgrain

NLcIeus subgrain

Fig. 2.10 Schematic drawing of nucleus forming from small sub-grains (Haya-

kawa and Spuznar, 1997)

2.4.4 Accuracy of models

It is widely accepted that modelling the nucleation process is the most difficult and con-
tentious part of the modelling of recrystallization. Unlike growth calculations, there is no single
model, or even family of models, which is generally accepted to be physical and to be a good
fit to experimental data. There is a lot of literature debating which of the models illustrated
in this section (if any) is the most generally applicable. This has been summarised and further

elucidated by Hutchinson (1992).

2.5 Overall transformation kinetics

Many models use the KJIMA or Avrami equation. This starts with the calculation for the

volume of a grain (v_3) nucleated at time 7 and growing in three dimensions is given as:

vy =YY, (t—1)° (2.32)
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where f is a shape factor, which in conjunction with anisotropic growth rates, describes the
geometric shape of the growing grain. For ellipsoidal grains the value of f will be %ﬂ', and
f = 16 for cuboidal. These are derived from the fact that the ‘radius’ of the growing grain in
the z direction will be (T, x (¢t — 7)), where T is the growth rate in the z direction, 7 is the
incubation period prior to which the grain has zero volume, t is the time into the annealing

process.

For a recrystallizing thin foil of thickness much less than the typical diameter of a growing
grain, the value of v_; which represents the volume in three dimensions is not valid. For a thin
foil the majority of the growth occurs in two dimensions, therefore the calculation for volume
can be approximated to a disc of thickness ¢ and radii Y (¢t — 7) and T, (t — 7) in the z and y
directions respectively, i.e. 2-dimensional recrystallization, where ¢ is the thickness of the foil.

Thus the volume of a grain is given by:
Vg = [Y,T,0(—T)° (2.33)

where f for an elliptical plate is 7, this is by analogy with the simple equation for the volume
of a circular disc: v = d7r? if r is taken to be Y (¢ — 7). Similarly for a thin wire of diameter &

(1-dimensional recrystallization) the volume of a grain becomes :
vy = f80, (t—71) (2.34)

where f for cylindrical grains is 7/2, similarly by analogy with the volume of a cylinder
v_1=m(8%/4)l where [ is the length of the grain in the direction of the wire.

Particles growing from different regions must at some point impinge. This means that the
actual volume transformed will be less than the sum of the volumes of particles growing as
if there were no impingement. The latter sum is known as an ‘extended volume’ (V) which

arises by letting transformation occur throughout the specimen, ignoring the presence of any

previously transformed regions. Assuming a constant nucleation rate, V! is given by:

i
V!= [ NVfY,T, T, (t-7)%dr (2.35)
=0
where N is the nucleation rate per unit volume.
Extended volume must now be converted into the true volume. The probability of a
volume element falling in untransformed material is simply (1 — V'/V) where V is the total

volume of the sample and V' is the true volume transformed. Therefore:
dv' = (1-V'/V)dV! (2.36)
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By invoking the definitions

V! V!

‘—/:C and ‘_/:Ce

C, is the extended fraction transformed it follows that:

ac=(1- e, (237
hence:

/ d¢. = / (2.38)

—In(1- C) (2.39)

using the boundary conditions that at {, =0, { = 0, it follows that:

~In(1-¢) = fY, T, T / (t —7)3Ndr (2.40)
T=t
C=1—exp{ — / N (fY, Y, Y. (t—71)%) dr (2.41)
7=0
(=1—exp {—fTIT,yTZNt“/AL} (2.42)

For two-dimensional growth e.g. thin sheet this gives:
(=1-exp {—fTrTycSNtS/:%} (2.43)
and for one-dimensional recrystallization:
¢=1-exp{—fr,8Ne*/2} (2.44)

On the other hand, when a constant number of pre-existing nuclei is considered then the time
exponent in each case is reduced by one. This is because all the particles start growing at time

Zero:

¢(=1—-exp(—fN,T,T,T,1) (2.45)
where NV, is the total number of nuclei per unit volume.
Equations (2.35) through to (2.38) are members of the family of equations known as
“KIJMA” or “Avrami” theory. The whole family is often referred to in its general form:
1 — (¢ =exp(—ky4,t") (2.46)
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or

In [ln (ﬁ)] =nlnt+1Ink,, (2.47)

where n and k,, are governed by the details of nucleation and growth. With the above

assumptions, values of the ‘Avrami exponent’ n between 3 and 4 are expected for bulk samples.

2.6 Applicability of overall transformation kinetics

The “KJMA” family of equations have provided the theoretical framework for the major-
ity of kinetic models for recrystallization produced to date. At least one of these equations
has been quoted in the majority of papers in the literature about kinetic modelling of phase
transformations since 1939. The KJMA approach provides an easily adaptable mathematically
simple solution which has been proven to have a great deal of predicative power.

The applicability of this approach is not limited to the study of recrystallization. It is
obviously applicable to any reaction a— 3 where there is no chemical difference between «
and . The approach has been extended successfully to account for components of different
compositions and even multiple components growing simultaneously (Jones and Bhadeshia,
1992).

However, the published data indicate that some of the assumptions inherent in the ap-
proach are invalid. By studying experimental data graphically using equation (2.47)i it is seen
that the value of the ‘Avrami exponent’ n is rarely 4, more usually lying between 1 and 2. For

the alloys specified in Table 2.1a, the spread of data is summarised in Table 2.2bj .

Reference C Si Mn P S Cr Mo Ni Cu N Al Nb Ti Ag O,y Balance
Hutchinson €t al. (1989) - - - - 0011 - - - - - - - . 0018 - Cu
Hayakawa & Spuznar (1997) .0036 - .2 - .008 - - - - .003 0.51 .005 .067 - Fe
Sandberg & Sandstrom (1986a,1986b) .017 .4 1.44 .012 .013 17.6 4.4 12.8 .025 .19 - - - - - Fe
Speich & Fisher (1966) .019 3.27 .083 .12 - - - - - .006 - - - - .016 Fe
Tsuji el al. (1994) 002 .15 .18 .012 .003 18.6 - - - - - - - o . Fe
Andersin & Mehl (1945) - .008 - - - - - - 022 - - - .002 - - Al

Table 2.2: a) Compositions of steels from the literature (wt%).

The only data to give a value for n between 3 & 4 are those by Anderson and Mehl
(1945). The specimens were produced by elongating 5.1% in tension. However for all other

quoted papers the mode of deformation is known to be rolling, where the applied true strain

I Plots of In (In (1/ (1 —¢))) against In () are commonly referred to as ‘Avrami plots’
i For all papers data were obtained using a point counting method, except in the paper by
Hayakawa and Spuznar (1997) where the exact method is not specified.
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Reference Material Avrami exponent (1) Rolling Reduction(%)
Hutchinson ef al. (1989) Copper 2.67% to 1.76™* 80
Hayakawa & Spuznar (1997) Steel 1.56 93
Sandberg & Sandstréom (1986a,1986b) Austenitic stainless steel 1.10 ‘wrought’
Speich & Fisher Si steel 2 unknown
Tsuji et al. (1994) Ferritic stainless steel 1.28 70
Anderson & R Mehl (1945) Aluminium 3.5 unknown
Hutchinson et al. (1973) Copper-Gold 1.3 to 2.1 90

Table 2.2: b) Table of different experimental ‘Avrami exponents’ n measured
for different materials after differing amounts of deformation.

*for a small grained (15 ;Lm) parent metal

**for a large grained (50/Lm) parent metal

2.5

418c  388C
nN=s19 n=2.1
= 1.25
V
=
5 0.00
<
< -1.25
| = |

-2.50
0 2 4 6 8 10 12

In (time/seconds)

Fig. 2.11 ‘Avrami Plot’ of data from Hutchinson et al. (1973)

is much greater, in the range —1.2 to —2.7 compared with the tensile strain of 0.05 used by
Anderson and Mehl. It may be the case that the more severely deformed rolled samples show

greater inhomogeneity of nucleation behaviour during recrystallization*.

2.6.1 Application of overall transformation kinetics

There have been a large number of models based on overall transformation kinetics pro-
duced since the publication of Kolmogorov’s original work. There are also a number of review

papers (e.g. Humphreys 1997, Speich and Fisher 1966, Doherty et al. 1997, Bhatia 1997,

*  Features such as ‘transition bands’ which are regions of localised very high strain have

been linked with nucleation c.f. §2.4. Such features are only present in materials which have

undergone severe deformation.
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Rollett 1997, Bhadeshia 1997, Carr 1997) concentrated on this area.

There are very few models present in the modern literature literature which apply overall
transformation kinetics physically and directly. Omne such model is by Sha and Bhadeshia
(1997) where the authors model the recrystallization behaviour of mechanically alloyed iron
and nickel-base materials. Some success was achieved in predicting the final grain size as a
function of the recrystallization start temperature. However they presented no data relating
to fraction recrystallized as a function of time, therefore the model they produced, which was
semi-physical with an Avrami exponent n of 4, was never fully tested.

Another example of a directly applied overall transformation kinetics model was given by
Nes et al. (2000). In this work the authors studied an aluminium-magnesium-manganese alloy
and used the assumption that nucleation was random and that site saturation was occurring
(experimental evidence for the validity of these assumptions was given by Daaland and Nes,
1996). The authors used an advanced method for calculating the nucleation rate from the
deformed microstructure and also thereby predicting the texture of the final recrystallized
product. The equation to describe the variation of fraction recrystallized with time was given

as:

4
(=1—exp (—%NTMN%T%?’) (2.48)

wherein Ny, n., Was the total number of nuclei per unit volume (taken to be constant) and
was a complex function of the availability of different nucleation sites.

There was some success in modelling recrystallization texture, however, only in a small
fraction of the illustrated  against ¢ curves is a satisfactory fit observed. The experimental
curves were usually displaced significantly from the theoretical curves on the time axis and
when theoretical curves and experimental evidence did happen to coincide, often the slope of
the experimental curve did not have the expected gradient. This would imply that the value
of n enforced on the system was incorrect.

In the great majority of the literature published since the 1970s, overall transformation

kinetics has been treated as an empirical function based loosely around equation (2.46):
1 —( =exp(—k,t") (2.46)

where k4, and n are treated as empirical fitting constants. Examples of this type of modelling
are present in a large number of papers. One good example of such behaviour is given in a
paper by Barraclough and Sellars (1979). Here the authors do not attempt to relate the values

of k4, and n to physical parameters such as growth rate of nucleation rate, they do however
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comment on the empirical values of n calculated being between 1 and 2 and therefore having
physical meaning.

Sandberg and Sandstrém (1986a,1986b) studied three different stainless steels (AISI 316L,
AISI 316LN and DIN 1.4439). Similarly to the previous authors, they did not seek to phys-
ically justify %k ,, and n, however their empirical overall transformation kinetics type model
predicted the annealing data well. They also relate strain and differences in deformation his-
tory to variations in physical properties such as hardness as a function of annealing time and
temperature. The model produced gives satisfactory results, however scatter in the data is

very large. All equations given within this work were empirically derived.

In the paper on recrystallization of copper by Hutchinson ef al.(1989), an empirically
derived overall transformation kinetics type equation is given in a similar way to the papers
by Sandberg and Sandstrém (1986a,1986b). Hutchinson et al. also study the variation of the
driving force as the reaction progresses. It is clear from the discussions in the literature (e.g.
Hutchinson 1992) and in §2.4 that it is energetically favourable for nuclei to form in highly
strained portions of the deformed microstructure. The existence of inhomogeneity on the
microstructural level after heavy deformation as is backed up by experimental observation.

Included in Fig. 2.12 is on optical micrograph of a 70% cold rolled type 302 stainless
steel etched with Calling’s reagent. The etch has preferentially attacked the more heavily
deformed grains. This illustrates the fact that dislocation density and therefore driving force

for recrystallization (c.f. §2.2.2.2) is not evenly distributed across the microstructure.

Vs 'l L 7 PVE Y ..!_ h " - ."’t T ¥ \ 9
Fig. 2.12 Sample of a 70% cold rolled type 302 stainless steel etched with
Kalling’s reagent. This sample shows clear regions of heavy and light defor-

mation. (Hopkin, unpublished work)
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This work is further reinforced by microhardness hardness measurements of the light and
dark grains. It was found that the average hardness (measured as a Vickers hardness with a
load of 200g) for the light grains was 372 HV (£24 HV) compared with a hardness of 461 HV
(£35 HV) for the darker grains (Hopkin, unpublished work). When these numbers are applied
to equation (2.11) we see that the driving force for recrystallization in the light grains is only
65% of that for the darker grains.

Similar differences have led Hutchinson et al. (1989) to conclude that it is highly dubious
that kinetic parameters derived from conventional analysis have physical meaning. To coun-
teract this they have assumed that driving force for recrystallization (AG) is a function of time
(t) and fraction recrystallized ({) such that:

d¢ dAG

T (249)

This analysis is therefore capable of dealing with variation in AG from preferential recrys-

tallization of most highly deformed areas and also from recovery.

2.7 Cahn-modified overall transformation kinetics

All of the models described above have been applied to recrystallization neglecting the
fundamental observation that nucleation does not generally occur at random. The grain bound-
aries of the original microstructure play a vital role as recystallization sites. As we will see
later such sites may become saturated with nuclei and hence expect variations in the Avrami
parameters as recrystallization progresses. One of the first papers to discuss the variation of n
with time was by Cahn (1956), reviewed by Christian (1975), treating heterogeneous nucleation

at grain boundaries, edges or corners.

2.7.1 Mathematical description of Cahn-modified overall transformation kinetics

Consider a plane P, of area O°. An extended area transformed O can be defined as; the
area of intersection on plane P, of extended recrystallizing grains located at a distance g from
the plane. Taking the real area of recrystallized material in the plane to be O”, and assuming
the intersections are randomly positioned, a fraction (1 — OP/OP) of the elements that make
up dO? will also contribute to dO?, where dO? and dOP are increments in area over a time
increment dr. Hence:

dOf = (1 - 0" /0" d0? (2.50)

That is:
OP/0 = ~In(1 - 0P/0%) (2.51)
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For the physical boundary condition that when Of = 0 then OF = 0.

For a grain growing isotropically with a boundary velocity T and which has nucleated at
a time 7 and at a distance g from the plane of interest, the area of intersection is given by
m{T%(t — 7)% — 0?} for Y(t — 7) > o. For a time increment §7, for any given plane on which

nuclei are forming at a rate Ny the rate of change of OF will be:
dOP = rOPN{T%(t — 7)* — p*}dr (2.52)

Integrating this in 7 from 7 = 0 to ¢ or equivalently from 0 to (¢ — ¢/T) and introducing the
variable = = p /Yt such that:

TOP N Y213 (1 — 322 4 223)
3

= (2.53)

for = > 1 and zero for = < 1.
Hence if we treat p as a variable taking any value between oo and initially assuming that

nuclei from neighbouring grain boundaries do not interact with each other, we see:

[o'e} 1
V= / OP.dp = 2Tt/{1 — exp(—0P)}dE (2.54)
0=—00 0

T3
= 20" (—) B(a?) (2.55)
Npg
where:
aP = (NgY?)5t (2.56)
and:

£B(aP) = aB/ [1-exp{(-3) (@0 - 32 4 22%)}] dz (2.57)

If a large number of boundaries is considered such that the total area of boundaries is 08 =
Y0, and substituting OF in the above in place of O an expression for the extended (not true)
volume can be produced. This is because impingement between grains on the same boundary
is accounted for and no account has been taken of impingement between grains growing from
different boundaries. Thus as before invoking the relationship between true and extended

volume:
V= V'In(1-¢) (2.29)
Thus:
¢=1-ew {077 70" (2.58)
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Where: )
Npg

pB= B ___
{8(vOP)*T}

(2.59)

in which YO® is the grain boundary area per unit volume. This has two limiting solutions,
firstly when a? is very small:

(=1-exp (W) (2.60)

which is exactly the same as the “KJMA” (“Avrami”) equation. And secondly at large a® the

solution is:

¢ =1—exp(—2"0BTt) (2.61)

Bearing in mind that a? = (NBT2)1/3t, that is a® is time dependent, it becomes possible for
the value of n, the Avrami exponent, to change during the course of the transformation. In
practice however, due to competition between NB and T it is rare to see slopes corresponding
to both n = 1 and n = 4 on the same Avrami plot. Measurements are generally only possible

for ( = 0.01 — 0.99.

2.7.2 Application of Cahn-modified overall transformation kinetics

There have been surprisingly few papers describing models of Cahn modified overall trans-
formation kinetics . This may be due to the lack of a non-numerical solution to the problem,
meaning that to use this approach a great deal of computing power needs to be available.
This has not been the case until quite recently and current computer capability explains a
resurgence in the use of this approach. Two of the latest papers on the subject were given by
Hopkin and Bhadeshia (2000, described in chapter 6) and Vandermeer and Rath (2000).

The former of these illustrates an entirely physical model of recrystallization in a type 302
stainless steel annealed under laboratory conditions. The models were made anisothermal by
using the Scheil rule (this will be expanded upon in §6.4.1). The degree of fit obtained was
satisfactory although the error bars present in the dataset were large and only one particular
grade and one rolling reduction of stainless steel was studied. However, although simplistic, this
paper demonstrates the power of the Cahn-modified overall transformation kinetics approach in
producing physically meaningful accurate models of recrystallization. The model also indicated
that site saturation was occurring and that the final number of nuclei present in the sample
was a function of the annealing temperature.

The latter of these two papers also produced a model directly from Cahn-modified overall

transformation kinetics. The data for this model were taken from a microstructural path model
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calculation (see §2.8), from a 0.06 wt% nitrogen doped single crystal of iron and an undoped
single crystal of iron. This model also illustrated that site saturation was occurring and that
the final number of nuclei present in the sample was a function of annealing temperature. It too
managed to explain all the available data with a good degree of fit using an unaltered Cahn-
modified overall transformation kinetics model. However, the mathematics of the equations
used to model nucleation and growth are not given and therefore this cannot be referred to
as a totally non-empirical model. This work further illustrates the power of Cahn-modified

overall transformation kinetics in describing the kinetics of recrystallization.

2.8 Microstructural path model

There has been interest in the calculation of the interfacial area between recrystallizing
grains and unrecrystallized grains. This forms the basis of the microstructural path model,

first proposed by Speich and Fisher (1966), leading to the equation:

S, =K, ;¢(1-) (2.62)

where ( is fraction recrystallized, S, is the interfacial area per unit volume between recrystal-
lized and unrecrystallized grains and K, is a constant. This function was derived empirically
by comparison with experimental data. However, Cahn (1967) pointed out that it is im-
plausible in terms of the nucleation and growth structure because at ¢ = 0 the first grains
recrystallizing would have to come into existence at a relatively large size, and subsequently

not grown very much. Hence Cahn-modified the equation to give:
8, = K¢ (1= () (2.6

The above equations are both symmetrical about ¢ = 0.5 (see Fig. 2.13). However, this
symmetry is not reflected in the experimental data. Vandermeer et al. (1991,1995) have

attempted to provide a better model, with:-
S, =K, * (2.64)

where ¢ and K, are highly complicated functions of nucleation and growth. This development
however provides only a minor improvement in the fit with experimental data, well within the
scatter of results.

This work has been further expanded upon to relate observations to number of grains

present per unit volume. (Vandermeer et al. 1991,1995)
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Fig. 2.13 Graph showing variation of S, with ¢ from both Speich-Fisher and

Cahn equations

2.9 Monte Carlo modelling

Currently, a popular method of modelling recrystallization is by the use of Monte Carlo
models. These involve a simulated grain structure consisting of an array of discrete points,
each of which is assigned an integer corresponding to an “orientation”. Adjacent points having
identical values are part of the same grain whereas adjacent points with different values are
separated by a grain boundary.

The name Monte Carlo comes from the use of a random number generator within the
program. This is used to reassign the identifying integer for each cell. The resulting change in
‘energy’ associated with changing this number AG . is then calculated by considering the total
area of grain boundary. If the energy of the system is reduced then this change is accepted.
Otherwise the change is accepted with a probability of exp(—AG,,./RT). Hence in general
the system will move towards its lowest energy state, but small perturbations from this energy
minimisation process are still possible.

Extending this to recrystallization requires a nucleation frequency and an activation energy
for nucleation, together with a difference in energy between the recrystallized and unrecrystal-
lized grains.

There has been extensive work done in this area, notably by Srolovitz et al. (1986,1988),
Rollett et al. (1992) and Hayakawa and Spuznar (1997). Srolovitz et al. and Rollett et al.
consider only recrystallization in two dimensions and start with an isotropic microstructure.

This gives a value of the Avrami exponent n for specific assumptions about nucleation and
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growth, for example. For the two-dimensional ‘samples’, a constant number of nuclei gives n =
2 as expected. One interesting point is that the exponent does not stay constant throughout
the simulation; it can be smaller for initial stages of growth, where the surface to volume ratio
is very much higher than for the average grain. This value of n also deviated towards the end

of the simulation.

The model by Hayakawa and Spuznar (1997) used a three-dimensional array of ‘rolled’
Voronoi grains elongated in a way so as to mimic the structure produced by rolling of sheet

steel. The calculated value of n was 1.77 as compared with the experimental value of 1.56.

However, there remain some difficulties with Monte Carlo methods. Firstly the grain
structure has to be assigned using some artificial construction as in Fig. 2.14 (e.g. Voronoi

tessellations).

1 1 7 9 9 4 4 4 5

3 7 7 9 9 4 4 4 5
3 3 7 9 9 9 4 4 5

3 3 7 8 8 8 8 5 5
3 3 3 8 8 8 8 8 5

3 6 6 8 8 8 8 8 5
3 6 6 8 8 8 8 8 8

Fig. 2.14 Tllustration of a typical Monte Carlo ‘grain structure’

This will require either a large number of measurements with the results then entered
into the computer or, alternatively, an idealised structure has to be assumed. Real time
measurements of the evolution of the structure are not possible since the progress of the
transformation is measured in Monte Carlo steps (MCS), one MCS being one iteration through
changing the value of a lattice point and calculating its stability. Quantitative values of inter-
facial energy and activation energies cannot be calculated, because the lattice of points used
does not correspond to a lattice of atoms, this means that Monte Carlo modelling is not kinetic
or physical modelling in the true sense. The method is also particularly computationally
intensive. This said, the results produced appear to be a very good representation of the

actual observed microstructures.
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2.10 Conclusion

Most investigations into recrystallization kinetics rely on KJMA type calculations treated
either physically or empirically. Physical, unmodified overall transformation kinetics models
do not give a good fit with experimental evidence, the values of the Avrami exponent n being
between 3 and 4 by calculation as compared with 1 and 2 by experiment. Cahn (1956) modified
the Avrami theory for heterogeneous nucleation at grain surfaces. This equation has no non-
numerical solution and has rarely been applied.

It will be demonstrated in this dissertation that Cahn-modified overall transformation

kinetics can be applied to recrystallization so as to solve these discrepancies.
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CHAPTER 3

EMPIRICAL MODELLING

The definition of the word “empirical” as given in the Oxford English dictionary is:

Empirical adj 1 based or acting on observation or experiment, not on theory.
2 Philos. regarding sense data as valid information. 3 deriving knowledge from

experience alone.

The distinction between an purely empirical model and a purely physical model is therefore
that the latter is based upon a fundamental understanding of the underlying process which is
being modelled, whereas, the former simply examines the available data and infers knowledge

of the behaviour of the system from there.

3.1 The need for empirical models

The development of a new material requires an extensive understanding of how process-
ing and other factors will affect the properties of the final product. Although in some cases
good theoretical models exist, there remain numerous problems for which a quantitative un-
derstanding does not exist. In fact many essential engineering properties, because of their
complex dependencies on a large number of variables, cannot yet been predicted in any useful
way (Table 3.1).

The current lack of quantitative models arises because such properties are dependent
on large numbers of inter-related variables. Although the trained metallurgist possesses a
qualitative understanding of many of these problems (e.g. a chaotic microstructure will lead
to improved toughness due to crack deflection), these are experimental observations and not
easily expressed quantitatively.

Whenever the complexity of a system becomes overwhelming from a fundamental per-
spective and simplification of the problem is not useful, pattern recognition techniques can be

extremely rewarding. A good model must satisfy a minimum of two criteria:

1) It must describe experimental observations with as few arbitrary parameters as possible
(i.e. it must follow Occam’s razor, the principle that unnessicarily complex models should not

be preferred to simpler ones).

2) It must make predictions that may be experimentally verified.

Conventional empirical models satisfy the second criterion, but only partially satisfy the
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Property Relevance
Yield strength All Structural application
Ultimate tensile strength All structural applications
YS/UTS ratio Tolerance to plastic overload
Elongation Resistance to brittle fracture
Uniform elongation Related to YS and UTS
Non uniform elongation Related to inclusions
Toughness Tolerance to defects
Fatigue Cyclic loading life assessments
Stress corrosion Slow corrosion and cracking
Creep strength High temperature service
Creep ductility safe design
Creep-fatigue Fatigue at creep temperatures
Elastic modulus deflection, stored energy
Thermal expansivity Thermal fatigue/stress/shock
Hardness Tribological properties

Table 3.1: Mechanical properties still to be expressed by quantitative models
(Bhadeshia 1999a)

first. There is no reasonable way of judging, in a conventional empirical model, as to how

many of the parameters are arbitrary since the underlying science is not known.

3.2 Linear regression models

Historically, linear regression has been a popular and useful method where data are best-
fitted to a linear relationship. That is, an equation is produced to describe a required output
y, as the sum of inputs z, each multiplied by a weight w, plus a bias 6,y such that y =
>, w;z;+60; p. An example of this is the bainite reaction-start temperature Bg in steels which

may be given as (Steven and Haynes 1956):

Bg(°C) = 830 —270 xcp —90 Xy, —37 Xens —T0 X, —83 Xpp, (3.1)
fLr wc Whln WNi we WMo

where ¢; is the weight percent of element 1.
This equation assumes a linear relationship between Bg and ¢;, and that there is no

interaction between different elements. This is unlikely to be the case because, for instance,
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molybdenum is a strong carbide former and therefore there must be interaction between ¢,
and c;,, . Therefore any method of regression will suffer because the structure of the equation
must be chosen before the analysis and any one structure, although it fits experimental data

well in one region of input space, may not in others.

3.3 Non-linear regression

To improve on linear regression, it is necessary to increase the flexibility of the regression
models but, at the same time, avoid fitting the model to the noise in the data as well as the
trends.

Given a suitably flexible function and framework of model, non-linear regression models
have the potential to contain a number of internal fitting parameters that tends to infinity.
This is because the more internal fitting parameters we have the more potential for flexibility
there is in the model and an infinitely flexible model will always fit a given dataset perfectly.
A highly flexible function, when modelling a noisy dataset, may model the noise in the data.
This phenomenon is called ‘over-fitting’.

Assuming that all input parameters are precise, the fit of the model may be evaluated by

comparing the predicted values (y;) with the measured values (t;) e.g. :
2
Epoc) (t—y;) (3.2)
J

In general, as the complexity of the model increases the fit of the model gets better and
therefore F/j; will reduce. To check for over-fitting, the dataset is split into two parts, the
training and test datasets. The former is used to create a model and the latter to test how any
particular model generalises to unseen data. The model calculates E, for the test dataset,
which it has not previously seen, as the complexity of the model increases E, will initially
decrease in value, when over-fitting starts to occur £/, will start to increase. This is illustrated

in Fig. 3.1.

3.4 Bayesian probability theory

The derivation described in the previous section provides a useful qualitative comparison,
but over-parameterised models which randomly happen to fit the test data well will also be
favoured by this method. This contravenes Occam’s razor, therefore a more rigourous method
of model comparison is needed. Bayesian probability theory is the mathematical framework
which makes this possible.

Bayesian probability was first conceived by Bayes (1763) and Laplace (Stigler, 1986) and
developed by Jeffreys (1939). Bayes’ law assigns probabilities to different models describing
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E,Training data

Error

=
Test data

Complexity of Model

Fig. 3.1 Schematic of variation of E/j; with model complexity

the plausibility of each model ;. Each model makes predictions about how likely a dataset D
is, given the model #; is true. These predictions describe a probability distribution P(D|H,)
(the probability of D given #,). If the dataset D is the actual experimental dataset, the
plausibility of #,; given D (P(#,|D)) is the product of P(#,) the plausibility of the model
before observing the dataset and P(D,|#,;). Mathematically this is given as:
P(H;) x P(DIH,;)

P(D) .

P(D) is included as a normalising constant to ensure P(7;|D) sums to unity over the input

P(#,|D) =

(3.3)

space.

For a given model H,; predicting a data-point R the accuracy of the prediction is modelled
as a probability distribution P(R|#;) (the probability that the point R is correct given ;)
known as the evidence for R.

A data-point R will exist somewhere within the range of possible outputs of the model
H,i. Therefore if the model H,; has a vectorial set of internal weights and biases w which exist
over a range of values w__ to w, ., the integral of P(R|#;) from w__ to w_  is unity.
That is, finding R somewhere within the range of possible outputs of #; is certain.

If the model fits the data well, the value of the evidence will peak sharply at R. If the
model does not fit well, this peak will be broader with a lower maximum value. A well-fitting
model can therefore be distinguished as having a high peak in the evidence.

Implausibly complex models will always fit data. However, such models will contain a

large number of arbitrary fitting parameters. P(R|7;) must be unity when integrated across

7 If a model is incapable of predicting a data-point R it will have a zero value of P(#,)
and therefore will be disregarded by Bayes’ law
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all of these parameters, the greater the number of parameters to integrate over, the more
spread out the unit of probability will become thus decreasing the height of the peak in the
evidence.

Therefore the height of the evidence peak not only penalises badly fitting models but also
over complicated models. This Bayesian treatment is a quantitative embodiment of Occam’s
Razor.

To train a model #;, the program must infer what the model’s parameters w might be
given the data set D. Using Bayes’ rule the plausibility of a model H; given a dataset D is:

P(Dlw, H,) P(w|H,)
P(DI#H,;)

P(w|D,H,) = (3.4)

The normalising constant P(D|H,) (the probability of D given all values of 7, also known
as the evidence for 7;) in this case is commonly ignored since it is irrelevant to the choice of
w. Gradient based methods are used to locate maxima in the value of P(w|D,H,) , which
define most probable values for the parameters (w,,p). P(w|D,H,), known as the posterior
probability, can therefore be summarised by w,,;p and error bars on these parameters. These
error bars are obtained by analysis of the curvature of the posterior. Flat posterior probability
curves give large error bars as the values of w,,p could lie anywhere at the bottom of the
probability well. Conversely, sharp posterior curves mean the value of w,,p are well defined,
and therefore errors in w,,, will be small. Error bars in the predictions are a combination of
the error in w and the perceived noise in the data o,,.

If a model is trained on a dataset D of experimentally obtained results ¢, for a given
set of input parameters z,,, for each value of ¢, a model can produce an predicted output
Y, (2,,). Assuming there is noise in the dataset D and that the model is correct, the values of

t,, will lie scattered about the model values y,,(z,,). Such that:

v,, is conventionally a zero mean Gaussian noise of standard deviation o,. o, is calculated
by consideration of Bayes’ law, however, due to the complexity of the problem, it will not be

expanded on in this work; a comprehensive derivation has been reviewed by MacKay (1992).

3.5 Neural network computational structures

A ‘neural network’ is a method of non-linear regression as introduced in §3.3. Neural
networks have been used successfully in modelling numerous materials science problems (e.g.

Narayan et al. 1999, Garvard et al. 1996, Brun et al. 1999, Lalam et al. 2000, Cole et al.
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Fig. 3.2 Schematic of linear regression analysis of fraction recrystallized of

the general form y = Y, w;z, + 0,

1999, Bhadeshia 1999b, Svensson and Bhadeshia 1998). Fig. 3.2 represents a linear regression
analysis of the recrystallization process, wherein furnace temperature T, and annealing time ¢
are the inputs to predict the output of fraction recrystallized (.

This treatment of recrystallization would be grossly inaccurate since the linear form of
the regression is incapable of producing the true shape of the recrystallization curve.

The neural network approach follows the same basic structure, but is made non-linear by
using the above sum as the argument of a non-linear function such as the hyperbolic tangent,
such that:

h = tanh Zw;l)mj + 6 (3.6)
J

and:

y=w?h+ 6> (3.7)

wherein z; is an input value (e.g. furnace temperature Tf), w;.l) and w(?) are weights and ()
and #(3) are biases.

The output y is a weighted and biased form of the output from the hyperbolic tangent, the
output from the hyperbolic tangent is not observed by the operator and is therefore referred to
as the hidden unit. The hyperbolic tangent function is generally used because of its flexibility.
This flexibility may not be enough to describe the full complexity of the system. Therefore, a

combination of hyperbolic tangents are used, such that:

hy = tanh [ 3wz, + o0 (3.8)

ij
y=> wh; +o0 (3.9)
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Input layer  Hidden layer Output layer

Fig. 3.3 Schematic of neural network regression analysis

The structure of this arrangement is illustrated in Fig. 3.3.

The neural network structure of a combination of hyperbolic tangents illustrated in Fig. 3.3

allows a very large amount of flexibility in the output this is illustrated in Fig. 3.4.

f() g
Fig. 3.4 a) Three different hyperbolic tangents with differing values of w; b)

Two hyperbolic tangents combined to produce a more complex model
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3.6 Applications of neural networks

Neural networks are a well recognised and respected method of regression. They have been
used to predict behaviours as diverse as information management and retrieval (Chen and Dhar
1991) to mapping land cover (Tatem et al. 2000); however this study will concentrate on their
applications in materials science.

Owing to the flexibility of the system, in theory, any arbitrarily complex system showing
a systematic, non-periodic dependence on a given set of input variables (z;) may be modelled.
Using Bayesian statistics the possible problem of over-parameterisation may be avoided. In

essence, neural networks should be able to predict systematic behaviour in any system.

3.6.1 Industrial relevance of non-linear regression

Most industrial processes already involve some degree of empiricism and an approximate
relationship between industrial parameters and final properties is known. There are very few
cases of industrial processes being run using laboratory models because industrial working
parameters are generally not easily transformed into analytical inputs. Although typically
industrial processes are controlled and reproducible, many are not easily quantifiable. e.g. Cole
et al. (1999) where creep rupture strength is predicted from 32 separate variables, including
mode of cooling. The different modes include: i) furnace cooling, ii) air cooling iii) water or
oil quenching. Each of these methods will produce different microstructures identifiable to the
metallurgist. However, defining an overall parameter which embodies the range of different
cooling rates through the bulk of the sample for use in a theoretical model to predict creep
properties will be prohibitively complex. Neural networks have sufficient flexibility to convert
non-calibrated and non-calibratible input parameters into a meaning full output, given that
the input parameter has a meaningful effect on the output.

The industrial annealing process has a number of difficult-to-calibrate parameters e.g. fur-
nace temperature 7', initial strip condition etc. Therefore it is an ideal candidate for empirical
modelling. Currently stainless steels are annealed by comparison with previous annealing
results within a given grade. However there is still a good deal of noise in the results (Back-

house, 2000).

3.7 Gaussian processes

Gaussian process models, similarly to neural networks, are a nominally infinitely flexible
fitting technique. They also rely on Bayesian probability theory to ensure Occam’s razor is
not contravened (i.e. over-parameterisation does not occur). A Gaussian process works by

calculating a joint probability distribution function for the complete set of experimental data
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PUIC. 3,1 = Jexp (=3t~ 1) €T i) (3.10)

Wherein C is the covariance matrix (matrix describing effect of the inputs (x,,) plus how
interactions between pairs, triplets, quads etc. of inputs effect the output), the number of
dimensions needed to describe C is equal to the number of inputs in the database and p-p
is the mean vector. P(t|C,{x,}) gives the probability of the entire dataset t given an input
matrix x,, and a matrix of interaction factors C. This is in direct contrast to a neural network
which works out the probability of a given model for a given data-point.

Full explanations of Gaussian processes are available in the literature(e.g. Gibbs 1997).
A full comparison between Gaussian processes and neural networks is also available (Tancret
et al. 1999).

The major disadvantages of Gaussian processes are that the size of the covariance matrix
C grows exponentially with the number of inputs and although some (if not most) of these
interactions will be disregarded by Bayes theory, they must all be trained and tested. This
means computational intensity increases exponentially with number of inputs. Also, since this
is a probability distribution across the whole dataset, when the model is far from a data-point
it will become unsure. In the case of neural networks this will be illustrated by large error
bars, but trend prediction will still continue. In the case of Gaussian processes if the model is

unsure the probability P(t|C, {x,}) will tend to zero, i.e. trends will no longer be predicted.

3.8 Conclusions

There is an indisputable need for empirical modelling to predict behaviour for which
there is currently no physical numerical model. Traditionally this has been done with linear
regression, however utilising the advances in computer power we may now use more complex
modelling methods to confidently give accurate answers.

Modern regression analysis techniques such as neural networks and Gaussian processes are
nominally infinitely flexible. This flexibility could lead to erroneous results if fitted blindly to a
dataset, but using Bayesian probability theory this problem may be avoided. Regression tech-
niques have the ability to produce quantitative answers from industrial data which is physically
non-quantifiable (e.g. mode of cooling). Therefore they are ideally suited to situations where

direct analytical measurements are difficult (e.g. the temperature of strip inside a furnace).

From the point of view of the industrialist, neural networks are the most useful of the above

techniques. This is because they provide quantitative answers from industrial parameters (e.g.
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roll pressures, nominal furnace settings) and once trained are not excessively computationally
intensive. Moreover they may highlight the factors which are most significant in the regression

within a non-linear framework.
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CHAPTER 4

EXPERIMENTAL METHODOLOGY

4.1 Production of samples

The material for all experimental work was provided in the form of strip or sheet by Avesta
Polarit Ltd., from the Stocksbridge or Shepcote Lane works. The rolled sheet was cut into
squares of 1 cmx1 cm using a guillotine, tin-snips or scissors depending on the gauge of the

material in question.

4.1.1 Initial sample production method

The first experiments used a type 302 stainless steel (chemical details of this steel are
given later in the thesis in Table 6.2) which was placed into a porcelain boat, which was then
put into a furnace at a specified, stable temperature. These samples were water quenched,
then mounted and polished after which 6 hardness measurements were made per sample using
a standard Vickers hardness machine with a load of 5 kg. A database of annealing time (t),
furnace temperature (7;;) and final hardness (H) was compiled. As will be explained in
chapter 5, this method proved to be inadequate, therefore the procedure below was adopted

instead.

4.1.2 Revised sample production method

A second dataset was obtained using the same sample geometry, but with each sample
resistance welded to a K-type thermocouple. For the methodology described in §4.1.1, the
samples were introduced into the furnace via the furnace door. This operation allows the hot
air in the furnace to escape, causing a sudden drop in furnace temperature of approximately
50 °C. The temperature begins to recover on closing the furnace door, but may overshoot its
original value by some 25 °C. This instability in temperature (totalling 75 °C ) can be avoided
by introducing the samples into the furnace through a chimney vent at the top of the furnace
using the thermocouple wire as a support as illustrated in Fig. 4.1.

The temperature of each sample was monitored as a function of time such that a com-
prehensive heating curve could be recorded for every sample. A database was compiled of the
true furnace temperature T';, representing the final stable temperature achieved by the sample
in the furnace, annealing time ¢, taken as the total time the sample spends in the furnace and
the final hardness H. In measuring the hardness, areas in the vicinity of the thermocouple

weld were avoided.
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Readoui[

v Furnace

<*— Thermocouple
P L Furnace

12 cm Door

Sample

24 cm

Fig. 4.1 Schematic illustration of the experimental equipment

The parameters needed for kinetic analysis i.e. fraction recrystallized, recrystallized grain
size etc., are not as easily obtained, therefore several different methods were investigated as

described below.

4.2 Conventional Metallurgical Techniques

It is normal in measuring the grain size and other microstructural details for the sample
to be mounted, polished and etched, followed by observation using either reflected light or
scanning electron microscopes. Two standard methods of etching were chosen and investigated
(Vander-Voort, 1984):

i) A saturated solution of FeCl; in concentrated HCl with a HNO; activator. This etch
proved to attack the steel too quickly for effective control, leaving a dark brown residue over
the surface of the steel. It’s use was therefore discontinued.

ii) Electrolytic etching at 17V using a 20% solution of oxalic acid (H,C,0,) in distilled
water. There was limited success with this method. Although it did tend to pick out grain
boundaries within the recrystallized grain structure. The samples became intensely pitted with
grain boundaries delimited by a series of pits. The deformed microstructures were difficult to
interpret and small recrystallized grains (of a size comparable with the pit width of circa
0.1 gum) could not be resolved. Scanning electron microscopy images of samples etched in this
way are included in Fig. 4.2.

Conventional metallurgical techniques were discontinued, due to the poor quality of the

images obtained.

4.3 Tint Etching

To avoid oxidation and carborisation during annealing at 1100 °C or more, pre-polished

samples were sealed in silica tubes containing pure argon gas at a pressure of one twentieth of

53



Chapter 4 — BEXFPERIMENTAL METHODOLOGY

Fig. 4.2 Recrystallized microstructure in type 302 stainless steel viewed in a

CamScan S2 scanning electron microscope using secondary electron imaging
at 20 kV. a) Recrystallized microstructure formed by resistance heating of
sample using a resistance welder. b) Grains and other details of microstructure

difficult to observe.

an atmosphere. On completion of the heat treatment the tubes were removed from the furnace,
held above a reservoir of water and fractured, thus allowing the sample to be quenched by the
water therein. It was noticed that the microstructure of the samples could be observed clearly
without further etching. This is due to a thin layer of surface oxide with preferential oxidation

at the grain boundaries (Fig. 4.3).

Fig. 4.3 A tint etched sample annealed at 900 °C for 490 min.

However, this method proved to be applicable only to fully recrystallized microstructures
for two reasons. Firstly, the partially recrystallized regions could not be observed because the

sample needed to be above approximately 900 °C for oxide formation (i.e. high enough to
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cause complete recrystallization. Secondly, since the samples were encapsulated in silica tubes,
a thermocouple could not be attached. Consequently the temperature could not be measured

accurately. This method was therefore discontinued.

4.4 Transmission Electron Microscopy

Transmission electron microscopy (TEM) methodology has been reviewed extensively in
the literature (e.g. Seigel 1964) and will not be discussed here.

For electrons to be transmitted and not absorbed, the observed sample must be exceedingly
thin (of the order of 100 nm). As a consequence, sample preparation is not trivial. Discs of
annealed stainless steel, each with a diameter of 3 mm, were punched out and then manually
ground down to a thickness of approximately 50 pm. These specimens were then electropolished
at approximately 17 V in a solution of 5% perchloric acid in an 80/20 ethanol/glycerol mixture
until a small perforation developed in the sample. The area around the perforation was then
inspected using a JEOL 200CX transmission electron microscope with an accelerating voltage
of 200 kV.

The sample was inspected using a combination of bright field and dark field imaging. In
both cases recrystallized and unrecrystallized grains could be seen with great clarity. Moreover
features such as annealing twins, grain boundaries in the deformed structure, dislocations and

recrystallization nuclei could be easily recognised.

4.4.1 Results from transmission electron microscopy

Fig. 4.4a is a micrograph of a typical recrystallized grain in which annealing twins can
be observed. Annealing twins are distinguished from deformation twins by their strain-free
straight edges and well-defined corners. Fig. 4.4b shows the superimposed diffraction beams
from the pair of twins on the central grain illustrated in Fig. 4.4a, this confirms that the twins
share a common {111} face.

Because of the large amount of prior cold work, it was impossible to quantify the disloca-
tion density of the unrecrystallized regions using transmission electron microscopy. Fig. 4.5 is
an illustration of this problem, showing a dark unrecrystallized region towards the left of pic-
ture adjacent to a recrystallized grain. In the recrystallized grain there is a set of dislocations
which were probably induced during the polishing/grinding process since, in the image, these
may be identified as separate features. There is no guarantee that it will always be possible to
distinguish these artifacts of preparation from features induced by the rolling process.

Recrystallization nuclei were frequently observed at the prior austenite grain boundaries.

This is illustrated in Fig. 4.6
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Fig. 4.4 a) A TEM micrograph from a type 302 austenitic stainless steel

annealed for 1 hour at 685 °C and then etched as described above. It shows

clear annealing twins and a small region of unrecrystallized material in the
top right-hand corner of the micrograph. b) Diffraction pattern obtained from
selected area diffraction of twins only. This diffraction pattern is fully indexed

for each twin in c).

4.4.2 Problems with transmission electron microscopy

TEM is the most accurate method of characterising partially recrystallization microstruc-
tures available, but there are a number of problems associated with this methodology.
Firstly, sample production is both tedious and time-consuming. Secondly, samples often

have only a very small observable, electron-transparent area, as illustrated in Fig. 4.7.

Large observable area

Small observable area

T No observable area

Fig. 4.7 Differences in electropolishing of TEM samples leading to different

Edge of Sample
Perforation

thickness gradients and hence different areas of electron-transparent material.

Moreover, the time taken to get an acceptable image from a TEM is of the order of one
hour requiring skilled calibration and a full understanding of the peculiarities of both TEM

methodology and also the particular machine in question.
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Fig. 4.4c) Indexing of the pattern Fig. 4.4b) which has been split into two
different patterns, one for either twin, represented by the filled and open circles,
each indexed separately above. These patterns coincide on a specific set of hhh

spots indicating that these planes are parallel in both twins :z.e. the twin plane

isa {111} plane.
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Fig. 4.5 TEM micrograph of recrystallized and unrecrystallized regions in a
type 302 stainless steel annealed for 1 hour at 704 °C , exhibiting grinding

induced dislocations in recrystallized grains

Finally and most importantly, the volume of material observed during a three hour session

on a TEM with a very well prepared sample would be of the order of 1 x 107 !¥m?

meaning
that it is impossible to get information which can be confidently deemed to be representative
of the bulk sample. In fact, a well recognised estimate of the total volume of material ever
studied under a TEM is 0.1 mm?®. TEM is nevertheless useful in observing features such as

those indicated in figures 4.5 and 4.6, however, it cannot be used to calculate parameters such

as fraction recrystallized.

4.5 Scanning Electron Microscopy

During scanning electron microscopy (SEM) a beam of electrons is scanned along the
surface of a sample causing electrons to be emitted from the sample. These latter electrons are
collected and converted into an electrical signal which is in turn amplified to form an image on
a phosphorescent screen. Therefore anything causing a variation in the excitation of electrons
from the sample e.g. topology, will give a corresponding contrast on the screen and hence form

an image. A schematic diagram of the SEM is given in Fig. 4.8.
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Fig. 4.6 A TEM micrograph from a type 302 stainless steel annealed for 1
hour at 685 °C illustrating nucleation occurring on the grain boundaries of

the deformed structure

There are two “types” of electrons which exit from the specimen. Firstly the primary
or backscattered electrons, these are formed by “reflection” of the electrons from the sample.
The energy of a backscattered electron is of the order of the accelerating voltage used (usu-
ally about 20 keV). The primary electron detector has a shield over it at approximately -50
V, this allows high energy electrons past, but low energy electrons are excluded. Secondly,
secondary electrons, are low energy (= 150 eV), therefore they are attracted to the detector
by a positive potential (200 V) on the mesh covering the detector. Since only those secondary
electrons generated near the surface of the sample can escape, they are particularly useful for

the observation of sample topology.

4.5.1 The Position of the Backscatter Detector

Backscattered electrons do not just sample the surface of the specimen, in fact they derive
from an interaction volumej within the sample. The exact shape of the interaction volume

varies with accelerating voltage, being a hemisphere at low voltages (1-5 kV) to a pear shape

i The interaction volume of a sample is the volume from which backscattered electrons
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Fig. 4.8 Schematic illustration of a Scanning electron microscope (adapted
from Reed-Hill and Abbaschian, 1994)

at higher voltages (<15 kV). To maximise the number of backscattered electrons produced,
the sample is conventionally tilted so that a greater area of the interaction volume intersects
the surface of the sample (Fig. 4.9). With a tilted sample the primary electron detector must

be moved to a position where the most backscattered electrons are being reflected, this is

may be produced when an electron beam impinges on the surface of a sample
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W |

a) Low accelerating voltages

b) High accelerating voltage c) High accelarating voltage
using tilted sample

Fig. 4.9 The interaction volume as a function of accelerating voltage and
sample position. a) Low accelerating voltage giving a small hemispherical
interaction volume. b) High accelerating volume giving a large pear shaped
interaction volume. ¢) High accelerating volume giving large pear shaped in-
teraction volume; sample is tilted thereby giving a larger area of interaction
volume intersecting the sample surface and hence increased yield of backscat-

tered electrons.

illustrated in Fig 4.8 as primary electron detector (1).
The other standard position of a backscatter detector is directly above the sample (position
2 in Figure 4.8). This necessitates that the detector has a hole at its centre so that the electron

beam is not blocked.

4.5.2 Channelling Contrast

Backscattered electrons are generated when electrons incident on the sample come into
close proximity to the nucleus of an atom therein. Since these electrons cannot pass through the
nucleus, they are simply reflected back with an energy of the order of 15 keV. The mechanics
of this reflection are beyond the scope of this work, however they have been reviewed many
times in the literature (e.g. Otley 1972). It is however safe to assume that the quantity of

electrons reflecting will be dependent on the crystal structure and orientation of crystallites in

61



Chapter 4 — BEXFPERIMENTAL METHODOLOGY

the sample.

Each crystallite in a polycrystalline sample will, in general, have a different orientation.
These differences in orientation lead to differences in yield of backscattered electrons. Under
normal operating circumstances this effect is small enough to be of little consequence. However,
when the microscope is optimised to collect backscattered electrons, this effect may be observed
as differences in contrast between grains. This is referred to as channelling contrast.

The effects of channelling contrast are observed less strongly as the sample is inclined,
therefore the sample is kept flat and the backscatter detector is held in position 2 (figure 4.8).
It is usual to keep the working distance (dy;) between objective aperture and the sample at a
maximum to give the large depth of field (Otley 1972). However, this arrangement not only
means that the electrons have to travel a greater distance between the sample and the detector,

but also more electrons scatter away from the detector (c.f. Fig. 4.10).

~—  _~Electron beam

|
|
|
_— — Backscatter
: </ detector
1, |- _
| s 7
| , /
L Cyy
——— Sample

Fig. 4.10 Schematic illustration of electrons impinging on sample and being

backscattered

By inspection of Fig. 4.10, for a fixed diameter of backscatter detector, as the working
distance dy; increases the maximum angle at which an electron may be backscattered and still
be detected %) is reduced. Since electrons can be scattered at any angle, as dy; is reduced the
number of electrons reaching the detector will increase.

Therefore, for maximum channelling contrast, the sample is placed normal to the electron

beam and as close to the detector as possible

4.5.8 Sample preparation for channelling contrast images

Sample preparation was keyed to increase the channelling contrast and avoid any other
forms of contrast. Samples were mounted and polished before masking off part of the surface

using a non-conductive tape to leave a naked area of approximately 10 mm?. They were
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then immersed in an electropolishing solution of 1 part perchloric acid to 8 parts ethanol to 2
parts glycerol and electropolished at approximately 17 V. A brown gelatinous film of oxidised
material was allowed to form on the surface of the sample during electropolishing. It was
observed that without this film the sample failed to polish. The experimental arrangement is

illustrated in Fig. 4.11.

Platinum wire /\
+ | Power Glass beaker
. —— supply Electropolishing
solution~__ {7
Sample -

Stainless steel anodf

Fig. 4.11 Electropolishing technique for production of samples for channelling

contrast imaging.

This electropolishing treatment was necessary to remove any deformation that may have
been introduced into the surface of the sample during the polishing and grinding process to
minimise any distortion of the lattice which would in turn blur the channelling contrast. The

polishing also promotes surface flatness and hence avoids any topological contrast.

4.5.4 Other factors effecting channelling contrast

To measure fraction recrystallized and other microstructural properties, it is convenient
to have a two dimensional image of a section through the material. However, images pro-
duced using backscattered electrons derive from a finite volume of material associated with
the interaction volume (§4.5.1). If this interaction volume crosses a grain boundary within the
sample, the channelling contrast from the two adjacent regions will be combined. One way
to avoid this is to lower the accelerating voltage but this leads to a decrease in the yield of
backscattered electrons. To avoid this further problem the size of the probe can be increased,
thereby increasing the current of the electron beam, however this too leads to a drop in image
resolution.

A CamScan S2 microscope was calibrated so as to produce the clearest image by finding

the optimum balance between the above three factors, the final setup was an accelerating
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voltage of 20 kV with a working distance of 9 mm. The objective aperture size and spot size
were unspecified but both were approaching the maximum achievable on the equipment used
(i.e. large spot and wide aperture).

An example image using channelling contrast of a type 904 stainless steel (details in Table
6.4) annealed for 2 minutes at a nominal furnace temperature of 950 °C is included in Fig. 4.11.
The grain boundaries and other microstructural features are not as clearly delimited as they
would be in a TEM image. However, sample preparation time was reduced by a fact or four,
time spent on microscope was approximately halved and much larger areas may be inspected

with photographic film costs cut by a factor of ten.

Fig. 4.12 A channelling contrast image of a type 904 stainless steel annealed

for 2 minutes at a nominal furnace temperature of 950 °C

4.6 Image analysis

A standard image analysis machine cannot distinguish recrystallized grains from those
which are unrecrystallized. This is due to a lack of contrast. The only way to derive useful
information from these images is to first interpret them manually. This was done by manually
counting numbers of grains per unit area of sample and by placing a sheet of acetate over the
photograph and transferring the structure of the sample onto the acetate using marker pens.
This reproduction of the sample was then analysed using a SeeScan image analyser and all

further results were derived from that analysis.
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CHAPTER 5

RESULTS AND NEURAL NETWORK MODELLING

The aim of the analysis presented here is to verify the applicability of the neural network
approach for modelling recrystallization in stainless steels, based on new data from carefully
controlled experiments. The great advantage that this approach has for industrial applications
is that the final customers’ requirements may be controlled directly by considering the indus-
trial variables such as rolling reduction, nominal furnace temperature etc. The neural network

approach will be extended thus in chapter 7.

5.1 The neural network model.

Neural network modelling was performed according to a method devised by MacKay
(1992). This model is a neural network of the structure shown in Fig 3.4 made non-linear
by utilising the hyperbolic tangent function as described in equations 3.8 and 3.9, the model
fitting and comparison methods were based on the Bayesian techniques outlined in §3.4. The
model has been developed to have variable error bars, these are a combination of two main

considerations:

1) If there is a large amount of scatter in the dataset (i.e. noisy data) there is a corresponding
increase in the size of the error-bar.
2) Regions of input space which have no corresponding experimental data have large error bars

on the predicted value.

These factors are illustrated schematically in Fig. 5.1 although the mathematics of these
functions are highly complicated and are well beyond the scope of this work. A full derivation

is available in MacKay’s original work (MacKay 1992).

5.1.1 Training the model

To allow direct comparison between the effects of different variables such as ¢ and 7', they
must have the same range of values. Thus all variables were normalised into the range +0.5

as follows:

T Tmin 05 (5.1)
Ty = —2 (. .
N Lmaz ~ LTmin

where, z is a variable whose minimum and maximum values are z_ ., and z . are the min-

n xr

imum and maximum values respectively of the variable in the original dataset and z is the

normalised value of . These normalised data then go forward to train the Bayesian framework
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Fig. 5.1 Illustration of the uncertainty of fitting a function in a region of space
where the data is either sparse or noisy (adapted from MacKay 1992). The
dashed lines represent calculated error bounds and circles represent training

data.

of the model as described in chapter 3. They will be used to determine the weights and biases

given in equations 3.8 and 3.9 by minimisation of the following function.
M(w)=BEsg+ > a.E, (5.2)

For a model with parameters w (including both weights w and biases #) and a set of
inputs 2™ it is possible to estimate the output y(z™;w), which corresponds to a measured

value of output ¢”. This is used to define the squared error Fgg, thus:

Eq(w) = 3 Iyl w) — 177 (53)

m

The parameter (3 is defined as 1/02 wherein o, is the perceived noise in the data as given by
equation 3.5.

To avoid the problem of over-fitting (Fig 3.1) regularisers I, are also included in the
calculation of M (w). These favour smooth solutions to y(z™;w) such that fitting to noise is
avoided. For the model in question (MacKay 1992) the “automatic relevance determination
model” for regularisation has been used; Regression analysis is often used because the rela-
tionship between input and output is not known. It is safer, therefore, to include all variables

that might affect the output and allow the relevance of each input to be determined by the
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analysis. This model “eliminates” irrelevant inputs by using a regularisation parameter o,
where 02 = 1/a and « is given in equation 5.2. A large value of o, implies that the input is
capable of explaining a significant amount of variation in y.

During training, the weights (w) are at first set to random values, the training process
is concerned with the optimisation of these values. In the Bayesian framework outlined in
chapter 3, the model is not defined by a unique set of weights but a probability distribution

of weights. This accounts for uncertainty of fitting needed to describe noisy data.

5.1.2 Selecting the optimum models

As was illustrated in §3.3 the degree of fit may be assessed by considering the test error £/,
(see equation 3.2). Apart from noise, experimental data may contain errors due to mistakes
in the database (e.g. numbers entered into database in the wrong order), such data may show
large deviation from the fitted model. The test error tends to exaggerate the effect of these
outliers and hence may give a misleading impression as to the fit of a model. The log predictive

error (LPF), as defined below minimises the effect of these outliers.
LPE = Z — Yp) /0,2”2 + log (\/ 2%0;72) (5.4)

The random starting values of the weights (w) can, to some extent, influence the final
solution. This is because on training, the program uses gradient based methods of fitting, this
may find minima in the test energy which may not be global. Consequently, a variety of starting
values for w are used in addition to different numbers of hidden units, this generates a large
number of models. In regions of uncertainty, individual models will differ in their predictions.
In such circumstances an averaged set of solutions from several models may predict more
accurately than a single model. This averaging procedure is known as forming a committee of
models.

The first step, in forming a committee is to rank the models in increasing order of log
predictive error (LPF). A committee is formed by combining the best N models giving a

mean prediction :
1 N
j— — ‘ 5.5

wherein y; is the estimate from the i *® ranked model. The error associated with this committee

prediction (o) is given as:
1 N N
-5 (S o) 59
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wherein o is the error associated with the i ™" model. Values of ¢ are compared for different
combinations of models such that the optimum size of a committee is determined by a minimum

in .

5.2 Initial neural network database

The creation of the experimental database has been discussed in §4.1.1 and §4.1.2. The
database discussed in §4.1.1 used the nominal temperature of the furnace instead of a direct
measurement of sample temperature. This was proved to be unreliable; Samples annealed
at 800°C for 10 minutes had hardness varying between 240 HV and 400 HV irrespective of
the number of times the experiment was repeated. The furnace used consists of a refractory
box with four wall mounted heating elements. The temperature is controlled by a porcelain
shielded thermocouple mounted towards the top of the furnace.

It is important to note that the control thermocouple is shielded from the radiative heat
of the elements whereas samples are not. If the furnace dips below its ideal temperature (as
will happen when the furnace door is opened) the elements will provide extra heat to bring the
furnace back up to temperature. In this case radiative heat from the elements impinges directly
upon the the sample, however, the control thermocouple is protected from this radiation. This
means that the sample will heat up more quickly than the control thermocouple and will
often reach a temperature in excess of the temperature indicated by the control thermocouple.
Furthermore, by inserting another thermocouple into the furnace, variations in temperature of
up to 40°C were found depending on the location of this second thermocouple.

Therefore, a sample placed in a furnace may experience a heating regime vastly different
from the nominal settings on the furnace. Temperature variations due to furnace operation
and inaccuracy in temperature measurements will be so great that using the indicated temper-
ature of the furnace will produce unacceptably inaccurate results. Other methods of sample

production were therefore investigated.

5.3 Revised neural network database

To overcome these difficulties a new database was created which included temperatures
directly measured on the sample, as described in §4.1.2. A neural network model was then
created to predict hardness H as a function of true furnace temperature 7', and time ¢.

The range of values for the database is given in Table 5.1 along with the mean and standard
deviation in those values.

Fig. 5.2 shows the perceived noise ¢, in the measured hardness as a function of the number

of hidden units in the model. The value of o, at first drops with increasing number of hidden
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Variable | Minimum | Maximum | Mean | Standard Deviation

T / K 805 1182 983 82
t/s 600 1260000 |61140 195600
H / HV5 176 AT7 282 74

Table 5.1: Table showing minimum, maximum, mean and standard deviation

of values input into the first neural network model
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>
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Number of hidden units

Fig. 5.2 Variation in o, as a function of the number of hidden units. Several
values are presented for each value of hidden units because each network was

trained with a different set of initial values for w.

units but quickly levels out at about 7 hidden units.

There is a model at 10 hidden units which has an exceptionally low value of o¢,. Similar
behaviour is observed in the value of test error (Fig. 5.3)

Comparisons of different committees of models were performed, the optimum committee
was a single model of 10 hidden units. This “committee” was then retrained using the entire
experimental dataset. Predictions from this model were then compared with the original
dataset as shown in Fig. 5.4. It can be seen that there is excellent agreement between values

for most of the data. However there is a large discrepancy at a predicted value of approximately

270 HV.

5.3.1 Reasons for poor fit

A similar region of poor fit was observed in all of the trained models and committees. In

fact the problem of poor fit does not lie with the neural network approach, but rather with the
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Fig. 5.3 Variation in test error E'j; as a function of the number of hidden
units. Several values are presented for each set of hidden units because the

training for each network started with a variety of random seeds.
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Fig. 5.4 Measured hardness against predicted hardness for the optimum com-
mittee of one model of ten hidden units. Error bars include fitting error and

the perceived noise in the data.

method of implementation. As with any data fitting method, if the program does not have all
the relevant input information, it cannot give meaningful output. On further examination of
the dataset, it was seen that for any given furnace temperature, different samples are likely to
experience different heating rates. Experimental heating profiles had been taken for each of

the samples. All experimental heating curves followed an equation of the general form:

T=T;—(T; - Tg)exp(—at) (5.7)
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wherein T, is the ambient temperature outside the furnace and a is a material and interface

specific constant. This behaviour is indicative of interface controlled (Newtonian) heating. An

example heating curve is given in Fig. 5.5.

1000 — = 5
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e
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Fig. 5.5 Example of an experimental heating curve obtained from a sample

annealed in accordance with the standard annealing regime outlined in chap-

ter

4.

Room temperature varied very little between different heat treatments, therefore, by sim-

ply adding an extra input of the temperature of the sample at t = 30 s (75,), it becomes

possible to completely describe the heating profile of the sample. This is illustrated in Fig. 5.6.

Normalised temperature '(/T]c )

=
o
o

0.50

0.25

0.00

- Heating rates
— Fast
— — ' Slow
------- Medium
: | | | | |
0 20 40 60 80 100

Annealing time / s

Fig. 5.6 Three different samples all with the same final temperature (nor-

malised as T/Tf) and all of the form

(% —1- (%) e<—“’f)>, but, all

with different heating rates and hence different values of T;,
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A new model was trained as described previously but including the values for 75,. This

model was then tested to see how predictions of the short term annealing cycles was affected.

The fit was greatly improved as shown in Fig. 5.7.

Training data only

Test data only

0.50 0.50
2 o025 3 o025
5 5
o e
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D 2
& -0.25 |~ & -0.25
.0.50 = | | | -0.50 | | |
0.5 025 000 025 050 050 -025 0.00 0.25

Measured Output

Measured Output

Fig. 5.7 Example outputs from the best neural network model with heat-

ing rates included in input data, neural network seed 3 and 12 hidden units.

Output is the hardness (H) normalised into the range +0.5

0.50

Notice that almost all points are within o of the 2 = y line, points deviating far from

this line are most unlikely in the absence of mitigating factors such as input errors, and such

outliers indicate a bad model. The model was improved further by adding points for t = 0 s

and T < 300 °C where samples retain full hardness.

The value of the perceived noise in the hardness (¢,) as calculated for each model is shown

in Fig. 5.8.
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Fig. 5.8 Variation of perceived noise &, in the hardness with number of hidden

units.
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One hundred models configured differently in terms of number of hidden units and random
seed (the initial values of w before optimisation) were trained. The relative importances of
the different input parameters can be investigated by comparing o, for each input. o, values
are analogous to partial correlation coefficients and express the ability of a variable to explain
the corresponding variations in the output. Values of o, are included in Fig. 5.9; they may be

compared directly since the all data have been normalised.

12+

114

107

Significance

Furnace Temperature Tf Annealing time t Heating rate indicator T30

Fig. 5.9 Bar chart showing the perceived significance (o,,) for each input
variable. The six bars plotted per input correspond to each of the six members

of the optimum committee.

From Fig. 5.9 it can be seen that different models assign different values of o, for the
same inputs. It is possible therefore that a committee of models may make a better prediction
than any single model. The optimum committee can be evaluated by comparing the test error
with the number of models in the committee (Fig. 5.10).

A committee of the six best models was found to be the optimum combination, these
were retrained on the entire dataset without changing the complexity of any one model. The
committee was then tested on the entire dataset, by comparing predicted hardness with the
measured values from the dataset. The results are shown in Fig. 5.11.

The only change in configuration or training routine of the model was the inclusion of the
heating rates. Therefore the improvement in the fit of the model may entirely be attributed to
this fact. Moreover it emphasises the importance of heating rate as well as the more normally
considered annealing parameters of furnace temperature and time.

This committee was then used to make predictions across a range of temperatures and
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Fig. 5.10 Variation of test error with number of models in committee
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Fig. 5.11 Comparison between the predicted and measured values for all data,
the predictions being calculated using the committee of 6 models between 10

and 20 hidden units

times to examine and understand the predicted trends. A selection of predictions is illustrated

in Fig. 5.12.

Although the uncertainty in these predictions is large, generally accepted metallurgical
trends may be observed. For the evolution of hardness with time at constant temperature
(Fig. 5.12 a), the expected drop off in hardness with time is observed. It should be noted that
as time increases so too does the uncertainty in the prediction, this reflects the sparseness of
the dataset for long annealing cycles. By contrast in Fig. 5.12 b there are certain points along
the temperature axis where the error bounds are small, these small error bounds indicate that
there are well fitting data corresponding to those conditions. Between these points the error
bars become larger, reflecting sparse data in these regions. The expected shape of this curve
would be an initial drop off in hardness followed by a levelling out at higher temperatures when

full recrystallization occurs. Within the bounds of the error, this behaviour is observed.

74



Chapter o — nBEOSULLS AND NEURAL NELTWOLRK MODELLING

600 800
> 500 Z .
= = 600}
? 7 :
@ 400 3
[ [
° s
£ 300 £ 400}
o) ©
] 2
% 200 %
a&_’ E 200
100
0 | | | L 0 | | |
0 10000 20000 30000 40000 50000 600 650 700 750 800
Time /'s Temperature £C
a) b)

Fig. 5.12 Example predictions from committee neural network model with
heating rates included in input data, a) T, = 625°C. b) t = 60 s. Both
predictions were for a single heating rate calculation, z.e. a single value of @ in
the Newtonian heating rate calculation. Solid lines represent predictions and

dotted lines represent error bounds.

5.5 Neural network applicability

Neural network techniques are suitable for modelling recrystallization. The fit of the
model is greatly improved (Fig. 8) on inclusion of heating rate data, therefore by examination
of neural network models not only has an accurate description of the annealing process been
produced, but moreover the model has identified that furnace temperature and annealing time
alone provide an insufficient description of the annealing process. This indicates that the

heating of the sample to the annealing temperature is a significant part of the heat treatment.
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CHAPTER 6

RESULTS AND KINETIC MODELLING

There have been numerous kinetic models produced for recrystallization in a number of
different materials. However, these models either show poor fit to the data or use overall trans-
formation kinetics theory in a somewhat empirical manner which limits the interpretation of
the results (chapter 2). The purpose of this investigation was to produce a model using overall
transformation kinetics theory in a manner which correctly reflects the physical metallurgy of

the process.

6.1 Growth kinetics

A well accepted equation describing the velocity of a grain boundary (Christian, 1975) is:

T = d_vexp (—%) [1 — exp (—2—?)] (2.15)

which may be simplified to:
T =MAG (2.17)
As discussed in §2.3, many of the parameters in this equation are difficult to measure or
derive from first principles. The jump distance (§_) of an atom across the boundary is taken
to be approximately the size of an iron atom (3 A) and the attempt frequency (v) is assumed
to be given by the Eyring equation v = kT'/h. The activation energy (Q) for the atomic jumps
across the boundary, will be similar to that for self diffusion in the bulk when the boundary
concerned is coherent, but may be smaller that this when there is a lot of free volume as there

is at an incoherent interface (Christian 1975, Vandermeer 2000).

6.1.1 Estimation of AG

There are a number of ways in which the driving force for recrystallization, AG, can
be deduced, as described in §2.2. Direct measurements of either AG or p, can be used
without interpretation in a recrystallization model. This advantage is offset by the fact that
measurements made using different methods (e.g. TEM and calorimetry) can give values of
stored energy which sometimes differ by orders of magnitude (Humphreys and Hatherly 1996).
It is therefore doubtful that these methods give answers which are sufficiently accurate enough
to use in models of recrystallization. This is similarly true of X-ray line broadening methods
and TEM observations.

Indirect methods derive AG from measurements of parameters such as sub-grain size

although the relationships involved can often be imprecise. Sub-grain size can be converted
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into dislocation density and hence AG. The relationship between AG and flow stress (equation
2.10) is used widely and has been verified experimentally (McElroy and Szkopiak 1972). The
flow stress may be easily inferred with good reliability from hardness measurements and is often
used in industrial applications (Jackson, 1997; Backhouse and Wilford, 1999). This method
is simple, the results are reproducible and above all, rapidly produced. Moreover, it has been
demonstrated in the literature (McElroy and Szkopiak 1972) that measurements of flow stress

provide as accurate a description of the trends in the variation of AG as analytical methods.

6.1.2 Final choice of model for AG

Having assessed the literature, it was decided that flow stress provided the most reliable
repeatable measurement and therefore was the best indicator of the stored energy prior to
recrystallization. Moreover, this method provides results rapidly and may easily be related to

data from the industrial process of stainless steel production.

6.2 Nucleation Kinetics

The three most widely accepted theories to explain nucleation in recrystallization have
been reviewed in §2.4. Li’s (1962) sub-grain coalescence model (c.f. 2.4.2) requires sub-grain
boundaries to coalesce and hence generate a sufficiently misoriented crystal which constitutes
a nucleus. This method is not applicable to austenitic stainless steels which have a low value
of v¢pp in comparison to other materials (e.g. aluminium), this prevents sub-grain formation
(c.f. §1.2.1 and Fig.2.2). No distinct sub-grains were observed in any of the materials studied
in the present work using transmission electron microscopy (c.f. Fig. 2.2).

The bulk of the experimental evidence available implies that the mechanism of nucle-
ation of recrystallization is strain-induced grain boundary migration (SIGBM) (c.f. §2.4.1)
(Humphreys and Hatherly, 1986). However, this should not be taken as proof of this method
being applicable in all situations. Often the nucleation process is impossible to experimentally
observe, this may suggest either a different nucleation process is occurring in these cases, or
that the bulges are too small to observe.

The third possibility, a preformed nucleus (§2.4.3), can be discounted because it predicts
that the recrystallization nuclei occur predominantly in the least deformed areas, in contra-
diction to experimental observations of nucleation at transition bands. It also predicts a zero
incubation time, which is not always observed (e.g. Anderson and Mehl 1945).

The most applicable model for the present study is the strain induced grain boundary
migration model (SIGBM). This fits with experimental observations of nucleation occurring

on prior grain boundaries (c.f. Fig. 4.6) and is more likely that sub-grain rotation because no
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distinct subgrain structure was observed (c.f. Fig. 2.2).

The nucleation rate is often measured by counting the number of nuclei observed per unit
area on a cross-section of the partially recrystallized microstructure. There are a number of

problems with this approach:

i) Since the sample is recrystallizing and the grains will be impinging, the nucleation rate cannot
be taken as a simple function of time and number of nuclei per unit area. The nucleation rate
will be also be a function of growth rate and fraction recrystallized. Furthermore, growth rate
cannot be inferred directly from the grain size as this too will be a function of the impingement

rate and hence the fraction recrystallized.

ii) If nucleation is not uniformly distributed throughout the material, the section for inspection

must be chosen carefully so as to display a representative area for the whole sample.

iii) Ideally samples should heat up to their final annealing temperature from room temperature
instantaneously. However real samples cannot behave this way and require a finite amount of
time to come up to temperature. An isothermal nucleation rate is therefore only an approxi-

mation to what actually happens.

6.2.1 Measurement of the number of grains per unit area (G )

Consider the case of a number of randomly distributed nuclei in a homogeneous matrix
observed on a plane P, (Fig. 6.1a). A comparison of the observations at times ¢; and ¢,, shows
that there are stereological problems in estimating the nucleation rate from number density of
particles observed on a plane section.

However, for certain nucleation geometries and kinetics this problem can be neglected. In
the case of a type 302 stainless steel, experimental observation suggests that nucleation occurs
primarily on planar boundaries parallel to the sheet surface (these may be considered as being
similar to elongated grain boundaries, see Iig. 4.6). Since all samples were cut and mounted
normal to the rolling direction these planar features intersect the surface of the sample as
shown in Fig. 6.1b).

In general, if nucleation occurs continuously on plane P, the nucleation rate will be a
complex function of the number of grains per unit area (G,), the growth rate and time. The
measurement of (G, must be taken over an area sufficient to be representative of the three
dimensional microstructure of the material. Measurements of G, were taken across the full

breadth of the sample and at different depths into the sample by grinding a single sample to

78



Chapter 6 — _nESULLS AND KINELTIC MODUELLING

Growth observed on plang P as nucleation event.

Fig. 6.1a) Illustration of the potential pitfalls of counting number of grains

per unit area.
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Fig. 6.1b) Planar feature intersecting the observed plane.

different extents to ensure accurate results.

Drawing conclusions from the simple observation of ¢, is misleading and nucleation rates
cannot be directly inferred. However, limited simple analysis of (G, for this geometry of nu-
cleation is possible. If the value of &, is observed not to vary with time, it can be concluded
that there is no nucleation occurring. However, if there is any variation in the value of G, with

time, no conclusions may be drawn without further analysis.
6.2.2 Observations of G,
Samples of a type 302 stainless steel were annealed and then observed using channelling
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contrast imaging as described in chapter 4. Micrographs of size 12.7x17.8 cm (at circa 5000x
magnification) were used to count the number of grains per unit area. These data along with
grain size measurements (mean linear intercept), fraction recrystallized (¢) and Newtonian
heating rate indicator (a) are given in Table 6.1. Error bounds given are the standard deviation

of all measurements taken.

¢ Grain size/um | Grains per um? |a / s~ | Temp. /°C | Time / s
0.70 &£ 0.12] 3.16 £ 0.28 0.12 4+ 0.01 0.035 709 1200
0.54 + 0.13] 2.86 £ 0.34 0.13 4+ 0.01 0.035 709 600
0.62 4+ 0.09] 2.95+ 0.65 0.13 4+ 0.04 0.035 707 660
0.85 4+ 0.07]| 2.94 £ 0.22 0.16 4+ 0.02 0.035 723 615
0.854+ 0.07] 2.82+0.15 0.17 4+ 0.01 0.035 728 660
0.124+ 0.06| 2.13 £ 0.67 0.08 4+ 0.03 0.07 880 30
0.84 & 0.07]| 3.12+£0.25 0.14 4+ 0.02 0.07 830 45
Table 6.1: Dataset showing similarity of number of grains per unit area

From the data for annealing experiments at 709 °C and 707 °C, the number of nuclei per
unit area () is, within the limits of experimental error, constant and thereby independent

of fraction recrystallized. This suggests that site saturation has occurred.

6.2.3 Model for nucleation

As discussed earlier, it is reasonable to assume a strain induced grain boundary migration

(SIGBM) model for nucleation. The nucleation rate per unit volume was calculated as:

Where G* is the activation energy for the grain boundary bulging (2v/L, equation 2.23) and

(6.1)

vy is the attempt frequency for grain boundary bulging per unit volume taken as a fitting

constant.

6.3 Overall transformation kinetics model

The first model produced assumed random nucleation occurring at a rate N and an

isotropic growth rate T, such that:

(=1-—exp (—WT3Nt4/3> (6.2)
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Fig. 6.1 Chart of fraction recrystallized against number of grains per square

micron (G,) for samples annealed at stated temperatures.

Utilising equations (2.10) to describe AG, (2.15) to describe Y, (6.1) to describe N and
choosing appropriate values for the fitting factors, an estimation of the fraction recrystallized
was produced (Fig. 6.2).

This model has a number of shortcomings, the most obvious of which is that it can only
be used for an isothermal anneal. Under normal circumstances this will never be the case. The

equation was adapted for anisothermal annealing as follows.

6.4 Anisothermal overall transformation kinetics model

The anisothermal anneal is treated as a series of concurrent isothermal annealing steps
using the Scheil rule (Fig. 6.3).

Considering an initial temperature 7}, an increment in time ¢, is allowed to elapse to
allow ¢; to transform. The temperature is then appropriately incremented. The time taken to
achieve a fraction recrystallized (; is calculated and then incremented again thus producing a
net fraction recrystallized (, This process is repeated as needed until the sum of all the time
increments equals the total time of the anneal.

An example output of fraction recrystallized against time is given in Fig. 6.4. The Avrami
exponent n in this calculation will have a value of 4 because this is assumed in the calculation

of (. This cannot be illustrated graphically because the gradient of In(In(1/(1-¢))) against

81



Chapter 6 — _nESULLS AND KINELTIC MODUELLING

=
o
S

o
\l
T

0.50+

0.25+

Fraction recrystallized()

0.00 | |
0.0 0.5 1.0 1.5 2.0

Time /s

b)

In(In(1/(1-¢)))
o
l

-15 | | |
-3 -2 -1 0 1

In (time / s)

Fig. 6.2 a) Chart of fraction recrystallized vs time at 970 °C from simple
overall transformation kinetics model showing classic sigmoidal shape. b)
“Avrami plot” of In(In(1/(1-C))) vs In(time) showing a gradient of 4, indicating

that the Avrami exponent n is 4

In(#) is affected by the variations in temperature.

The recrystallization curve in Fig. 6.4 is shifted to the right with respect to Fig. 6.2a)
because the sample takes a finite time to come up to the annealing temperature. This illustrates

how misleading the neglect of the sample heating time can be.

The Scheil rule can only be applied when the reaction is isokinetic i.e. when nucleation
and growth vary in exactly the same way with temperature and also if either nucleation or

growth is temperature independent.
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Temperature

\/ True heating curve

Series of isothermal steps

Time
Fig. 6.3 Anisothermal heating regime split up into a series of isothermal step

for use in the Scheil rule method of calculating anisothermal recrystallization

parameters

0.9 ,.
0.8 .'
0.7 -
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0.2 ,.

Fraction Recrystallized ¢
=
hn

0 5 10 15 20 25

Annealing time ¢

Fig. 6.4 Output from anisothermal recrystallization calculation (furnace tem-

perature 970 °C). Because of finite heating rate the curve is shifted significantly

to the right with respect to that in Fig. 6.3a).

6.4.1 Experimental evidence for applicability of Scheil rule
Experimental evidence of the validity of the Scheil approach, as least as far as type 302
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stainless steel is concerned, comes from three sources.

Firstly, in figure 6.2 the observed number of grains per unit area does not vary with
fraction recrystallized. This implies that site saturation has occurred and therefore the Scheil
approach should be valid.

Secondly, experimental data show that the measured Avrami exponent n comes out at

approximately 1 as shown in Fig. 6.5

0.6
0.4
0.2}
0.0F

02

In(In(1/(1-2)))

0.4 |-
-0.6 |-

-0.8 ] ] ] ]
2.2 2.4 2.6 2.8 3.0 3.2

In(t)

Fig. 6.5 “Avrami Plot” of In(In(1/(1-¢))) against In(t) for a type 302 stainless
steel annealed at 708 °C (point at In(f) = 2.30 annealed at 710 °C) showing

an Avrami exponent n & 1. Values of n less than 1 have no physical meaning.

Thirdly, an experiment may be performed to check if the isokinetic approximation is
justified. A single sample was given two isothermal anneals both of which would be expected
to give rise to a finite fraction recrystallized. If the resultant microstructure consisted of a
bimodal distribution of grains, then the isokinetic approximation cannot be used because the
growth rate and nucleation rates will be varying differently.

A sample of a type 302 stainless steel was annealed for 10 minutes at 699 °C and then
a further 5 minutes at 723 °C . The resultant distribution of grains areas was measured and
is shown in Fig. 6.6. This single mode grain size distribution suggests that the Scheil rule is
applicable.

The weight of the evidence therefore points towards the validity of the Scheil approxima-

tion.

6.5 Simple Cahn kinetics model

If site saturation occurs the observed value of n will deviate from an initial high value
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Fig. 6.6 Distribution of grain areas in two-step annealed sample of 302 stain-

less steel.

of 4. Although site saturation, at first sight, should only lead to a reduction in n from 4 to
3 since nucleation rate is eliminated from the analysis, the growth morphology can become
one-dimensional which can further reduce n to a value of 1.

The expected value of n = 4 comes from the dependency of the volume recrystallized
on number of nuclei and the size of each nucleus. Hence for a constant nucleation rate and
spherical growth, number of nuclei is proportional to t' and the volume of each nucleus is
proportional to #3; overall this gives n = 4.

In the case of grain boundary nucleation as explained by Cahn (1956) and reviewed in
detail in this work (§2.7) the grain boundaries may saturate early in the annealing cycle. This
has been shown mathematically to lead to a value of n = 1, however it was not explained in
chapter 2 what this means physically.

Knowing that site saturation has occurred, nucleation has finished and therefore the total
number of nuclei is no longer dependent on time. This means the factor n = 1 is due to grain
growth alone. The Avrami exponent n being equal to 1 indicates that growth is occurring in
one spatial dimension only. This is because growth is not possible in the plane of the saturated
grain boundary since it has already been consumed by recrystallized grains, therefore only

growth perpendicular to the plane is possible, giving n = 1. This is illustrated in Fig. 6.7.

6.5.1 Mathematical description of site saturation model

The mathematical description of site saturation due to Cahn (1956) was described in §2.7.

It can be summarised by the following equations using the same nomenclature as in chapter 2:
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Prior grain boundary
saturated with new crystallites

Growth in one dimension only
Fig. 6.7 Nucleation on grain boundaries leading to growth of recrystallization

nuclei in one dimension only and hence n = 1

C=1-{-0")F /P ?)} (2.58)

FB(aP) = a® /01 [1 — exp { (—g) (@P)3(1 - 322 + 253)” d= (2.57)

aP = (N,T?)5¢ (2.56)
N
bB = m (2.50)

Equation (2.57) has no analytical solution and therefore must be evaluated numerically.

The integration was solved iteratively using 100 steps of =, each of value 0.01.

6.5.1.1 The grain boundary area per unit volume

The parameter YOP is the total area of grain boundary per unit volume; for a material

with an equiaxed grain structure:

OB =2/1, (6.3)

where I is the mean linear intercept between grain boundaries.

Plastic deformation causes the surface to volume ratio of an equiaxed grain to increase
greatly. The value of YOP increases with rolling reduction. A mathematical treatment of this
problem was given by Czinege and Reti (1977) and Singh and Bhadeshia (1998). Assuming
that the equiaxed grain structure consists of a series of space-filling tetrakaidecahedra, the
ratio of initial surface area (A,) of the tetrakaidecahedron to the final surface area after rolling

(A) is given by:

A b3 (V14202 + Vb2 +2¢2) + ¢y /2(1 4 b1 c?) (6.4)
Ay 3bc(2\/§—|— 1) ’
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where b and ¢ are two of the principal distortions (ratios of the final to the initial lengths of
unit vectors along the principle axes). The third principal distortion d may be eliminated since
to maintain constant volume, bed = 1. Moreover, in this study, only the specific case of rolling
(i.e. approximately the plane-strain condition) is considered. During plane-strain conditions
we know that d = 1 and therefore bc = 1 giving b = 1/c. This means that equation (6.4) may

be reduced to:

A b+3 (V120724 VB2 +2072) +b71/2(1 +07) (6.5
Ay 3(2v3+1) '

The dimension b is along the rolling direction, d the transverse direction and ¢ the normal

direction as illustrated in Fig. 6.8.

/— Work Rollsﬁ\
Stri «
C p\ d
b b

v

Transverse view Plan view

Fig. 6.8 Schematic illustration of rolling process

In industrial processing the amount of deformation put in during rolling is measured as a

rolling reduction (Rp):

Final thickness
Br a (Initial thickness) x 100% (6.6)
which gives:
c=1-Rg (6.7)
and hence
1
b= 75y (6.8)
(1 - Rpg)

Considering equations (6.5) and equation (6.8) we see that if a grain size is known for the

material before deformation, the amount of grain boundary per unit volume may be calculated
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using the rolling reduction. Industrially, the grain size prior to rolling may be measured “on-
line” using ultrasonic measuring equipment. Ultrasonic grain size measurements for unrolled
feed-stock are not currently taken during production, but this method is being used successfully
to determine the final grain size after the annealing process.

It is worth noting that this derivation assumes that deformation is homogeneous which
may not always be true.

Using values of initial grain size and rolling reduction, this calculation may be incorporated
into the model for grain boundary nucleated recrystallization giving an accurate value of the

amount of grain boundary area per unit volume (*OP).

6.5.1.2 Grain boundary nucleation kinetics

During grain boundary nucleation it is necessary to consider impingement along the bound-
ary using an extended area concept. By assuming that nucleation occurs at random across
the grain boundary and that these grains then grow out from the point of nucleation with
a velocity T, an extended area transformed A/ for a sample containing an area A of grain

boundary, can be calculated as:
t -
Al = / ANTY* 2 dt (6.9)
7=0

Al =7 ANY*/3 (6.10)

Invoking equation (2.29) in two dimensions we obtain the relationship between extended area

fraction transformed and true area fraction transformed A’:

dA" = (1 - A"/A)dA. (6.11)
Defining A’ /JA = A,, and A’/A = A, equation (6.11) may be simplified thus:

dA, =(1-A4,)dA,, (6.12)

Age=—In(1—-Ay) (6.13)

upon combining equation (6.6) and equation (6.13) we observe:

N2
A, =1-exp (—WT) (6.14)
If the number of nuclei on a particular boundary O at a time ¢ is N then:
t .
0
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where NAA is the nucleation rate per unit area of boundary accounting for the fact that
transformed boundary will not be able to support nucleation. However, since nucleation can

only occur on untransformed boundary:
Nyg=0-AON (6.16)

Where N is the nucleation rate per unit area of untransformed grain boundary. Therefore,

combining equations (6.14), (6.15) and (6.16) we see:

t . 7243
N:/ N exp (—%) dt (6.17)
0

This integration may only be solved numerically.

6.5.1.3 Qutput from simple Cahn kinetics model

A grain boundary nucleation model for recrystallization was produced based on equations
(2.50), (2.56), (2.57) and (2.58), along with growth rate and nucleation rate calculations as
given in §6.1 and §6.2 respectively. The standard plots of fraction recrystallized (¢) against
time () and the ‘Avrami plot’ are included in Fig. 6.9.

The plot of ¢ against ¢ does not show the classical sigmoidal shape predicted by standard
overall transformation kinetics but instead a steep initial rise, followed by a levelling off.

The “Avrami plot” of In(In(1/(1-¢))) against In(¢) shows two different slopes. The first
part of the annealing cycle shows a slope of n = 4 as would be expected from a standard
overall transformation kinetics model with random nucleation and three dimensional growth.
However at In(t) & —2.5 (i.e. t = 0.08 s) this slope changes to n = 1. This change indicates
the onset of site saturation, followed by one dimensional growth. The change in the value of
n is rarely observed in experimental data because it would require a very specific relationship
betweenY', N and YOF and because experiments have inadequate resolution. Usually, therefore,
only n = 1 or n = 4 is observed, not both. This model provides a good fit to the observed
isothermal annealing curves in the data (e.g. Hutchinson et al. 1973).

However, annealing in an industrial context is concerned with the maximisation of through-
put. The heat-treatments are therefore done on a continuous annealing production line (fig
1.7). The strip is heated gradually as it passes through the furnace. The steel strip is not heated

isothermally so it is necessary to adapt any kinetic model for anisothermal heat treatment.

6.6 First anisothermal Cahn kinetics model

The model was coded using FORTRAN77. The driving force for recrystallization (AG)
was calculated as in §6.1.1 (equation 2.10) and the growth velocity Y as in §2.3. The nucleation
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Fig. 6.9 All figures are predicted data for a theoretical isothermal anneal at
900 °C for times specified. a) Chart of fraction recrystallized against time
from isothermal Cahn kinetics model. b) “Avrami plot” of In(In(1/(1-C))) vs
In(time) showing an initial gradient of 4, indicating that the Avrami exponent
7 is 4 during the initial moments of the annealing cycle. However at In(#) > 2.5
(i.e. t = 0.08 s) the gradient of the slope changes to 1 indicating that site
saturation has occurred. Moreover, this occurs when { &~ 0.05 which means

all of the observable part of the annealing process will be in the 7 = 1 regime.

rate was calculated in a similar fashion to §6.2. Equation (6.1) gives the nucleation rate per
unit volume v,, however this is not valid in the case of Cahn kinetics because nucleation is
limited to the grain boundaries. Therefore the pre-exponential factor vy, was altered to vy,

the nucleation attempt frequency per unit area, such that:

N = vy exp (—%) (6.18)
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This process was then made anisothermal using the Scheil approach detailed in §6.4.1.
It is useful when applying the Scheil approximation to express time as the dependent

variable so that the equivalent times may be calculation easily. For example, equation 6.2:
(=1-exp (—FT3Nt4/3> (6.2)

may be rearranged thus: may be rearranged { = 1 —exp (—TTSNt4/3). This is trivial because
the time £ may be made the subject of the equation, thus:

-1
L 7Y3N 1
= (5 () 6.19)

However, this is not possible for grain boundary nucleated kinetics where the kinetic functions

are a lot more complex (e.g. equation 2.57). Nevertheless, the time may be extracted numer-
ically beginning with a guessed value. Unfortunately this procedure is exceedingly computer
intensive, to ensure accurate answers upwards or 100,000 iterations were needed for each time
increment.

A model was therefore produced and trained using data obtained at or near 709°C .

Example graphs from this temperature are given in Fig. 6.10(a~d).

1000

9001
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Strip Temperature / K

500 | | | |
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time/s

Fig. 6.10 a) Graph showing the variation of the strip temperature with
time. The strip is subject to a Newtonian heating regime ze. t = 7, —
(Tf — TR) exp(—at). In this case the furnace temperature (Tf) is set to
709 °C (982 K)

However, it was observed that although an good fit could be produced for data at a single

temperature, the fit across a range of temperatures could not be reproduced. This is illustrated
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Fig. 6.10 b) Chart showing the variation of fraction recrystallized ({) with
time for a set furnace temperature Tf = 709 °C and a heating regime
illustrated in Fig. 6.10 a). The solid line represents the predicted variation of

¢ with time, the error bars represent experimental data.
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Fig. 6.10 c¢) Chart showing the variation of the number of recrystallization
nuclei per um2 of observed surface for a sample anisothermally annealed at
709 °C undergoing a heating regime illustrated in Fig. 6.10 a). The solid line
represents the predicted variation with time, the error bars represent experi-
mental data. It should be noted that number of nuclei per ,um2 levels off early

in the annealing process. This illustrates that site saturation is occurring.

by examining a sample annealed at 728 °C and comparing experiment to prediction. After

calibration it was found that predicted and experimental fraction recrystallized showed poor
fit (Fig. 6.11)

For samples annealed at higher temperatures than that at which the model was originally
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Fig. 6.10 d) Chart showing the variation of the number of recrystallized grain
diameter for a sample anisothermally annealed at 709 °C undergoing a heating

regime illustrated in Fig. 6.10 a).
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Fig. 6.11 Chart showing the variation of fraction recrystallized ({) with time
for a set furnace temperature 7'y = 728 °C and a Newtonian type heating
regime of the foorm ¢ =1, — (Tf — TR) exp(—at). The solid line represents
the predicted variation of { with time, the point with error bars represent

experimental data.

calibrated, the prediction was always lower than the experimental value, similarly for a tem-
perature lower than that of the calibration temperature, the predicted values were consistently

higher than those observed.

In all the above cases and as shown by Figure 6.8 ¢) site saturation occurs rapidly and

recrystallization then becomes a function of growth rate alone. The equation used in the
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calculation of growth rate was:

= e (2 ) 1w (29)] o

It is clear therefore that if site saturation occurs before the temperature stabilised, the
grain boundary velocity T must be made more temperature sensitive The value of AG may,
reasonably, been taken to be constant, dependent on only initial microstructure and chemical
composition. Therefore, it is probable that a better fit with respects to temperature dependence
can be obtained by adjusting the activation energy ) for the transfer of atoms across the

boundary during growth.

6.6.1 The physical meaning of )

As stated above ) is the activation energy needed for an atom to jump across a grain
boundary. Generally, this is taken to be independent of temperature but, as with all free
energies it can never be truly temperature independent. Defining the free energy ) in the

standard way we see that:

Q=AH,, - TAS,, (6.20)

wherein AH , is the difference in enthalpy between activated and stable states and AS_, is

the difference in entropy between activated and stable states. Equation (2.15) may be expanded

thus:
B (AH,.,—TAS,.;) AG
T =Jd.vexp ( 7T 1 —exp BT (6.21)
B AS, . _AH,, B _AG
T = é_vexp ( i ) exp ( RT ) [1 exp ( —RT)] (6.22)

If both AH,,, and AS,,, are taken to be temperature independent, then the model may be
retrained using these new parameters a fitting constants. AH ., was restricted to be positive
and of the order of the activation energy of self diffusion in pure iron (austenitic polymorph)
(286 kJ mol™'). AS,., was taken to be positive because the boundary layer may safely be
assumed to be more disordered than the bulk of the crystal.

In the light of this alteration, the model for nucleation was also inspected. Nucleation had
previously been modelled using equation 6.18 which is of the form of a standard Arrhenius
equation in which the pre-exponential factor vy was assumed to be temperature independent.
vy physically represents the attempt frequency for nucleation. In fact any vibration must
be thermally activated and therefore cannot be temperature independenti. Although many

authors take vy to be temperature independent (e.g. Sha and Bhadeshia, 1997) and have

i This statement is only strictly true for classical and not quantum particles and objects.
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achieved an acceptable fit to experimental data, others have taken vy to be directly propor-
tional to T (e.g. Parker 1997, Cahn 1956) and have also obtained a good fit. Cahn (1956)
has derived an expression to describe the variation of vy and hence the nucleation rate with
temperature such that:

KT K} (KiGe, +Qc)

N=—"Lexp{-— T (6.23)

wherein ¢ is the grain boundary thickness, K{ and Kg are factors which depend on the geometry
of nucleation and the term <K§Gca —I—QC) is equivalent to G* in equation 6.18. For the

purposes of simplifying the modelling procedure this process equation (6.23) was reduced to:
) G

N =v;T —— 6.24

exp (-7 ) (6.21)

This approach equates (KgGCa + QC) to G™ and kK{/th to vp.

Classically, G* is the activation energy for nucleation, i.e. the difference in energy between
the activated and stable states. Simple derivations of the activation energy for the formation
of a spherical nucleus (e.g. Reed-Hill and Abbaschian 1994) show that:

16 my3

GClass - ?E (625)

where G, ., is the activation energy for classical homogeneous nucleation, v is the surface
energy and AG is the driving force for recrystallization (i.e. the difference in energy per unit
volume between the recrystallized and unrecrystallized states). However, because classical
nucleation is generally considered to be inviable in the case of recrystallization (c.f. §2.4),
many authors (e.g. Sha and Bhadeshia, 1997) choose to treat G* as a fixed material constant.
Whilst this approach can produce good fit in the case of a single steel, its applicability has
never been tested across a wide range of steels. Furthermore, the process of nucleation involves
the discontinuous growth of a small volume of relatively strain free material into the deformed
matrix. It is therefore quite unphysical to assume that the difference in stored energy between
the deformed and undeformed will not effect the nucleation rate. Because neither of these
approaches gave a satisfactory and physically sound result, it was decided to treat G* as an

empirically derived function of AG such that:
G" =G AG™"¢ (6.26)

where GG and n are empirically derived fitting constants. The value of n, was, however,
constrained to lie between the expected classical value of 2 and 0 which is commonly assumed

in the literature.
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6.7 Second Anisothermal Cahn kinetics model - type 302 stainless steel

6.7.1 Data used for training model

The applicability of this revised Cahn model was tested initially on a type 302 stainless
steel supplied as-rolled sheet by Avesta Sheffield L.td. Samples were prepared and tested using
the methodology outlined in Chapter 4.

The chemical composition of this steel as measured by the producers is given in Table 6.2.

Element C Si Mn P S Cr Mo Ni Al Cu Sn Nb

Weight % [0.045 0.38 1.39 0.028 0.007 18.21 0.28 8.61 0.007 0.26 0.012 0.01

Element | W V Co Ti As B 7t Pb N H Fe

Weight % |0.06 0.05 0.15 0.010 0.01 0.0033 0.00 0.0000 0.049 0.0000 Balance

Table 6.2: Composition of type 302 stainless steel used in this study

All samples were identical squares of 1 cm X 1 cm X 0.08 cm cut from the same sheet of
material. The initial Vickers hardness of 465 HV + 15 (measured with a load of 5 kg). The
temperature of each samples was monitored continuously and these data fitted to a Newtonian
heating curve (equation 5.7). A model based on Cahn kinetics was coded using FORTRANT77
programming language and is given in full in Appendix 1. The model was fitted to the experi-
mental data; no distinct values of G and n could be calculated because only a single rolling
reduction (and hence stored energy) was used and therefore the effects of different driving
forces for recrystallization could not be assessed.

Output from the model is given in Table 6.3 and figures 6.13 to 6.17.

Generally, the annealing cycle was sufficiently long to ensure that the final temperature of
the strip T was stable and hence was approximately equal to the true furnace temperature (Tf).
However in the case of short annealing cycles the sample did not reach thermal equilibrium, so
that the true furnace temperature (which is a required input for the computer program) was not
directly measurable. In such cases the measured time () against stock temperature (1) were
compared with a standard Newtonian heating curve of the form T' = T, — ((T; — Tg)exp(—at))
allowing the true furnace temperature (7;) to be calculated. Calculated values of T, are

indicated in Table 6.3 by the symbol 1.
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Predicted ¢ | Measured (| a |7, /°C|time /s
0.80 0.70 £ 0.12]0.035 709 1200
0.52 0.54 £ 0.13]0.035 709 600
0.57 0.62 £ 0.09]0.035 707 660
0.82 0.85 £ 0.07]0.035 723 615
0.91 0.85 £ 0.07]0.035 728 660
0.14 0.12 £+ 0.06 | 0.070 | 880% 30
0.87 0.84 &+ 0.07 | 0.070] 8303 45
Predicted Grain size / pm | Measured Grain size / pm | «a T /°C | time /s
3.23 3.16 + 0.28 0.035 709 1200
2.80 2.85 + 0.34 0.035 709 600
2.87 2.95 + 0.64 0.035 707 660
2.90 2.94 4+ 0.22 0.035 723 615
2.91 2.82 4+ 0.16 0.035 728 660
0.78 2.13 £ 0.67 0.070| 880z 30
1.59 3.12 4+ 0.24 0.070| 830% 45
Predicted G, / um~2 | Measured G/, / ym ™2 a |7 /°C|time /s
0.13 0.12 + 0.01 0.035 709 1200
0.13 0.13 + 0.01 0.035] 709 600
0.13 0.13 £ 0.04 0.035 707 660
0.16 0.16 £+ 0.02 0.035 723 615
0.17 0.17 £ 0.01 0.035 728 660
0.68 0.08 £+ 0.03 0.070| 880z 30
0.56 0.14 £ 0.02 0.070] 830z 45

Table 6.3: Tables 6.3 a) b) and c) are a comparison of model results with
experimental results on a grade 302 stainless steel. All samples underwent a
Newtonian heating regime fully described by the given parameters a and Tf.
(The symbol i next to a value of T, denotes that this is a calculated
value. In these cases a measured value was not available because the
short annealing times used meant the temperature of the sample did not
equilibrate)
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Fig. 6.12 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 302 stainless steel. Samples were annealed at
a furnace temperature of 709°C with @ = 0.035 for times illustrated. In
all charts the solid line indicates the model’s prediction and the error bars
an experimental datapoint. a) Plot of { against time, showing modified sig-
moidal curve characteristic of Cahn kinetics. b) Standard “Avrami” plot of
In(In(1/1-¢))) against In(¢) showing a slope of 4 on the right-hand side of the
graph. This indicates that site saturation has occurred. ¢) Chart showing the
variation of number of grains per unit area (G, with time. Since G, does not
vary with time or fraction recrystallized, this would concur with the predic-
tion from chart b) that site saturation has occurred. d) Chart showing the
variation of grain size with time. e) The variation of strip temperature with

annealing time (predicted). 98
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Fig. 6.13 Output from anisothermal recrystallization model trained on a type
302 stainless steel. Samples were annealed at a furnace temperature of 723 °C
with @ = 0.035 s~! for times illustrated. In all charts the solid line indicates
the model’s prediction and the error bars an experimental datapoint. a) Plot
of { against time, showing modified sigmoidal curve characteristic of Cahn
kinetics. b) Chart showing the variation of number of grains per unit area
G, with time. Since (G, does not vary with time or fraction recrystallized,
this would indicate that site saturation has occurred. c¢) Chart showing the

variation of grain size with time.
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Fig. 6.14 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 302 stainless steel. Samples were annealed at
a furnace temperature of 728°C with a = 0.035 for times illustrated. In
all charts the solid line indicates the model’s prediction and the error bars an
experimental datapoint. a) Plot of ( against time, showing modified sigmoidal
curve characteristic of Cahn kinetics. b) Chart showing the variation of num-
ber of grains per unit area (&, with time. Since (G, does not vary with time or
fraction recrystallized, this would indicate that site saturation has occurred.

c) Chart showing the variation of grain size with time.
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Fig. 6.15 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 302 stainless steel. Samples were annealed at
a furnace temperature of 830 °C with @ = 0.07 for times illustrated. In all
charts the solid line indicates the model’s prediction and the error bars an ex-
perimental datapoint. a) Plot of ( against time, showing modified sigmoidal
curve characteristic of Cahn kinetics. b) Chart showing the variation of num-
ber of grains per unit area (&, with time. Since (G, does not vary with time or
fraction recrystallized, this would indicate that site saturation has occurred.

¢) Chart showing the variation of grain size with time.
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Fig. 6.16 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 302 stainless steel. Samples were annealed at

a furnace temperature of 880 °C with ¢ = 0.07 for times illustrated. In all

charts the solid line indicates the model’s prediction and the error bars an ex-

perimental datapoint. a) Plot of ( against time, showing modified sigmoidal

curve characteristic of Cahn kinetics. b) Chart showing the variation of num-

ber of grains per unit area (&, with time. Since (G, does not vary with time or

fraction recrystallized, this would indicate that site saturation has occurred.

¢) Chart showing the variation of grain size with time.
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6.7.2 Discussion of results from type 302 stainless steel

Figures 6.13 to 6.15 illustrate the good agreement of predictions with experimental data
for fraction recrystallized, number of grains per unit area and grain size, all well within the
limits of experimental error. This indicates that the Cahn approach to site saturation is useful
in the modelling of recrystallization. An important achievement is the ability to explain the
frequently observed value of unity for the Avrami exponent.

However, the agreement is less satisfactory for samples annealed at temperatures above
800 °C; although there is good fit for fraction recrystallized, the agreement is weak for number
of grains per unit area and grain size.

The likely explanation for this anomaly is that heating rates for the two high temperature
samples were greater than those for the lower temperature samples (¢ = 0.070 s~! in this
case as compared to ¢ = 0.035 s~! for the lower temperature samples). Type 302 stainless
steel has a relatively low nickel content, therefore heavy rolling deformation causes this steel
to experience a degree of strain induced martensitic transformation. This is experimentally
verifiable because the martensitic o’ is magnetic and prior to annealing, the steel is magnetic.
This martensite will revert back to austenite on heating, this is observed experimentally by
the fact that after annealing is non-magnetic. The reversion of martensite to austenite has
been known to stimulate the nucleation of recrystallization (Humphreys and Hatherly, 1996).
The morphology of the observed zones of nucleation consists of planar bands of nuclei (see
Fig. 6.17). This morphology is consistent with ‘grain boundary’ nucleated Cahn kinetics, the
only difference being the planes involved in nucleation are transition zones or other high strain,

martensite inducing planar features and not grain boundaries.

Fig. 6.17 “Plane” of recrystallization nuclei in a type 302 stainless steel an-

nealed for 600 s at a nominal furnace temperature of 700 °C
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After reversion, there may be an incubation periodf, as discussed in §2.4.3. This delay in
nucleus formation would mean that nucleation was occurring at a higher temperature because
of the higher heating rates. Growth at the higher temperature would be faster and therefore
recrystallization planes would be completely consumed before the expected number of nuclei

passed their incubation period. At present an incubation period is absent from the model.

6.8 Second Anisothermal Cahn kinetics model -
Stainless steel types 304L, 254SMO, 904L

6.8.1 Data used for training models

After the validity of the Cahn theory model was confirmed using type 302 stainless steel, it
was extended to a number of different stainless steels: 304L, 254SMO and 904L. Samples were
provided by either the Shepcote lane works of Avesta Polarit Ltd, or the Stocksbridge works
of Avesta Polarit and were subsequently prepared and tested using the methodology outlined
in Chapter 4. The measured chemical compositions for these steels are given in Table 6.4a),

b), and c).

Stainless steel grade| C Si Mn P S Cr Mo Ni

254SMO 0.023 0.47 0.54 0.022 0.001 20.07 6.03 17.96
304L 0.016 0.46 1.39 0.023 0.001 18.31 0.31 10.12
9041, 0.011 0.26 1.51 0.022 0.001 19.72 4.28 24.25

Stainless steel grade| Ti Nb Co N Cu Sn Al A%

254SMO 0.00 0.01 0.19 0.204 0.67 0.005 0.011 0.05
304L 0.01 0.01 0.00 0.039 0.47 0.015 0.006 0.07
904L 0.00 0.00 0.22 0.066 1.41 0.000 0.000 0.00

Table 6.4: Chemical composition of each steel studied.

Samples of each steel were supplied as rolled sheet of different rolling reduction. Each sheet
was taken from the same cast of steel and hence can be assumed to be chemically identical.
The different thicknesses of sheet available for each steel are given in Table 6.5.

Each sample was cut into 1 X 1 cm squares, after which samples of the same composition

were resistance welded together at several points to ensure good thermal contact and then a

i The incubation period is a period of time at the start of the recrystallization process

before which no nucleation is observed
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Stainless steel grade Gauges available / mm

254SMO 0.1 0.125 0.15 0.21 0.28
3041 0.19 0.26 0.42 0.49 0.55 0.8 1.4 1.8 3.0

904L 0.8 095 1.1 1.8 2.3 3.0

Table 6.5: Variation in gauge for each steel studied.

thermocouple was welded onto the composite sample which was then annealed as described in
Chapter 4. In this way several samples of different gauges but similar chemistry underwent
exactly the same thermal treatment, this allowed direct comparison of the effect of rolling
reduction on the recrystallization behaviour.

A separate model was trained for each grade of steel using exactly the same structure of
model as described in the previous section (§6.7), utilising the same source code as detailed for
type 302 stainless steel in Appendix 1. Each model differed only in the values of thermodynamic

fitting factors used.

6.8.2 Modelling results - type 9041 stainless steel

These are presented in Table 6.6 and in Figures 6.19 to 6.21:
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Tf t | Final strip T | Gauge | Predicted GG, | Measured G, a Flow stress
/°C | /s /°C / mm / pm ™2 / pm ™2 / MPa
8551 | 240 846 0.80 0.087 0.083 £+ 0.004]0.0190] 125.4 4+ 3.6
8551 | 240 846 0.95 0.054 0.060 £+ 0.007]0.0190 | 121.5 + 4.1
8551 | 240 846 1.10 0.030 0.033 £+ 0.008]0.0190] 116.6 4+ 5.0
9701 | 180 887 0.80 0.137 0.131 £+ 0.008 ] 0.0135] 125.4 4+ 3.6
9701 | 180 887 0.95 0.092 0.086 £ 0.00310.0135]121.5 £ 4.1
9701 | 180 887 1.10 0.059 0.063 + 0.007]0.0135]116.6 + 5.0

T t | Final strip T | Gauge | Predicted ¢ | Measured ¢ a Flow stress
/°C | /s /°C / mm / MPa
8551 | 240 846 0.80 0.832 0.83 + 0.06]0.0190]125.4 + 3.6
8551 | 240 846 0.95 0.633 0.63 &£ 0.11]0.0190] 121.5 + 4.1
8551 | 240 846 1.10 0.391 0.44 + 0.12]10.0190] 116.6 £+ 5.0
9701 | 180 887 0.80 0.969 0.95+ 0.03]10.0135]125.4 + 3.6
9701 | 180 887 0.95 0.855 0.87 + 0.05]10.0135]121.5 + 4.1
9701 | 180 887 1.10 0.616 0.73 +0.12]10.0135] 116.6 £+ 5.0

Table 6.6: Comparison of model results with experimental results on a

grade 904L stainless steel. All samples underwent a Newtonian heating regime
(T = Tf — ((Tf — T'p)exp(—at))) fully described by the given parameters
a and T}. (The symbol i next to a values of Ty denotes that this is
a calculated value. In these cases a measured value was not available
because the short annealing times used meant the temperature of the

sample did not equilibrate)

6.8.2.1 Discussion of model for 904 L stainless steel

The model shows excellent fit over the whole range of heating rates, stored energies and
rolling reductions studied. It gives meaningful values of { and G, and in terms of the data

studied it fully reflects the complexity of the system.
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Fig. 6.18 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 904L stainless steel. Samples were annealed at
a furnace temperature of 855 °C with @ = 0.019 for initial strip conditions
illustrated. In all charts the solid line indicates the model’s prediction and
the error bars an experimental datapoint. a) Plot of Number of grains per
unit area (G, against calculated flow stress 0 ¢ in the unrecrystallized material.
b) Plot of Number of grains per unit area (&, against gauge of material. c)
Plot of fraction recrystallized ({) against calculated flow stress (o) in the
unrecrystallized material. d) Plot of fraction recrystallized (¢) against gauge

of material
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Fig. 6.19 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 904L stainless steel. Samples were annealed at

a furnace temperature of 970 °C with ¢ = 0.0135 for initial strip conditions

illustrated. In all charts the solid line indicates the model’s prediction and the

error bars an experimental datapoint. a) Plot of Number of grains per unit

area (5, against calculated flow stress (Uf) in the unrecrystallized material.

b) Plot of Number of grains per unit area (&, against gauge of material. c)

Plot of fraction recrystallized ({) against calculated flow stress o in the un-

recrystallized material. d) Plot of fraction recrystallized (¢) against gauge of

material
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Fig. 6.20 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 904L stainless steel. Samples were annealed at
a furnace temperature of 855°C with @ = 0.0135 for a 0.8 mm gauge strip
of initial hardness 125.42 + 3.6 HV (measured with a load of 5 kg). In all
charts the solid line indicates the model’s prediction and the error bars an ex-
perimental datapoint. a) Plot of { vs time showing classical sigmoidal shape.
b) “Avrami plot” of In(In(1/1-C))) against In(f). This plot does not show
a distinct transition from n = 4 to n = 1 because the temperature of the
strip is a function of annealing time, this further time factor blurs observation
of the changeover from pseudo-random nucleation to site saturation. c) The

variation of strip temperature with time (predicted).

6.8.3 Modelling results - type 254SMO stainless steel

Output from the model is given tabularly in Table 6.7 and graphically in figures 6.22 and 6.23.

6.8.3.2 Discussion of model for 2545SMQO stainless steel

The fit of the model is generally good across all rolling reductions and initial flow stresses
with good transferability between different temperatures and heating rates. There are a few

points which lie off the predicted curve. Notably, predictions for the sample annealed at 975 °C
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Ty | ¢ |Final strip T | Gauge | Predicted G, | Measured G, | @ | Flow stress
/°C |/s /°C / mm / pm ™2 / pm ™2 / MPa
950t | 60 943 0.100 0.0944 0.095 £+ 0.009]0.085]151.5 + 6.0
950t | 60 943 0.125 0.0750 0.086 + 0.005]0.085]149.9 + 7.0
950t | 60 943 0.150 0.0413 0.043 £+ 0.009] 0.085]142.8 + 5.6
950t | 60 943 0.210 0.0220 0.020 £+ 0.006]0.085]136.1 + 4.7
9751 | 35 950 0.100 0.1071 0.103 £ 0.006]0.120] 151.5 £ 6.0
975t | 35 950 0.125 0.0848 0.086 + 0.009]0.120]149.9 + 7.0
975t | 35 950 0.150 0.0475 0.051 + 0.014]0.120 | 142.8 + 5.6
975t | 35 950 0.210 0.0259 0.005 £+ 0.002]0.120 | 136.1 + 4.7

T, t | Final strip T | Gauge | Predicted ( | Measured (| a Flow stress
/°C | /s /°C / mm / MPa
950t | 60 943 0.100 0.952 0.96 + 0.02]0.085]151.5 + 6.0
950t | 60 943 0.125 0.874 0.92 + 0.06]0.085]149.9+ 7.0
950t | 60 943 0.150 0.507 0.75+ 0.19]10.085] 142.8 + 5.6
950t | 60 943 0.210 0.200 0.24 + 0.22]10.085| 136.1 + 4.7
975t | 35 950 0.100 0.931 0.95+ 0.02]10.120] 151.5 + 6.0
975t | 35 950 0.125 0.838 0.78 +0.06]10.120] 149.9 + 7.0
975t | 35 950 0.150 0.476 0.54 +0.21]10.120]| 142.8 + 5.6
975t | 35 950 0.210 0.188 0.06 + 0.03]0.120| 136.1 + 4.7

Table 6.7: Comparison of model results with experimental results on a grade
254SMO stainless steel. All samples underwent a Newtonian heating regime
(T = Tf — ((Tf — Tg)exp(—at))) fully described by the given parameters
a and T. (The symbol i next to a values of Ty denotes that this is
a calculated value. In these cases a measured value was not available
because the short annealing times used meant the temperature of the
sample did not equilibrate)

having a gauge of 0.21 mm lie off the measured values in all cases. The possible explanations
for this are as follows; It may be that the model does not reflect the metallurgy of the sample
(e.g. the nucleation rate calculation is not representative of the true mode of nucleation etc. ).
This is possible, however, in the absence of other plausible methods of nucleation and growth,

it is not likely because the model is behaving well for the sample of gauge 0.21 mm annealed
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Fig. 6.21 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 254SMO stainless steel. Samples were annealed

at a furnace temperature of 975 °C with ¢ = 0.120 for initial strip conditions

illustrated. In all charts the solid line indicates the model’s prediction and

the error bars an experimental datapoint. a) Plot of Number of grains per

unit area (5, against calculated flow stress 0 in the unrecrystallized mate-

rial. b) Plot of Number of grains per unit area (7, against gauge of material.

c) Plot of fraction recrystallized (¢) against calculated flow stress o in the

unrecrystallized material. d) Plot of fraction recrystallized (¢) against gauge

of material
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Fig. 6.22 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 254SMO stainless steel. Samples were annealed

at a furnace temperature of 950 °C with ¢ = 0.085 for initial strip conditions

illustrated. In all charts the solid line indicates the model’s prediction and

the error bars an experimental datapoint. a) Plot of Number of grains per

unit area (5, against calculated flow stress o in the unrecrystallized mate-

rial. b) Plot of Number of grains per unit area (7, against gauge of material.

c) Plot of fraction recrystallized ({) against calculated flow stress o, in the

unrecrystallized material. d) Plot of fraction recrystallized (() against gauge

of material
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Fig. 6.23 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 254SMO stainless steel. Samples were annealed
at a furnace temperature of 950 °C with @ = 0.085. In all charts the solid line
indicates the model’s prediction and the error bars an experimental datapoint.
a) Plot of ( vs time showing classical sigmoidal shape. b) “Avrami plot” of
In(In(1/1-¢))) against In(¢). This plot does not show a distinct transition from
n = 4 to n = 1 because the temperature of the strip is a function of annealing
time, this further time factor blurs observation of the changeover from pseudo-
random nucleation to site saturation. c) The variation of strip temperature

with time (predicted).

at 950 °C . The second possible reason is that 0.21 mm material in the composite sample had
poor thermal contact with the rest of the sample, hence it many have experienced a lower
temperature due to a slower heating rate. This would explain the anomalously low values of
G, and C.

The second point which does not match predicted values is from the sample annealed at
950 °C of gauge 0.125 mm for G, and gauge 0.15 mm for (. Since the material was so thin, it
was very difficult to obtain an accurate value of flow stress, as illustrated in Fig. 6.24.

There is a good deal of overlap between expected hardnesses of each gauge, and within
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Fig. 6.24 Variation of unrecrystallized flow stress with gauge of material.
Measured as an average of 12 micro-hardness indents at a load of 200g travers-

ing the width of the sample

each gauge there was a lot of variation in the measurement.

Moreover the samples were hard to electropolish because of the tendency to dissolve more
at the edges of the sample (Fig. 6.25), making edge observations very difficult. This effect will
be most accentuated for thin gauge samples such as 254SMO.

Before After
elecropolishing electropolishing

F

Preferential
dissolution
at the edges

Sampl
Mount
Fig. 6.25 Illustration of the tendency of the process of electropolishing to give

preferential dissolution of the sample at the edges.

These experimental difficulties will partially explain any deviation from theory. However,
despite this, the trends in the data are reflected well in the model. Moreover as illustrated in
figure 6.26, the model is giving meaningful trends of fraction recrystallized against time and

G, against time.
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This model and Cahn type kinetics in general provide an accurate indication of trends
in the data. They not only provide a good qualitative grasp on the problem, but moreover

provide accurate and meaningful quantitative output and as such, should be of use to the

metallurgist.

6.8.4 Modelling results - type 3041 stainless steel

Output from the model is given tabularly in Table 6.8 and graphically in Figures 6.26 to 6.28.

6.8.4.1 Discussion of model for 304L stainless steel

The fit of the model is acceptable (although not as good as either 904L or 254SMO)
across most rolling reductions and initial flow stresses and shows good transferability between
different temperatures and heating rates.

However, the fit in this case is not as good as for 254SMO or 904L, and in fact in a few
cases (notably for the sample annealed at 960 °C of thickness 0.26 mm) the model is predicting

incorrectly by a factor of up to three!

Fraction recrystallized()

125 ] ] ] ] ] I
02 03 04 05 06 07 08 0.9

Time /s

Fig. 6.28 Variation of unrecrystallized flow stress with gauge of material.
Measured as an average of 12 micro-hardness indents at a load of 200g travers-

ing the width of the sample

As with grade 254SMO, there is a good deal of overlap between hardnesses values for each
gauge because within each gauge there was a lot of variation in the measurement.

Furthermore the problem of preferential dissolution at the edges was also present in 304L
(see figure 6.28), however this was not as pronounced as in 254SMO because the samples of

3041 were, in general, of a thicker gauge than 254SMO.
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Tf t | Final strip T | Gauge | Predicted GG, | Measured G, a Flow stress
/°C | /s /°C / mm / pm~=2 / pm™2 / MPa
8221 1120 795 0.42 0.166 0.18 + 0.04 |0.015]148.0 + 3.5
8221 | 120 795 0.49 0.091 0.07 +£ 0.01 |0.015]143.5 £+ 6.0
8221 | 120 795 0.55 0.040 0.04 + 0.01 |0.015]137.7 + 3.2
8221 | 120 795 0.80 0.014 0.01 +£ 0.01 |0.015]131.7 + 4.1
9601 | 80 822 0.26 0.711 0.35 &£ 0.04 ]0.027]150.6 &£ 5.1
9601 | 80 822 0.49 0.336 0.28 + 0.03 ]0.027]143.5 + 6.0
9601 | 80 822 0.55 0.233 0.25 + 0.02 |0.027]137.7 + 3.2
9601 | 80 822 0.80 0.135 0.14 + 0.03 ]0.027]131.7 + 4.1

T t | Final strip T | Gauge | Predicted ¢ | Measured (| a Flow stress

/°C | /s /°C / mm / MPa

8221 1120 795 0.100 0.95 0.97 + 0.02]0.015] 148.0 + 3.5

8221 1120 795 0.125 0.87 0.92 + 0.06 10.015] 143.5 + 6.0

8221 1120 795 0.150 0.51 0.75 + 0.1910.015 | 137.7 + 3.2

8221 1120 795 0.210 0.20 0.28 + 0.22]0.015 | 131.7 + 4.1

9601 | 80 822 0.100 0.93 0.95 + 0.020.027] 150.6 + 5.1

9601 | 80 822 0.125 0.84 0.78 +£ 0.06 1 0.027 ]| 143.5 + 6.0

9601 | 80 822 0.150 0.48 0.54 + 0.21]10.027] 137.7 + 3.2

9601 | 80 822 0.210 0.19 0.06 +£ 0.0310.027 ] 131.7 + 4.1

Table 6.8: Comparison of model results with experimental results on a

grade 304L stainless steel. All samples underwent a Newtonian heating regime
(T = Tf — ((Tf — Tg)exp(—at))) fully described by the given parameters
a and T. (The symbol i next to a values of Ty denotes that this is
a calculated value. In these cases a measured value was not available
because the short annealing times used meant the temperature of the
sample did not equilibrate)

The main reason for the comparatively poor performance of this model was the interrela-
tionship between fraction recrystallized and nucleation rate. As can be seen in figure 6.28 b),
there is a clear transition from n = 1 to n = 4. Of critical importance is the fact that this
transition occurs approximately half way through the recrystallization process. This will have

a profound effect on the applicability of the Scheil approximation which must be addressed;
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Fig. 6.26 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 304L stainless steel. Samples were annealed at

a furnace temperature of 910 °C with @ = 0.015 for initial strip conditions

illustrated. In all charts the solid line indicates the model’s prediction and

the error bars an experimental datapoint. a) Plot of Number of grains per

unit area (5, against calculated flow stress 0 in the unrecrystallized mate-

rial. b) Plot of Number of grains per unit area (7, against gauge of material.

c) Plot of fraction recrystallized ({) against calculated flow stress o in the

unrecrystallized material. d) Plot of fraction recrystallized (() against gauge

of material
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Fig. 6.27 Graphical representation of output from anisothermal recrystalliza-

tion model trained on a type 304L stainless steel. Samples were annealed at

a furnace temperature of 960 °C with @ = 0.027 for initial strip conditions

illustrated. In all charts the solid line indicates the model’s prediction and

the error bars an experimental datapoint. a) Plot of Number of grains per

unit area (5, against calculated flow stress 0 in the unrecrystallized mate-

rial. b) Plot of Number of grains per unit area (7, against gauge of material.

c) Plot of fraction recrystallized ({) against calculated flow stress o in the

unrecrystallized material. d) Plot of fraction recrystallized (() against gauge

of material
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Fig. 6.28 Graphical representation of output from anisothermal recrystalliza-
tion model trained on a type 304L stainless steel. Samples were annealed at
a furnace temperature of 910 °C with @ = 0.015. In all charts the solid line
indicates the model’s prediction and the error bars an experimental datapoint.
a) Plot of ( vs time showing classical sigmoidal shape. b) “Avrami plot” of
In(In(1/1-€))) against In(¢). This plot does not show a distinct transition from
n = 4 to n = 1 because the temperature of the strip is a function of annealing
time, this further time factor blurs observation of the changeover from pseudo-
random nucleation to site saturation. c¢) The variation of strip temperature

with time (predicted).
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however, firstly experimental evidence that site saturation is not occurring must be gathered.
Evidence for the lack of site saturation in all the samples of 304L stainless steel is available

by inspection of the micrographs shown in Fig. 6.29.

Gauge = 0.42 mm

Gauge = 0.55 mm

Fig. 6.29 Samples of 304L stainless steel annealed for 120 s at a furnace
temperature (7;) of 910 °C . The sample of gauge 0.42 mm shows clear bands
of recrystallized material, however, these bands are not completely filled with
recrystallized grains, therefore it is unlikely that site saturation has occurred,
consequently the Scheil approximation may be invalid. The sample of gauge
0.55 mm shows only a few isolated grains; site saturation has not occurred and

therefore the Scheil approximation will not apply.

The trends in ¢ in the experimental data are reflected in the model, but G, proved to be
impossible to estimate, because the isokinetic assumption is not valid in this case. There is
currently no mathematical modelling technique available to cope with this problem. For this
grade of steel, therefore it would be advisable not to pay credence to calculated values of G,
although there is some success in predicting the value of (. The model does however warn the
observer that (7, calculations will be unreliable. By observing plots of In(In(1/(1-¢))) against
In(#) we see that the value of n changes during the observable progress of the recrystallization
procedure. This means that site saturation is also occurring during the observable progress
of the recrystallization. This observation of the model’s progress implies that the calculated

values of (¢, are unreliable without comparison with experimental observation.

6.9 Transferability and comparison of models

From §6.7 and §6.8, it is clear that the Cahn approach to transformation kinetics is appli-
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cable not only over a range of temperatures, heating rates and initial microstructures within
one grade of steel, it is also applicable across a range of different stainless steels compositions.
Because the chemistry of the steels is known, it may eventually be possible to link the kinetic
theory present in the model to the chemistry of the steels, thereby going some way to produce

a model of recrystallization which is truly transferable across all grades of stainless steels.

To perform this comparison, the thermodynamic fitting factor used to train the model

must be compared. As described in §6.6.1, these fitting factors were:
AS, .. - The difference in entropy between the activated and unrecrystallized states.
AH,,, - The difference in enthalpy between the activated and unrecrystallized states.
G - The driving force independent activation energy of nucleation.
ng - The exponent of dependence between AG and activation energy of nucleation.
vy - The temperature independent attempt frequency of nucleation.

As described by the equations:

B AS, ., AH,, AG
T = é.vexp (T) exp ( 7T ) [1 exp ( RT)] (6.22)
G" =G AG™"¢ (6.27)
N =v;T exp (— RT) (6.24)

The values of the above thermodynamic fitting factors are given in Table 6.9 below.

302 254SMO  904L 3041,
vy [ sTIK! 1.7x10'°% 8.0x10°° 1.3x10"* 8.0x10'2°
G/ J mol™! 2060001 1320000 3540000 2450000

ng 0.21 0.3 0.22 0.055
AH,,, / k] mol™! 450 530 350 250
AS,,.; / kJ mol=! K=' | 6.8x10" 2.6x10'® 1.8x10° 7.0x10*

Table 6.9: Values of thermodynamic fitting factors used in the training of
the model for each steel. | For the 302 stainless steel, data were only
obtainable for on set of initial conditions i.e. a gauge of 0.8mm and
initial hardness of 464.5 HV. This meant that a true value of n cannot
be obtained, n; = 0.2 is an estimate and thereby G = 2060000 .J mol™!

will only be correct if the estimated value of n, is accurate
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6.9.1 Discussion of thermodynamic fitting factors

Since thermodynamic fitting factors such as AH__, have physical meaning, this provides

act
a method of comparison across each of the models produced. For instance AH_, is the differ-
ence in enthalpy (heat energy) between the recrystallized and activated states (Schematically
illustrated as ) in figure 2.3). This process is similar the process of self diffusion (c.f. §6.1),
wherein an atom hops from a lattice point into an activated position between lattice points
and subsequently into an adjacent vacant lattice point. It is therefore intuitively obvious that
the value of AH,, will be of the order of Q).

The activation energy for self diffusion in pure « iron (Kaye and Layby 1986) is quoted as
286 kJ mol~! and in pure v iron as 291.3 4 4.5 (Oikawa 1982). In the above study only 304L

stainless steel has a value of AH__, below this at 250 kJ mol~!. Although for stainless steels

act
and other high alloy metals the energy of self diffusion will be higher that that of pure iron
because of precipitates and solute atom pinning and other interactions between the alloying
elements and the grain boundaries, this cannot, however, account for energies as high as 450
kJ mol~! as observed in the case of the 302 steel.

The values for G and n, are of the order of magnitude expected, however it is not
possible to make any direct comparison because of the different behaviours present in each

steel (i.e. martensitic recession in the case of 302 and lack of site saturation in the case of

304L). In the case of n the expected value lying between 0 and 2 was observed in all cases.

6.10 Summary of kinetics model and thermodynamic factors

The Cahn kinetics model has proven to predict accurate annealing curves for fraction
recrystallized (¢), number of grains per unit area (G,) and grain size over a range of different
rolling reductions, stored energies furnace temperatures and heating rates. The model is based
physically meaningful theories which are mathematically sound. As such this theory has been
proven to be a good starting point towards the ultimate goal of a physical model which, through
metallurgical understanding, is truly transferable across different grades of steel.

It is likely, however that the figures for the thermodynamic fitting factors do not reflect
accurately enough the complex interrelationships between nucleation and growth. Problems
such as different modes of nucleation must be addressed before the transferability of the model

can be guaranteed.

This said, the model as it stands represents a significant advance towards providing a

physical thermodynamic description of the process of recrystallization.
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CHAPTER 7

ASSESSMENT OF INDUSTRIAL DATA

7.1 Applicability of neural network approach.

There are a number of studies in the literature involving the modelling of annealing and
heat treatment processes using neural network approaches (e.g. Kusiak and Wajda 1999).
However, most of these have dealt with purely research tasks, for example, prediction of the
time taken to achieve 50% recrystallization. The work presented in chapter five indicates that,
given a set of input variables which completely describe the system, neural networks can model
highly complicated phenomena such as anisothermal annealing.

However, the model described in chapter five is specific to data from controlled labora-
tory experiments. The neural network used (MacKay 1992) has been designed to cope with
interpolation of noisy data, as would be produced during the industrial process of annealing.

In industrial practice thermocouples are embedded in the walls of the furnace to monitor
the temperature. This indicated temperature is almost certain to differ from the true tem-
perature profile of the furnace, but using this reading, knowing the gauge of the strip and
comparing these with metallurgical knowledge and past experience, the speed at which the
strip should pass through the furnace may be estimated.

This situation is an ideal candidate for neural network modelling. A number of sets of

data from an industrial furnace were therefore analysed using neural network techniques.

7.2 Initial model

Data were supplied from an annealing furnace at Avesta Polarit Ltd., Sheffield, U.K. These
data consisted of a coil composition code, strip gaugej and width, hot-band gaugei, grade of
steel, time of processing, position on the strip at which the sample was taken (i.e. head, middle

or tail) and an output. In this instance there were two different outputs monitored:

i) Final hardness of the strip.

ii) Final grain size of the finished strip.

The hardness was expressed as a Vickers hardness value derived from measurements of

Rockwell hardness and the grain size was expressed as a mean linear intercept determined

i Gauge, in this instance is the thickness of the strip.
i Hot-band gauge is the gauge of material after the hot rolling process but before cold rolling.
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using an ultra-sonic technique. All measurements were made on site at the Avesta Polarit

laboratories.

7.2.1 Problems with dataset

The ultrasonic measuring device works by monitoring the frequencies of ultrasound vi-
brations which are reflected from within the sample. The instrument was accurate to within
approximately 1 ASTM number. There were also problems with ascertaining the exact speed
of the strip and temperature at which the different zones of furnace were set; the nominal
temperature settings are indicated in Table 7.1 and the strip speed is given in Fig. 7.1, both

as a function of strip gauge.

Gauge/ mm Temperature / °C

Zonel | Zone2 | Zone3 | Zone4 | Zone 5 | Zone 6 | Zone 7 | Zone 8 | Zone 9
0.75-4.10] 1100 1120 1100 1180 1200 1180 1170 1190 1170
0.64-0.74] 1100 1120 1100 1160 1180 1160 1150 1170 1150
0.38-0.64] 800 800 800 1160 1180 1160 1150 1170 1150

Table 7.1: The variation of furnace temperature setting with gauge for the

annealing furnace.
70
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Fig. 7.1) The schematic variation of strip speed with gauge for furnace at

Avesta Polarit Ltd.

Modern commercial furnaces are designed to operate continuously, i.e. the end of one
strip is welded to the beginning of the next. This enables the continuous running of the
furnace with a zero stop time for rethreading between coils, thus maximising productivity.
However, this frequently means that two strips of different width and gauge will be welded
together to pass through the furnace. Different strip geometries may then be in the furnace
at the same time. To cope with this, the furnace is run at the settings corresponding to the

hotter and slower specifications. This is to ensure complete recrystallization. These non-ideal
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situations constitute a large proportion of the experimental data available since most samples
were acquired at strip ends. The relative difference between the hot-band gauge and strip gauge

on annealing is an indication of cold rolling reduction and hence, indirectly, stored energy. The

input dataset used in this analysis therefore consisted of:

i) A set of nominal furnace temperatures.

ii) A line speed chosen to allow for any possible variations in gauge.
iii) Strip gauge

iv) Strip width

v) Hot-band gauge

7.2.2 Results from initial model

The results given in this section are for a neural network trained across all different grades
irrespective of their chemistry. The neural network used was the “Bigback5” neural network
developed by MacKay (1992), as outlined in chapter 3 and illustrated in chapter 5. The dataset

used has 524 rows of data each consisting of the following information:

Column 1 - Width of strip in mm

Column 2 - Hot-band gauge in mm

Column 3 - Line gauge in mm (the expected gauge of the material)

Column 4 - Test gauge in mm (the gauge of the material measured after annealing)
Column 5 - Strip speed in m min~!

Columns 6-14 - Indicated temperature of furnace zones 1-9 (Fig. 1.8) in °C

Columns 15-26 - Indicators of stainless steel grade

Column 27 - Qutput (i.e. hardness in HV or grain size in pm)

Columns 15 to 26 effectively define the composition of the stainless steel, using a sin-
gle 1 and eleven zeros to make a unique identification. The grades investigated and their
corresponding column numbers are given in Table 7.2.

A model was first trained to predict recrystallized hardness from the input data described
herewith. The minimum, maximum and standard deviation for each variable are given in
Table 7.3.

The optimum committee consisted of two neural networks of two and three hidden units,
example outputs are given in Fig. 7.2.

It can be seen from Fig. 7.2a), that the fit of the committee model to the experimental

data is moderately good. However there are a few points of concern. Firstly the models chosen
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Column number 15 16 17 18 19 20

Grade of steel 301AJ | 302AS | 302XD | 304AB | 304LP | 304LT

Column number 21 22 23 24 25 26

Grade of steel 316VO | 316XF | 316ZA | 320XB | 321AA | 316VO

Table 7.2: Different grades of stainless steel studied as part of the first neural

network model.

are both relatively simple (two and three hidden units) because the test error and log predic-
tive error were a minimum at an unusually low number of hidden units (c.f. Lalam (2000),
Cole (2000)). However, the plot of the perceived noise in the output (o,) against number of
hidden units follows the expected trend.

To better understand the trends observed in these graphs, values of partial correlation

co-efficients (o,) were compared. The results are given in Fig. 7.3
107

I 2 hidden unit model

7 D 3 hidden unit model

Preceived significand@, )

0- LI IE P I e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Column number

Fig. 7.3 The perceived significance (,,) for each input in the first industrial
neural network model trained to predict hardness. The subject of each column

is given in Table 7.3.

It should be noted that for both models, strip width and hot-band gauge have a low
significance. The process of recrystallization occurs because the cold rolling process introduces
defects into the crystal, these defects provide the driving force for recrystallization (c.f. §1.4).
In general, the more deformation has been applied to the steel, the greater this driving force

will be. The rolling reduction (and hence the amount of deformation) is a function of gauge and
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Column | Minimum | Maximum | Mean | Standard Deviation
1 1019.00 1561.00 |1246.91 195.72
2 2.52 6.14 4.38 1.08
3 0.46 4.04 1.67 0.81
4 0.48 4.12 1.67 0.82
5 16.00 60.00 38.62 13.29
6 800.00 1100.00 | 1095.42 36.82
7 800.00 1120.00 | 1115.11 39.27
8 800.00 1100.00 | 1095.42 36.82
9 1160.00 1180.00 | 1178.70 4.93
10 1180.00 1200.00 | 1198.70 4.93
11 1160.00 1180.00 |1178.70 4.93
12 1150.00 1170.00 | 1168.70 4.93
13 1170.00 1190.00 | 1188.70 4.93
14 1150.00 1170.00 | 1168.70 4.93
15 0.0000 1.0000 0.0153 0.1227
16 0.0000 1.0000 0.0210 0.1435
17 0.0000 1.0000 0.4427 0.4972
18 0.0000 1.0000 0.0782 0.2688
19 0.0000 1.0000 0.0038 0.0617
20 0.0000 1.0000 0.2099 0.4076
21 0.0000 1.0000 0.0038 0.0617
22 0.0000 1.0000 0.0496 0.2174
23 0.0000 1.0000 0.1088 0.3117
24 0.0000 1.0000 0.0382 0.1918
25 0.0000 1.0000 0.0248 0.1557
26 0.0000 1.0000 0.0038 0.0617
27 132.00 187.00 158.42 7.15

Table 7.3: Table showing minimum, maximum, mean and standard deviation

of for each variable, column 27 representing Vickers hardness.

127



Chapter  — ASSLOOMENT OF INDUST hiIAL DATA

35
L - i
2 180_— 30_— ) .
g 1701 25- oo
S 160F S 20
S i 5 i u]
< — 15 o [m] a [m]
© 150 3 B o o o Ho
3 - - r E =] E i
S 140 10| g o Og -
E | L [m] oo [m] ﬁ Ono o E o i
130} 5| o g0 B g ° 0o o
L L g BE HE oo
1201 l l l l l I olLE®O E l 1 l l l l l
120 130 140 150 160 170 180 190 0 2 4 6 8 10 12 14 16 18 20
Measured hardness / HV Number of hidden units
0.10 275
- D -
2 -
2ol
0.08 g% 5 200_‘ o =
oo7 B o 1750 .
| [m] E > 175_ [m] [m] [m] o
o> 0.06}- 8 g 3 150F 5 HBopg
[m]
L 3] E Beo 3 i B o o o
0.05| nEEEﬁEED o B S 1250 oB0 o o,
L oo
0.04 HEBEAEY gt "o, Bog o08%g04
0 751 BRg o8F of
0.03F - d) o ogo o
I 50 o OO
0.02 | | | | | | | 1 1 o5l | | | | | | | 1 1
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Number of hidden units Number of hidden units

Fig. 7.2 Output from first neural network predicting hardness. a) Comparison
of predicted hardness with measured hardness across the whole data-set (error
b) Shows the

variation of test error with number of hidden units. ¢) Shows the variation of

bars include perceived noise in the data and fitting error).

the perceived noise in the normalised hardness (,,) as a function of number of
hidden units. d) Shows the variation of the log predictive error with number

of hidden units

hot-band gauge, therefore any model which deems the effect of these factors to be negligible
does not reflecting the physical metallurgy of the problem.

Moreover, the significance of the temperatures in zones four to nine (Columns 9 to 14) were
negligible according to the 3 hidden unit model. This model assigned a large significance to the
temperature of the first three zones of the furnace (Columns 6 to 9), however it is obvious to
the trained metallurgist that hardness cannot be completely insensitive to variations in furnace
temperature.

Another important feature common to both models was that each column representing
the grade of steel had a relatively low significance. This indicates that the steel grade is not

being used to explain variations in hardness. Since grade of steel is known to have a significant
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effect on annealing properties, it was decided to assess each grade of steel separately to see if

this improves the analysis.

7.2.3 Analysis of individual grades

Considerable data were available for grades 302XD and 304LT. Separate neural networks
were therefore trained for each grade; one to estimate hardness and the other to estimate grain

size.

Since the alloy composition no longer featured as a variable the number of columns of input
data was dramatically reduced. To further reduce this number, it was decided to remove data
from the model pertaining to the furnace temperature in zones 3, 6 and 9. This was possible

because temperatures in these zones were equal to those in zones 1, 4 and 7 respectively.

This produces a different set of input variables:

Columns 1-5 as before

Column 6 - The indicated temperature of furnace zone 1 (figure 1.8) in °C
Column 7 - The indicated temperature of furnace zone 2 (figure 1.8) in °C
Column 8 - The indicated temperature of furnace zone 4 (figure 1.8) in °C
Column 9 - The indicated temperature of furnace zone 5 (figure 1.8) in °C
Column 10 - The indicated temperature of furnace zone 7 (figure 1.8) in °C

Column 11 - The indicated temperature of furnace zone 8 (figure 1.8) in °C

Column 12 - Qutput data (either hardness in HV or grain size in pm)

Details of all the datasets used in this analysis are given in Table 7.4 a—d.

Typical compositions of a type 302 and 304L stainless steels are given in Table 7.5.

Grade | Maximum C Maximum Mn Maximum Si Maximum P Cr Ni
302 0.15 2.00 1.00 0.045 18.00 9.00
304L 0.03 2.00 1.00 0.045 19.00 10.00

Table 7.5: Typical chemical compositions in wt.%

Training of the neural networks was carried out as described in chapter 5, in each case the
optimum number of models in the committee was one, details of these models is given in
Table 7.6. Output from each model is included in figures 7.4 to 7.7. In all the graphs described
in this chapter, the error bars shown include both the fitting error and the perceived noise in

the data.
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Column | Minimum | Maximum | Mean | Std. Dev.
1 1019.00 1540.00 |1230.44] 191.50
2 2.52 6.14 4.20 1.09
3 0.46 4.04 1.51 0.83
4 0.48 4.12 1.51 0.83
5 16.00 60.00 41.79 14.39
6 800.00 1100.00 |1093.10 45.09
7 800.00 1120.00 |1112.64] 48.10
8 1160.00 1180.00 | 1177.13 7.04
9 1180.00 1200.00 | 1197.13 7.04
10 1150.00 1170.00 | 1167.13 7.04
11 1170.00 1190.00 | 1187.13 7.04
12 5.90 9.70 8.1615 0.64

Table 7.4: a) Data used to characterise the grain-size model in type 302XD

stainless steel

7.2.4 Discussion

Although the general trends in the data are well observed, there remain a large number
of outliers. Furthermore the error bars on predicted data are very large, notably in the case
of the hardness prediction for grade 304LT. The fact that the best committee in each case
consisted of a single model is unusual. It was decided that these models provide an insufficient

description of the recrystallization process and must be improved.

As was discussed in chapter 5, the major limiting factors on the ability of a neural network
to predict systematic behaviour in a given system is insufficient information on the trends
therein. Although the current neural network is able to detect noise in the data and train to
ignore it, if noise is detected, this will lead to a very large error bar (as seen in figure 5.1). In a
noisy system such as the industrial data presently being studied, often a large number of data
must be gathered before the noise and trends may be identified by the model. It is possible
that the datasets used in this analysis may be insufficient to do this.

There is also a possible source of error in the indicated value of temperature. Care was
taken to ensure that when two strips were passing through the furnace attached to one another,

the values of temperature and strip speed given to the neural network model was the hotter and
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Column | Minimum | Maximum | Mean | Std. Dev.
1 1019.00 1540.00 |1223.79] 182.05
2 2.52 6.14 4.19 1.08
3 0.46 4.04 1.48 0.81
4 0.48 4.12 1.48 0.81
5 16.00 60.00 42.47 13.82
6 800.00 1100.00 |1091.82 48.97
7 800.00 1120.00 | 1111.28 52.24
8 1160.00 1180.00 | 1177.64 6.47
9 1180.00 1200.00 | 1197.64 6.47
10 1150.00 1170.00 | 1167.64 6.47
11 1170.00 1190.00 | 1187.64 6.47
12 132.00 177.00 158.86 7.75

stainless steel

Table 7.4: b) Data used to characterise the hardness model in type 302XD

Column | Minimum | Maximum | Mean |Std. Dev.
1 1025.00 1558.00 | 1265.59 233.02
2 2.62 6.14 4.61 1.05
3 0.76 3.97 1.94 0.77
4 0.77 4.07 1.94 0.79
5 16.20 57.00 33.26 10.33
6 1160.00 1180.00 | 1178.00 7.04
7 1180.00 1200.00 | 1198.00 7.04
8 1160.00 1180.00 | 1178.00 7.04
9 1150.00 1170.00 | 1168.00 7.04
10 1170.00 1190.00 | 1188.00 7.04
11 1150.00 1170.00 | 1168.00 7.04
12 151.00 170.00 |161.4018] 4.4891

Table 7.4: c) Data used to characterise the grain-size model in type 304LT

stainless steel
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Column | Minimum | Maximum | Mean | Std. Dev.
1 1025.00 1558.00 | 1288.00| 217.58
2 2.6200 6.1400 4.3193 1.06
3 0.6700 3.9700 1.6996 0.78
4 0.7000 4.0500 1.6890 0.78
5 16.2000 60.00 37.7370 12.25
6 1160.00 1180.00 | 1178.00 6.03
7 1180.00 1200.00 | 1198.00 6.03
8 1160.00 1180.00 | 1178.00 6.03
9 1150.00 1170.00 | 1168.00 6.03
10 1170.00 1190.00 | 1188.00 6.03
11 1150.00 1170.00 | 1168.00 6.03
12 6.30 9.70 8.52 0.67

Table 7.4: d) Data used to characterise the hardness model in type 304LT

stainless steel
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Stedl 302XD 304LT
Output Hardness Grainsize Hardness Grainsize
Number of data 174 220 100 112
Number of hidden units 2 2 12 3

Table 7.6: Number of data and number of hidden units in final neural

network model for each steel and target variable

slower values respectively. However, whilst this represents the indicated settings on the furnace,
it does not represent the entire complexity of the system. If we consider two strips, strip 5,
having a gauge 0.65 mm and strip S, having a gauge of 0.60 mm. Under ideal conditions both
of these strips will pass through the furnace at a speed of 60 m min~!, however, strip S, will
require a higher furnace temperature than strip S,. If the two strips were passing through
furnace simultaneously (i.e. they were welded together) then the temperature experienced
would be the hotter of the two temperatures, i.e. the ideal temperature for strip 5;. If 5,
enters the furnace before S, then the furnace will already be at the correct temperature, the
controls will not be altered as the head end of S, enters and the furnace. This means that
S, will undergo the ideal furnace conditions for S,. However if S, enters the furnace first,
then initially the set furnace conditions will be the ideal conditions for S,. When S, enters
the furnace, the controls will be set to the hotter temperature required for S,, however, the
furnace cannot heat up instantly! Therefore the head end of strip S; will experience a gradient
of temperatures spanning the ideal temperatures for either strip.

Because most of the data available was taken at either the head or the tail of the strip, sim-
ply using the indicated furnace temperatures into the neural network is likely to be insufficient
to represent the systematic variation in temperature of the furnace.

A complete revision of the neural network input data was therefore undertaken.

7.3 Second industrial neural network model

To alleviate the problems described in §7.2.4 involving temperature variations, instead
of giving the model direct information about the furnace temperatures, the model was given
information about the gauge of the strip, the gauge of the adjacent strips and the position at
which the measurement was taken. These data contain all the relevant information about how
the furnace temperature controls were manipulated (table 7.1 and figure 7.1).

Again it was decided to train the models using data from only one grade of stainless steel
at a time. The two grades chosen were 302XD and 304LT because, again, these two grades
were the most populous in the dataset. To alleviate the possible problem of telling trends in

the dataset from experimental noise, the number of rows in each dataset was increased by a
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number of hidden units. a) The log predictive error as a function of number
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Steel 302XD 304LT
QOutput Hardness | Grain size | UTS | Hardness | Grain size | UTS
Number of data 2004 1944 2004 1044 1014 1044

Table 7.7: Table showing number of rows of data in each dataset.

factor of approximately 10, the actual sizes of the datasets used are give in Table 7.7:
The columns included in the dataset were as follows as follows:

Column 1 - The final gauge in mm

Column 2 - The width in mm

Column 3 - The hot-band gauge in mm

Column 4 - The gauge of strip immediately preceding the current strip in mm

Column 5 - The gauge of strip immediately after current strip in mm

Column 6 - The position of the measurement on the strip (1 for head or 0 for tail)

Column 7 - Qutput variable (i.e. hardness in HV, grain size in gm or UTS in MPa)
The data for each of each model are summarised in Table 7.8a—f.

Neural network models were trained for each of these datasets in the same manner as in
chapterb, in each case a committee of models was then formed. The number of neural networks

in the optimum committee and the number of hidden units in these are given in Table 7.9:

Steel 302XD 304LT
Output Hardness | Grain size| UTS JHardness |Grain size| UTS
Number of models 6 5 3 4 13 16
Number of hidden units | 4 to 20 8to20 | 5to18 | 5t019 2106 6 to 20
Max ov 0.079 0.124 0.113 0.086 0.131 0.115

Fig. 7.7 Table showing number of models in committees from second neural

network analysis, the spread of hidden units in these models and the maximum

value of perceived noise in the output (o,) in the committee.

Example output from these committees are included in Fig. 7.8.

7.3.1 Discussion

Inspection of graphs Fig. 7.8a—f shows that the fit of the model to the experimental data
is, in general, very poor.
Out of the three outputs modelled (i.e. hardness, grain size and UTS), the best fit, both

visually and in terms of o, was achieved in the hardness model. The comparatively lower

v

value of o, in this case means that the model is detecting less noise in the data i.e. the

output variable shows a lower level of random fluctuation. However this value of o, is still
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Column | Minimum | Maximum | Mean | Std. dev.
1 0.46 4.02 1.50 0.66
2 1019 1546 1257 191
3 2.90 6.13 4.12 0.99
4 0.46 4.03 1.61 0.69
5 0.46 3.33 1.44 0.61
6 0.00 1.00 0.50 0.50
7 5.40 10.30 8.28 0.68

Table 7.8: a) Table showing minimum, maximum and standard deviation in

all columns for neural network predicting grainsize of 302XD stainless steel

Column | Minimum | Maximum | Mean | Std. dev.
1 0.46 4.03 1.51 0.66
2 1019 1546 1255 191
3 2.90 6.30 4.13 0.99
4 0.46 4.04 1.63 0.71
5 0.46 4.04 1.44 0.63
6 0.00 1.00 0.50 0.50
7 135.0 190.0 162.2 6.3

Table 7.8: b) Table showing minimum, maximum and standard deviation in

all columns for neural network predicting hardness of 302XD stainless steel

Column | Minimum | Maximum | Mean | Std. dev.

1 0.46 4.03 1.51 0.66
2 1019 1546 1255 191
3 2.90 6.30 4.12 0.99
4 0.46 4.04 1.63 0.71
5 0.46 4.04 1.44 0.63
6 0.00 1.00 0.50 0.50
7 596 684 635 11

Table 7.8: c) Table showing minimum, maximum and standard deviation in
all columns for neural network predicting ultimate tensile strength (UTS) of
302XD stainless steel
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Column | Minimum | Maximum | Mean | Std. dev.
1 0.47 4.10 1.75 0.70
2 1018 1543 1285 211
3 2.95 6.15 4.43 1.02
4 0.47 4.10 1.55 0.65
5 0.49 4.10 1.90 0.74
6 0.00 1.00 0.50 0.50
7 6.10 10.30 8.71 0.60

Table 7.8: d) Table showing minimum, maximum and standard deviation in

all columns for neural network predicting grainsize of 304LT stainless steel

Column | Minimum | Maximum | Mean | Std. dev.
1 0.47 4.10 1.75 0.70
2 1018 1543 1289 213
3 2.95 6.15 4.44 1.02
4 0.46 4.10 1.61 0.65
5 0.44 4.10 1.87 0.73
6 0.00 1.00 0.50 0.50
7 136.0 185.0 164.0 5.3

Table 7.8: e) Table showing minimum, maximum and standard deviation in

all columns for neural network predicting hardness of 304LT stainless steel

Column | Minimum | Maximum | Mean | Std. dev.
1 0.47 4.10 1.75 0.70
2 1018 1543 1289 212
3 2.95 6.15 4.44 1.02
4 0.46 4.10 1.61 0.65
5 0.44 4.10 1.87 0.73
6 0.00 1.00 0.50 0.50
7 583 670 616 29

Table 7.8: f) Table showing minimum, maximum and standard deviation in
all columns for neural network predicting ultimate tensile strength (UTS) of

304LT stainless steel
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Fig. 7.8 Predicted output against measured output after retraining over the

whole dataset. Error bars are a combination of fitting error and the perceived

noise in the data. a) Hardness committee model for 302XD stainless steel. b)

Hardness committee model for 304LT stainless steel. ¢) Grain size committee
model for 302XD stainless steel. d) Grain size committee model for 304LT
stainless steel. e) UTS committee model for 302XD stainless steel. f) UTS

committee model for 304LT stainless steel.
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several times greater than the majority of examples from the literature (e.g. Cole et al. 2000).
This indicates that there is a large amount of experimental scatter in the case of the hardness
measurements and a very large experimental scatter in the case of the grain size and UTS

measurements.

7.8.1.1 Comparison of first and second models

Comparing the results of the second neural network (Fig. 7.8) with those from the first
(Fig. 7.4-7.7), by visual inspection it might be concluded that the fit of the second model is
poorer than the first. However this is not necessarily the case. Because of the much greater
number of data in the second model, all the points appear as a mass obscuring the true trends
in the data. By selecting 200 points on the graph at random this problem may be alleviated.
To illustrate this, 200 randomly selected points from hardness model for type 302XD stainless
steel have been plotted on Fig. 7.9.

180
170
160
150
140

Predicted hardness / HV

130

120 | | | | | | |
120 130 140 150 160 170 180 190

Measured hardness / HV

Fig. 7.9 Predicted hardness against measured hardness for a type 302XD
stainless steel using only 200 randomly selected points from the dataset of

2004 originally used to retrain the model

Visually there is very little difference between Fig. 7.9 and Fig. 7.6a. However, due to the
different input variables, the second model will have a different structure and hence differences
in the significance of each input (o). The relative significances of each variable for each model
in the hardness committee is given in Fig. 7.10.

From Fig. 7.10 it can be seen that each model very little emphasis is put on the position

on the strip at which the reading was taken (Column 6). Also, in contrast to the initial model
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Perceived significance,,

1 2 3 4 5 6

Column number in input data
Fig. 7.10 Chart showing values of 7, from all models in the final committee,
modelling hardness in type 302XD stainless steel. Each bar represents the
value of 0, from a single model for a single input input variable. There were 6
models in the committee, bars of the same colour represent values of o, from

a single model.

(Fig. 7.3) the hot-band gauge has a non-negligible effect on the final hardness. The hot-band
gauge, together with the final gauge define the rolling reduction and hence the stored energy.
A model which gives the hot-band gauge a negligible significance (as was observed in the initial

model) cannot deal with variations in stored energy and therefore will be of limited use.

For each separate neural network model we see that the most significant column of input
data is for strip gauge (Column 1). This is a metallurgically sound observation. The extent of
recrystallization and recrystallized grain size is expected to be two of the most important factors
controlling hardness. These factors are both strongly influenced by annealing temperature and

time, which, in the industrial process, are both a function of strip gauge.

Therefore in conclusion, although there is little visible difference between the first and
second neural network analyses, the values of o, derived from these models show more emphasis
is put on known metallurgically important phenomena in the second analysis. This indicates
that the second model is more likely to be able to predict well over a wider range of these

metallurgically important variables.
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7.8.1.2 Reason for poor fit

Although there is some degree of fit for the model predicting hardness, the models pre-
dicting grain size and UTS are both very poor.

As was demonstrated in chapter 5, if the output varies systematically with the input data
and that the input data is a complete and comprehensive description of system, the process
of recrystallization may be modelled using neural networks. Therefore the most likely reason
why the model is failing to predict the observed variations in UTS and grain size is that there
is insufficient or random information in the input variables, leading to random fluctuations of
the output variable. By inspection of how each input variable varies with each output variable,
it may be possible to see if input and output show any correlation (method after Lalam, 2000).
This is illustrated in Fig. 7.11-7.16.

By inspection of the charts relating input variables to hardness (Fig. 7.9 and 7.10), it
may be seen that although there is a large spread of possible hardnesses for each value of each
input variable, there is some correlation between input and output variables (e.g. hardness
increases as hot-band gauge increases). However on inspection of the charts relating the input
variables to grain size and UTS, no such correlation is observed for any input or output. This
implies that variation of any such input has a negligible effect on the output variable. This
would explain the poor fit for grain size and UTS as compared with the better fit seen for

hardness.

It has been seen that, although there is a correlation between the hardness and the input
variables, however, there is no such correlation visible for UTS. This goes against the conven-
tional metallurgical thinking that there is a strong correlation between hardness and UTS (e.g.
Boyer and Gall, 1984%) and therefore any observable trends in hardness should be mirrored by
trends in UTS. There are two possible reasons why this relationship has not been observed:

e There is poor control on the measurement of hardness or UTS.
e The relationship is not valid for these materials.

As was previously stated, the hardness of the material is measured as a Rockwell hardness
where a conical indenter in lowered onto the sample and indent size measured. This was then
converted to a Vickers hardness by the use of look-up tables. Since there was an observed

correlation between hardness and each input variable it can be assumed that there is adequate

i In the referenced work, conversions are claimed to be accurate for

...Carbon and alloy
steels in annealed, normalised and quenched-and-tempered conditions. Less accurate for cold

worked condition and austenitic steels...”
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Fig. 7.11 Variation of hardness with different input variable in type 302XD
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preceding strip, e) Gauge of following strip, f) Position of measurement on

strip.
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Fig. 7.12 Variation of hardness with different input variable in type 304LT
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preceding strip, e) Gauge of following strip, f) Position of measurement on

strip.
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control over the measurement of hardness. Flow-stress is measured by performing a simple

tensile test using apparatus illustrated in Fig. 7.17.

////——(Hms———\\\\\\

Sample

Fig. 7.17 Apparatus used for tensile testing.

The sample consists of a strip of material usually cut from either the head or the tail of the
coil which is then mounted on grips and deformed in tension until failure occurs. There are a
number of possible ways in which error may be introduced into this test, including jagged edges
on the sample, poor contact between sample and grip and poor sample mounting. However, the
measurement of UTS is considered to be very reproducible with only a few percent variation
upon repeating tests (Backhouse, private communication). Hence, it is likely that the UTS

results are reliable and therefore the UTS and hardness are varying independently.

7.3.2 Predictions

The criteria set out in §3.1 indicate that a good model must be able to make predictions
which can be verified. Therefore, using the models derived in §7.3, predictions of how each of
the three outputs varied as a function of gauge, strip width and hot-band gauge were made.
The predictions for hardness, grain size and hot-band gauge variations are included in figures
7.16, 7.17 and 7.18 respectively.

As one input variable was changed, the other variables were kept at a constant value.
These values was taken to be the average of that particular input variable over the whole

dataset. These values are given in Table 7.10:

Input Variable || Gauge | Strip width | Hot-band gauge | Gauge of preceding strip | Gauge of following strip

Value 1.51 1255 4.13 1.63 1.44

Table 7.10: Fixed values of input variables used in predictions.

All measurements were assumed to be taken on samples from the head of the strip i.e. the

input value in column 6 was 1.
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The furnace is generally set to produce as constant a value of each output as possible. This
is to provide as reliable a product as possible for the customer. Therefore, it is expected that
the value of each output will vary little with varying gauge. For all three outputs only a small
amount of variation is observed as a function of gauge for gauges less than approximately 2 mm.
Above this value all inputs tend to fluctuate erratically with large error bars, this behaviour
indicates that there is insufficient data in this area to make accurate predictions.
Generally, the furnace temperature and line speed are set as a function of gauge only,
i.e. they are independent of strip width. However, the wider the strip, the higher the thermal
mass it has, although any increase in strip width will have a corresponding increase in surface
area through which heat may be absorbed. Therefore, when a wide strip enters the furnace
after a narrow strip it will cause an increase in heat flux from the furnace. Initially this will
be provided by absorbing heat from the body of the furnace thus cooling it down. Once the
thermocouples embedded in the furnace walls detect this cooling, the heat flux into the furnace
will be increased to compensate. However, this means that the head of a wide sample will not
heat to as high a temperature as the head of narrow sample. Therefore as strip width increases,
the hardness and UTS should both increase at the head of the strip with increasing width,
however grain size should decrease at the head of the strip with increasing width. The expected
trends are only observed in the UTS models and the hardness model for 302XD stainless steel.
Finally, varying the hot-band gauge at constant final gauge is equivalent to varying the
rolling reduction, and hence the stored energy. As stored energy increases, nucleation becomes
easier and hence the grain size (and thereby hardness and UTS) of the resultant steel is
expected to reduce. However, the grain size predicated increases as hot-band gauge increases,
this is evidence of a poor fitting model. Similar behaviour is observed in the prediction of UTS,
however, as the hot-band gauge increases very little variation is observed in the prediction of

hardness.

Overall the predictions for hardness, grain size and UTS do not consistently follow ex-

pected trends in metallurgical behaviour. This behaviour is indicative of a poor fitting model.

7.8.3 Comparison with conventional regression

Conventionally regression techniques focussed on methods such as linear regression, where-
in a dataset, such as is described in §7.3, is best fitted to a linear function. This process is
described in §3.2. For completeness, the dataset from the best fitting model in the second
neural network analysis, (hardness predictions in 302XD stainless steel), was compared with

linear regression. Fitting of this model was done using a least squares technique.
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Using the same dataset as for the neural network, the following equation was derived:

Hardness (HV) = 8.35C, — 0.00152C, — 0.916C,, — 1.57C, — 0.632C); — 0.369C, + 158.94 (7.1)

wherein € is the value in the dataset from the n'® column (as stated at the beginning of §7.3).

Unlike in the neural network techniques, the weights on each variable in the linear regres-
sion technique are not directly comparable. This is because values of the input variables were
not normalised prior to the analysis.

The conventional graph of measured against predicted values is given in Fig. 7.21.
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Fig. 7.21 Linear regression analysis using dataset from second neural network

analysis for hardness in type 302XD stainless steel

By comparing Fig. 7.21 with the neural network prediction of the same dataset (see figure
7.8a)), we see that the fit from conventional regression is extremely poor. Conclusive proof, if

it were needed, that neural networks represent a significant improvement in regression analysis.

7.4 Summary of neural network modelling.

As was demonstrated in chapter 5, given a complete and comprehensive description of
the system of study, non-linear regression techniques, such as neural networks can accurately
predict annealing behaviour.

In this chapter, the neural network modelling technique has been expanded to the mod-
elling of industrial data. Although the first set of models seemed to produce a fairly accurate
description of the experimental dataset, doubts were cast over whether or not they were ac-

tually capturing the trends in the data as they directly related to physical metallurgy of the
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situation. Moreover, if these models are to be applied they must be trained directly from indus-
trial data. The production of a dataset giving actual set line speed and actual indicated furnace
temperature from a list of grades, gauges and a running schedule is non-trivial. Production of
the datasets used in this analysis took upwards of 1 week to prepare, this is unacceptable in
an industrial situation.

The second neural network analysis therefore used a greatly simplified dataset which was
adapted directly from the data available to the operator of the furnace and by which the
nominal furnace conditions are set. Despite this simplification, this second dataset contained
all the information included in the first. The revised neural network, having a greatly reduced
number of columns of input data represents a significant reduction in training time.

By inspection of values of ¢, derived from the second neural network analysis we see that
the model deemed known metallurgically important factors, such as rolling reduction, to be
significant. This would suggest that the model is capturing trends in the data as they relate
to the physical metallurgy of the situation.

However, not all models showed an acceptable degree of fit. The fit of the models illus-
trated in figures 7.8e and 7.8f, showing the predictions for UTS behaviour, are very poor. The
most probable reason for this was that the input dataset did not have sufficient information
to fully describe the development of the UTS. As was described in §7.3.1.2 factors such as test
conditions also may have an effect on the final value of UTS. Other possible inputs such as
the chemical analysis of each coil of stainless steel is routinely measured. However, in this
study it was not possible to correlate data from the furnaces with their respective chemical
compositions.

Predictions from the current models were produced and compared with the trends ex-
pected. These trends were not generally observed. This is further evidence that the input
dataset was insufficient to fully train a regression model.

Further work on in this area should employ a greatly expanded dataset including not only
what is available to the operator of the machine but also all other available data. This would
clarify what advantage would be gained by increasing the complexity of control during the an-
nealing cycle. A more complete dataset would include such factors as; Chemical composition
which, although it varies very little within one grade of steel, this small variation may have
a significant effect on the final mechanical properties, e.g. the chemistry of a strip is a crit-
ical factor determining how much strain induced martensite is produced, hence affecting the
hardness and UTS. The presence (or absence) and rolling reduction of a “pinch pass” during

which the steel is given a small rolling reduction after the final anneal to improve surface finish
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and strip flatness. This information was not readily available for inclusion into the dataset.
UTS and other measurements are taken after this operation. Since this happens downstream
from the annealing process the furnace operator cannot know if it is to occur, therefore it can
play no part in a furnace control model. However, it may prove to be a significant source of
variation in the final measured UTS and therefore could be included in a model to predict UTS
after the completion of the production cycle. Also such factors as rolling history and number
of passes used prior to annealing, emissivity and surface finish of the steel and, if such things
could be properly quantified initial microstructure and furnace atmosphere should be included

in the input dataset.

Finally, and for completeness, a linear regression model was produced describing the hard-
ness variation of type 302XD stainless steel. Linear regression was shown to be vastly inferior

to neural network regression.

158



Chapter — SUMMARY AND SUGGESTIONS rOn rvlUnts WORK

CHAPTER 8

SUMMARY AND SUGGESTIONS FOR FUTURE WORK

8.1 Summary of kinetic modelling

The research presented in this thesis was undertaken with the aim of creating a model for
the recrystallization of deformed austenitic stainless steel during a continuous annealing cycle.

A survey of the literature indicated that there has been a great deal of work published
on the analysis of isothermal recrystallization using what is commonly known as “Avrami the-
ory”. The theory incorporates nucleation growth and hard impingement effects. It is suited
particularly to recrystallization where the parent and product phases have the same chemical
composition such that soft impingement effects may be completely neglected. Growth involves
the uncoordinated transfer of atoms across the phase interface under the action of a driving
force which is provided by the elimination of defects created during deformation. It is found
that a representative way of expressing this driving force is through the experimentally mea-
sured flow stress of austenitic stainless steels as a function of the extent of rolling deformation
and chemical composition.

There are a number of models describing the nucleation of recrystallization. Owing to
the observed absence of dislocation cell structures in the austenitic stainless steels studied,
the strain induced grain boundary migration (SIGBM) model was selected as the most useful
in the present context. Experimental observations indicated that nucleation tended to occur
most frequently at the grain boundaries of the original undeformed microstructure. Owing to
this observation and the fact that the Avrami exponent n has frequently been found to have
a value of unity, it was decided to account for this nucleation site preference in the Avrami
theory for the anisothermal recrystallization problem.

Such a theory was published by Cahn in 1956 but has only rarely been applied to the
recrystalliztion problem. The theory essentially applies the extended space concept twice first
to cope with particles forming as a grain boundary plane and hence eliminating that boundary
from further participation of that boundary in the recrystallization process. Secondly, allowing
for impingement between particles which have originated from different grain boundaries.

One consequence is that the Avrami exponent can change towards unity during the course
of the reaction. When grain boundaries are decorated completely with recrystallized material,
nucleation ceases and growth essentially becomes one dimensional. This ‘site saturation’ also

permits the rigourous application of the Schiel rule in adapting the overall transformation
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kinetics theory to anisothermal heat treatments.

Once the heating section of the thermal cycle was included in the model (using Newtonian
heating), it was possible to accurately account for and model the observed evolutions of number
of grains per unit area and fraction recrystallized. This was modelling technique was extended
over four different types of steel.

There was a good deal of success in the modelling of the chosen parameters, however there
were some shortcomings in the model. Firstly, the present work does not take into account
the possibility of recovery effects which may be significant at sufficiently low heating rates.
The influence of such effects could be investigated in the future by annealing samples at low
temperatures to induce recovery without recrystallization. Secondly there was a failure to
predict the number of grains per unit area in the case of the type 316 stainless steel. This was
traced down to the inability of the Schiel rule to cope with conditions that are not isokinetic.
The model must be used with extreme caution in these circumstances, although it does give an
indication that the isokinetic condition is not met. Thirdly, the function used for nucleation
(SIGBM) does not appear to be applicable to all of the steels studied, particularly those which
form a strain induced martensite phase. Nucleation is, and for the foreseeable future will
remain, the most difficult and controversial subject in the kinetic modelling of stainless steels.
The different models discussed in chapter 2 go some way towards the provision of a universal
model, however this goal has not yet been reached. Finally, the thermodynamic fitting factors
obtained for each model vary greatly. The most likely explanation for this is that the dataset
used in the training of the models was not sufficiently accurate and diverse. For the model
to be of academic and commercial use, these data must be refined so that the calculated
thermodynamic factors obtain more rational values. Only then can the further progression
towards making the model truly transferrable across steels of different chemical composition
be made.

Despite these difficulties, it has been proven that this approach provides a significant step

forward in the modelling of recrystallization.

8.2 Summary of empirical modelling

Empirical modelling involves the fitting of data from prior experience to form a model
which, although not based on physical metallurgy, may predict the behaviour of the system
studied. There are a number of different data fitting techniques available, however it was
demonstrated in chapter 5 that neural networks, when correctly applied, are an adequate

description of the recrystallization process.
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Chapter 5 dealt entirely with the application of neural networks to well controlled labora-
tory data, this not only validated the approach but also highlighted certain potential pitfalls
and secondary information which can be gathered. It was seen that without the inclusion of
the heating rate in the analysis, the model fitted poorly. This highlights that it is essential not
only to have accurate data, but that the dataset must be a comprehensive description of the
problem at hand.

The production of stainless steel strip involves the passage of cold deformed material
through a series of furnaces. The desired properties are achieved by setting a number of
control parameters. Assuming that it is these parameters which determine the final properties
of the steel studied, it should be possible to produce an empirical model which expresses the
influence of the parameters on a quantitative basis, useful in industrial practice.

Neural network models to describe the grain size, hardness and UTS of industrially manu-
factured stainless steel according to the control parameters used during their production were
produced. The primary observation was that with such a complex problem and noisy dataset,
a large number of data are required to produce an accurate model.

Particular success was achieved in the modelling of hardness, however the models for grain
size and UTS were less successful. This is a cause for concern because, conventionally, hardness

and UTS have been considered to vary proportionally to each other.

8.3 Future work for kinetic theory model

The kinetic theory model has been demonstrated to be applicable to the problem of
recrystallization. However there remain a number of problems with the method yet to be
solved. These were outlined in §8.1.

The model would benefit from more work into the effect of recovery on the driving force for
recrystallization. The heating stage of the annealing process may well be causing annihilation
and a degree of polygonisation in the material before it recrystallizes. The rate of recovery and
the relative temperatures at which recrystallization and recovery start will almost certainly
vary with chemical composition. It will be important to not only calculate the relative start
temperatures of recovery and recrystallization for each steel, but also how these temperatures
vary with chemical composition so that the recovery may be truly integrated into a transferable
model.

When the isokinetic approximation is contravened, the Schiel rule will fail to give mean-
ingful answers. There is currently no mathematical framework available to cope with this

problem. It would be useful to incorporate a number of warning flags so that software opera-
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tors can see that the model is giving misleading answers. These warnings would be flagged up
if nucleation and significant quantities of growth were observed simultaneously, i.e. ¢ would
be significantly above zero whilst n still had a value of 4.

Nucleation remains a difficult problem. Possibly the most pressing problem for this study
is the question of the reversion of martensite contributing to the nucleation of recrystallization.
This will also have an influence on the hardness and hence on the calculated stored energy, this
may lead to a profound change in the calculated values of the thermodynamic fitting factors.
Also in these instances the SIGBM model may not be valid. Nucleation remains the most
contentious and difficult to quantify parameter in any model of recrystallization.

The disparate values of the thermodynamic fitting factors remains a worrying problem.
This can best be addresses by more work into expanding the size of the dataset and resolving
the issue of exactly what mechanism for nucleation is predominating in each steel. It may also
be worth separating out steels which form strain induced martensite from those that do not and
considering them separately with a separate model for nucleation for each each with its own

values of thermodynamic fitting factors tailored to suit the applicable nucleation mechanism.

8.4 Future work for neural network model

It is clear from the models of UTS that there is some distance to go before this model
is well controlled enough to be applied to a production situation. It is doubtful that simply
increasing the number of data in the dataset will improve this, it is more likely that there are
other factors which control the UTS that are not included in the input data.

Future studies must therefore increase the breadth of the input dataset. This should
include factors such as the deformation history of the sample, the initial grain size before
rolling, a more accurate description of the chemical composition and possibly other factors
such as which shift were on duty when the readings were taken (i.e. the possible variations
due to human involvement during measuring input and target data).

Currently chemical data and deformation history are not routinely fed into the input
parameters for furnace control, however, the facilities to do so exist. The first step in the
future development of the neural network model should therefore be their inclusion in the
dataset. Should these be insufficient to correct the poor fit of the UTS model, then grain size
of the metal prior to rolling would also be a useful input and the installation of apparatus to

measure it should be considered.
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APPENDIX 1

FORTRAN77 CODE FOR KINETIC MODEL

The kinetic models based on overall transformation kinetics and Cahn modified overall
transformation kinetics were all pragrammed using FORTRAN77 programming language. The
final version of the most advanced model (anisothermal Cahn modified overall transformation
kinetics model, as discribed in §6.5-§6.7. The model described herein has been trained for
a type 302A A stainless steel. However, the same code was used when training all the other

types of stainless steel

A1.1 The anisothermal recrystallization model — 302A A .for

C
C Anisothermal multifactor recrystallization program
C (C) 1999 G Hopkin & H Bhadeshia
C
C
C
C
C This program assumes spherical grains - i.e. shape factor of 4.188
C
C
IMPLICIT DOUBLE PRECISION (A-Y)
C CHARACTER#*1 ZED

OPEN(11,FILE=’/users/gareth/recrystmodel/defaults10’)
OPEN(3,FILE="302AA report’)
OPEN(9,FILE=’>302AA_CHECKER’)
OPEN(4,FILE=’302AA progress’)
OPEN(2,FILE="302AA observables’)
WRITE (4,959) "X","TIMRUN","TIMTOT", "TMPRUN" ,"N"
& "RXDIA", "LN(TIMTOT)", "LN(LN(1/(1-X)))"
WRITE (2,961) "X", "Strip Temp.", " RX Grain Diam."
&,"Time","Grains/Micron~2"
961 FORMAT (A15,A15,A15,A12,A15)
962 FORMAT (F15.10,F15.0,F17.13,X,X,F10.2,X,F15.12)
WRITE (6,*)
WRITE (6,*)
WRITE (6,*) ’RECRYSTALLIZATION PROGRAM - Gareth Hopkin’
WRITE (6,*)
WRITE (6,*)
WRITE (6,*)
READ (11,*) SIGFLOW
READ (11,%*) G
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READ (11,%) D
READ (11,*) GAMMA
READ (11,*) REDN
READ (11,*) TWOQ
READ (11,*) VOLFRAC
READ (11,*) RADPART
READ (11,*) EDSORT
WRITE (6,*) ’Please input Time into recrystallization’
CALL REED (TIME)
WRITE (6,%)
WRITE (6,*) ’Please input Furnace Temperature’
CALL REED (T)
T =T + 273D0
HEADER = 1.0DO
WRITE (6,%)
WRITE (6,*) ’ Input gauage of materials in mm’
CALL REED (GUAGE)
WRITE (6,%)
WRITE (6,*) ’Please indicate whether sample touches furnace’
WRITE (6,*) ’1 for YES and 2 for NO’
CALL REED (ATC)
IF (ATC .EQ. 1.0d0) THEN
ATC = (0.07DO/GUAGE)*0.8D0
WRITE (6,*) ’SAMPLE TOUCHING SELECTED!!!!!’
ELSE
ATC = (0.035D0/GUAGE)*0.8D0
WRITE (6,*) ’Standard sample selected’
END IF
WRITE (6,%)
WRITE (6,%)

XCOLD =1.0DO

BOTTIM =0.0DO

FORMAT (A4,A42,A12)

FORMAT (A4,A42,F10.4,A12)

WRITE (6,101) ’Ref’,’Property’,’Value’

WRITE (6,%)

CALL DGCALC (DG,SIGFLOW,G,VOLFRAC,GAMMA,RADPART)

GSTAR = 25000D0* (5D0**2) / (DG**2D0)

WRITE (6,102) °’1’,’Flow Stress =’,SIGFLOW/1000000D0,’M Pa’

WRITE (6,102) °’2’,’Shear Modulus =’,G/1000000000D0,’G Pa’

WRITE (6,102) ’3’,’Mean linear intercept before rolling =’
,D*¥1000000, ’Microns’

WRITE (6,102) ’4’,’Incoherent Grain Boundary Energy =’,GAMMA

& ,’J m™-2’

WRITE (6,102) ’5’,’Activation Energy for self diffusion =’,

& TWOQ/1000D0 , ’kJ mol~-1°

WRITE (6,102) °’6’,’Volume Fraction of Included Particles =7,

& VOLFRAC

WRITE (6,102) °7’,’Mean Radius of Included Particles =7,

& RADPART*1000000D0O , ’Microns’
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WRITE (6,102) ’8’,’Temperature of Furnace=’,T - 273D0,’Centigrade’
WRITE (6,102) ’9’,’Time of Recrystallization =’,TIME,’Seconds’
WRITE (6,102) ’10’,’Rolling Reduction =’ ,REDN#100DO,’%’

WRITE (6,102) ’11’,’Gauage (thickness) of material =’,GUAGE,’mm’
WRITE (6,%*)

WRITE (6,102) °11’,’RESTORE DEFAULT VALUES’

WRITE (6,102) ’999°,’STOP!’

WRITE (6,102) ’0’ ,’RUN THE PROGRAM!’

WRITE (6,%)

WRITE (6,%) C

WRITE (6,*) °’PLEASE INPUT ’’Ref’’ NUMBER TO CHANGE VALUE’

CALL REED (WOT)
WRITE (6,%)
WRITE (6,%)
IF (WOT .EQ. 11) THEN
WRITE (6,*) ’Please input Gauage (thickness) of material’
WRITE (6,%)
CALL REED (GUAGE)
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 1) THEN
WRITE (6,*) ’Please input Flow Stress in M pa’
WRITE (6,%)
CALL REED (SIGFLOW)
SIGFLOW = SIGFLOW*1000000DO
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 2) THEN
WRITE (6,*) ’Please input Shear Modulus in G Pa’
WRITE (6,%)
CALL REED (G)
G = G*x1000000000D0O
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 3) THEN
WRITE (6,*) ’Please input Grain size in Microns’
WRITE (6,%)
CALL REED (D)
D = D/1000000DO
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 4) THEN
WRITE (6,*) ’Please input Grain Boundary energy in Jm~-2’
WRITE (6,%)
CALL REED (GAMMA)
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 5) THEN
WRITE (6,*) ’Please input Self Diffusion Activation Energy’
WRITE (6,#%) ’in kJ mol"-1°

165



Appenair I — FORLIRANT CODLE 1O RINETTC MODEL

WRITE (6,%)
CALL REED (TWOQ)
TWOQ = TWOQ+*1000DO
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 6) THEN
WRITE (6,*) ’Please input Volume Fraction of Particles’
WRITE (6,%)
CALL REED (VOLFRAC)
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 7) THEN
WRITE (6,*) ’Please input Particle Radius in Microns’
WRITE (6,%)
CALL REED (RADPART)
RADPART = RADPART/1000000DO
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 8) THEN
WRITE (6,*) ’Please input Furnace Temperature in Centigrade’
WRITE (6,%)
CALL REED (T)
T=T+ 273
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 9) THEN
WRITE (6,%)
WRITE (6,*) ’Please input Time in Seconds’
WRITE (6,%)
CALL REED (TIME)
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 10) THEN
WRITE (6,%)
WRITE (6,*) ’Please input rolling reduction in %’
WRITE (6,%)
CALL REED (REDN)
REDN=REDN/100DO
WRITE (6,%)
GOTO 105
ELSE IF (WOT .EQ. 11) THEN
WRITE (6,*) ’ Restoring from internal values’
G = 84000000000D0
D = 20D0/1000000D0
GAMMA = 0.5DO
GSTAR = 50000D0
REDN =.75D0
TWOQ = 286000D0
VOLFRAC = 0.005D0
RADPART .1D0/1000000D0
GOTO 100
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ELSE IF (WOT .EQ. 999) THEN
PAUSE
WRITE (6,%) ’ °
WRITE (6,%)
GOTO 105

ELSE IF (WOT .EQ. 0) THEN
GOTO 104

ELSE
WRITE (6,%)
WRITE (6,*) ’Not Recognised’
WRITE (6,%)
GOTO 103

ENDIF

104 Q = TWOQ/2DO

0202020208000 000000 00000000 0R0RER 00000 0R0
c

C NEW ANISOTHERMAL MAIN PROGRAM - 4th VERSION 4/8/99

c
0202020080000 000000 00 R R0 00 0R0RER 00000 0R0,
c

C

TSTP = 0.05

C
TJMP = TIME/100DO
CHOOSE = 1DO
TIMRUN = 0.0DO
TOTTIM = 0.0DO
TMPMIN = 30D0+273DO

CALL TEMPC (TOTTIM,T,CHOOSE,TMPRUN,TMPMIN,ATC,GUAGE)
C THIS IS THE AMIBIENT TEMPERATURE OUTSIDE THE FURNACE

C
CALL GBPUVP (GBPUV,D,REDN)
CALL DGCALC (DG,SIGFLOW,G,VOLFRAC,GAMMA ,RADPART)
CALL GSTARC (GSTAR,DG,GAMMA)

C

C

953  FORMAT (F8.6,F15.8,F15.8,F15.3,E15.8,F15.12,F15.10,F15.10)
959  FORMAT (A8,A15,A15,A15,A15,A15,A15,A15)
960  CALL VELCALC (VEL,Q,TMPRUN,DG,EDSORT)
CALL NEUNCALC (NEUN,D,GAMMA,TMPRUN)
CALL NDOTCALC (NDOT,NEUN,GSTAR,TMPRUN,DG)
IF (NDOT .EQ. 0.0DO) THEN
WRITE (6,%) ’NUCLEATION IMPOSSIBLE’
GOTO 100
ENDIF
CALL ABCALC (NDOT,VEL,TIMRUN,AB)
CALL INTEGRAL (AB,INT)
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CALL BBP (NDOT,GBPUV,VEL,BB)

CALL XCALC (AB,BB,INT,X)
CALL NARXDC (TSTP,NDOT,VEL,RXDIA,GBPUV,XRUN,NRUN,X)

IF (BOTTIM .GE. TJMP) THEN
WRITE (4,953) X, TIMRUN,TOTTIM, TMPRUN , NRUN,RXDIA,
& DLOG(TOTTIM) ,DLOG(DLOG(1.0D0/(1.0D0-X)))
WRITE (2,962) X,TMPRUN,RXDIA,TOTTIM, ((NRUN*GBPUV)
& *%(2.0D0/3.0D0))*1.0D-12
BOTTIM=0.0DO
ELSE
BOTTIM=BOTTIM+TSTP
ENDIF

FC=1.0DO
TIMRUN = TIMRUN + TSTP
TOTTIM = TOTTIM + TSTP
IF (TOTTIM .GE. TIME+TSTP) THEN
GOTO 952
ENDIF
CALL TEMPC (TOTTIM,T,CHOOSE,TMPRUN,TMPMIN,ATC,GUAGE)

IF (X .LT. 1.0D-12) THEN
TIMRUN = 0.0DO
GOTO 951
END IF
TIMRUN = TIMRUN - TSTP
955 CALL VELCALC (VEL,Q,TMPRUN,DG,EDSORT)
CALL NDOTCALC (NDOT,NEUN,GSTAR,TMPRUN,DG)
CALL BBP (NDOT,GBPUV,VEL,BB)
956 CALL ABCALC (NDOT,VEL,TIMRUN,AB)
CALL INTEGRAL (AB,INT)
HEELNX=1.0DO

Q

CALL XCALC (AB,BB,INT,XCHECK)

This bit sees if Xcheck is within 1% of X and if so accepts the current
value of timrun

QOO0

XCMX = XCHECK-X

XMXC = X-XCHECK

IF (XCMX .LT. XMXC) THEN
XTHING = XMXC

ELSE
XTHING = XCMX

ENDIF
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XTHING = XTHING/X

IF (XTHING .LT. 0.01D0O) THEN
FC =FC*%2.0D0O
GOTO 951

END IF

957 FORMAT (F19.15,F19.15,F15.6,F15.0)
C write (9,957) x,xcheck ,timrun ,fc
HELEN = X-XCHECK
AONE= (X-XCHECK)**2.0DO
ATWO = (XOLD-XCOLD)**2.0DO
GRUFF= (AONE-ATWO)
IF (GRUFF .GT. 1D-80) THEN
FC = FC/50.0D0
HEELNX=2.0DO
ENDIF
IF ((X .LT. 0.000002D0) .AND. (HEELNX .EQ. 1.0D0)) THEN
HELEN=HELEN*1000DO
ENDIF
IF (X .GT. 0.08D0) THEN
HELEN=HELEN/1000.0DO
ENDIF
FACTOR
TIMRUN
X0LD = X
FC = FC +1DO
XCOLD = XCHECK
GOTO 956

(1DO +(HELEN) ) **FC
TIMRUN * FACTOR

Q

951 TIMRUN = TIMRUN+TSTP
GOTO 960

aQ QO

952  WRITE (3,101) ’Ref’,’Property’,’Value’

WRITE (3,%)

WRITE (3,102) °’1’,’Flow Stress =’,SIGFLOW/1000000D0, M pa’

WRITE (3,102) °’2’,’Shear Modulus =’,G/1000000000D0,’G Pa’

WRITE (3,102) ’3’,’Grain Size before rolling =’ ,D*1000000,
& ’Microns’

WRITE (3,102) ’4’,’Incoherent Grain Boundary Energy =’,GAMMA
& ,’] mm-2°

WRITE (3,102) ’ ’,’Activation Energy for Nucleation =’,GSTAR/1000
& , ’kJ mol™-1’

WRITE (3,102) ’5’,’Activation Energy for self diffusion =’,
& TWOQ/1000D0 , ’kJ mol~-1’

WRITE (3,102) °’6’,°’Volume Fraction of Included Particles =7,
& VOLFRAC
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WRITE (3,102) °7’,’Mean Radius of Included Particles =’,
& RADPART#1000000D0 , ’Microns’
WRITE (3,102) ’8’,’Temperature =’,T-273D0,’Centigrade’
WRITE (3,102) ’9’,’Time of Recrystallization =’,TIME,’Seconds’
WRITE (3,102) ’10’,’Rolling Reduction =’ REDN#*100DO, *%’
WRITE (3,%*)

WRITE (3,*) ’VEL  =’,VEL
WRITE (3,*) ’NDOT =’,NDOT
WRITE (3,*) ’AB =’ ,AB
WRITE (3,*) ’BB =’,BB
WRITE (3,*) ’INT =’,INT
WRITE (3,*) ’GBPUV =’,GBPUV
WRITE (3,*) ’DG =’ ,DG
END
C
C
C
(0 000 0 0 0
(O 0000 00 0
(O 0000 00 0
Crommmmymmmm ey SUBROUTINES START HERE"~~~~~~rwvrrwvvroevwoyeoes
(00000 0000000 0000000000000 0000000 0000000000000 0 00 0 0
(0 0 0
(5 00 0 0
C N CALC AND RXDIA CALC
C
C
SUBROUTINE NARXDC (TIME,NDOT,VEL,RXDIA,GBPUV,XRUN,NRUN,X)
DOUBLE PRECISION TIME,NDOT,VEL,RXDIA,GBPUV,XRUN,NRUN,X
DOUBLE PRECISION NRUN,TSTEP,RXVOL,XRUN,TEQUIV
C
C
C TIME is the time into the anneal NOT the total annealing time
NRUN = NRUN+(NDOT*TSTEP*(1.0DO-XRUN))
TEQUIV = (3.0d0*(DLOG(1.0DO-XRUN))/(-3.1415926536D0*NDOT*VEL*VEL) )
TEQUIV = TEQUIV**(0.33333333333333333333D0)
IF ((VEL*NDOT) .EQ. 0.0DO) THEN
TEQUIV = 0.0DO
ENDIF
TSTEP= TIME/100DO
TRUN =0DO
DO WHILE (TRUN .LT. TIME)
TRUN = TRUN +TSTEP
TEQUIV = TEQUIV +TSTEP
XRUN = (1DO- DEXP(-(3.14159D0*NDOT*VEL*VEL*
& (TEQUIV*%3.0D0))/3.0D0))
C write (22,%) xrun , trun
END DO
C
C

RXVOL = X/(NRUN*GBPUV)
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RXDIA = 2.0DO*((3.0DO*RXVOL)/(4.0D0*3.14159D0))
& **(0.33333333333333333D0)

C write (21,*) tequiv,tstep,testre
C

RETURN

END
C
(B
C X CALCULATING SUBROUTINE
C

SUBROUTINE XCALC (AB,BB,INT,X)
DOUBLE PRECISION AB,BB,INT,X

AT T L L LT LU UL LR A AL L

C
C
C
C THIS DOES THE CALCULATION OF ZETA (X)
C
C
C

X = 1 - DEXP(-(BB**(-0.33333333333D0) ) *AB*INT)

C
C
AT LR L L LA L LV
RETURN
END
C
C
¢-———————————————
C
C
SUBROUTINE TEMPC (TIME,T,CHOOSE,TMPRUN,TMPMIN,ATC)
DOUBLE PRECISION TIME,T,CHOOSE,TMPRUN,TMPMIN,ATC
C This subroutine is currently based on a Newtonian heating regime
C 1i.e. interface controlled. and uses the equation:
C T=7To - (To - Ts)*exp(-A * time)
C T is the current temperature (TMPRUN)
C To is the furnace temperatre (T)
C Ts is the start temperature (TMPMIN)
C A is an experimentally obtained parameter = 0.035 in my studies for
C Non-contact (industrial heating) however 0.075 for some samples
C
C Choose is currently unused but is in position should I ever wish
C to encorporate a choice of heating regimes
TMPRUN = T - ((T-TMPMIN)*DEXP(-ATC*TIME))
RETURN
END
C
C _______________________________________________________________
C ________________________________________________________________________

SUBROUTINE REED (B)
DOUBLE PRECISION B
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996 READ (*,*,ERR=999) B

WRITE (6,%*)

GOTO 998

999 WRITE (*,997)
997 FORMAT (19X, ’INCORRECT INPUT TRY AGAIN!’/)

GOTO 996
998 RETURN

END

DRIVING FORCE (DG) CALCULATION SUBROUTINE
BASED ON PAGE 17 OF H&H

QO QO

SUBROUTINE DGCALC (DG,SIGFLOW,G,VOLFRAC,GAMMA,RADPART)
REAL*8 DG,SIGFLOW,G,VOLFRAC,GAMMA ,RADPART
DG = ((2DO*(SIGFLOW*#*2D0))/G) - ((3DO*VOLFRAC*GAMMA)/
& (2DO*RADPART))
C CONVERSION BETWEEN J M-3 AND J mol-1
DG = DG*(7.06D-6)
RETURN
END

C GROWTH RATE SUBROUTINE
SUBROUTINE VELCALC (A,B,C,D,E)
Ca=vel ,b=Q , c=T, d=delta G, e = edsort
DOUBLE PRECISION A,B,C,D,E
A = Ex3.2D0%*2.0837D0*C*(2.718281828D0** (~-B/ (8.314D0*C)))*
&(1-(2.718281828D0**(-D/(8.314D0%*C))))

¢ WRITE (6,%*) A,B,C,D
C WRITE (6,*) ’test’
C ***MOTHBALLED#*** 2034 IS A PRODUCT OF DELTA & NEU - SEE BHADESHIA & SHA
C ***FIXED VALUE OF delta.nu NOT PHYSICAL - SEE PAGE 62 OF THESIS#**
RETURN
END
C ________________________________________________________________________
C
C CALCULATION OF AB AS GIVEN BY CHRISTIAN PAGE 527
C
SUBROUTINE ABCALC (NDOT,VEL,TIME,AB)
REAL*8 NDOT,VEL,TIME,AB
AB = ((NDOT# (VEL#%2D0))**0.333333333333333D0) *TIME
RETURN
END
C ________________________________________________________________________
C
C A SUBROUTINE TO EVALUATE THE INTEGRAL ON P. 527 OF CHRISTIAN
C

SUBROUTINE INTEGRAL (AB,INT)
REAL*8 AB,XI,INT,RUNTOT
PI = 3.141592654D0

172



(@

(@

Q0O

(@

NN EYHYEY!

Appenarx 1 — rORLT AN CODE O fANLETTC MODEL

RUNTOT = 0.0DO
XI = 0.0DO
DO WHILE (XI .LE. 1.0DO)
RUNTOT = RUNTOT + 1 - DEXP((-3.141592654D0/3)* (AB**3D0)*
& (1 - (3DO*(XI**2D0)) + (2D0*(XI**3D0))))
XI = XI + 0.01DO
END DO
INT = RUNTOT / 100DO
RETURN
END

TO CALCULATE THE GRAIN BOUNDARY AREA PER UNIT VOLUME
BASED ON A TETRAKAIDECAHEDRON

ok ok ok ok ko ook ok ok sk ook ook ok ok sk ok ok ok ok ook skok sk ok ko ok ok ok ok ok
REDONE COMPLETELY USING MEAN LINEAR INTERCEPT 19/5/99
sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok sk ok ok ok sk ok ok ok s ok sk ok ok ok sk ok ok ok ok ok ok
SUBROUTINE GBPUVP (GBPUV,D,REDN)
DOUBLE PRECISION GBPUV,D,REDN,B,C
GBPUV = 2/D

As stated by Harry - in Lab book 13/5/99

C = (1DO-REDN)

B = 1DO/C

GBPUV = GBPUV#* (B+(3D0* (B*(DSQRT (1+(2D0* (B**2D0)* (C**4D0))) )+
& DSQRT((B**2D0)+(2D0* (C**2D0))))) + C*DSQRT(2DO#*(1DO+
& ((B*x4D0)* (C*x2D0)))))/(13.392%B*C)

RETURN

END

TO CALCULATE BB

SUBROUTINE BBP (NDOT,GBPUV,VEL,BB)
REAL*8 NDOT,GBPUV,VEL,BB

BB=NDOT/ (8.0DO0* (GBPUV#*%3.0D0) *VEL)
RETURN

END

3k 3k 3k %k 3k >k 5k 3k 3k ok 5k 3k 3k 3k >k 5k 5k 3k >k 5k 3k 3k %k >k %k 5k 3k 3k >k %k 3k 5k 5k %k %k %k 5k %k *k %k *k %k k

MOTHBALLED 19/5/99 IN FAVOUR OF FIXED VALUE

ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk ok ok ok ok ok sk ok o o o

Fixed value is not physical - this is a vibration
and MUST be T dependent! Changed as per S.V. Parker

thesis, Reed & Bhadeshia 1992 and Cahn 1956 20/5/00
s ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ke ke sk sk sk sk ok sk ok ok ok ok sk ok o o o
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LATTICE VIBRATION (ATTEMPT FREQUENCY ) SUBROUTINE
SUBROUTINE NEUNCALC (BNEUN,BD,BGAMMA,BT)
DOUBLE PRECISION BNEUN,BD,BGAMMA,BT

sk ok s ok ok ok ok ok ok ok ok o ok sk ok ok ok ok ok ok ok ok s ok ok ok ok ok sk ok sk ok o ok sk ok sk ok ok ok sk ok k

BNEUN = (0.764D0/(1.58+BD/2.9))#*620.412D0* (BGAMMA**0.5D0)
620.412 = 1 OVER SQRT OF EFFECTIVE MASS PER AREA OF MONOLAYER OF
OCTAHEDRAL Fe. (THIS IS A MAX FIGURE) HENCE 500 TAKEN

3k 3k 3k %k 3k >k 5k 3k 3k >k %k 3k 3k 3k >k 5k %k 3k >k 5k 5k 3k 3k >k %k 5k 5k 5k >k %k 5k %k %k %k %k %k %k %k *k %k *k >k k

BNEUN = 1.7D102#BT
END
NUCLEATION FREQUENCY SUBROUTINE
SUBROUTINE NDOTCALC (ANDOT,ANEUN,AGSTAR,AT,ADG)
DOUBLE PRECISION ANDOT,ANEUN,AGSTAR,AT,ADG
DOUBLE PRECISION LOPPY
READ (*,*) LOPPY
LOPPY = 0
loppy is the standard addition to the nucleation
WRITE (6,%) ANDOT,ANEUN,AVOL,AGSTAR,AT
ANDOT=ANEUN* (2.718281828D0**
& (-(AGSTAR+(1000DO*LOPPY))/(8.314D0*AT)))
WRITE (6,*) ’ANDOT’ ,ANDOT
RETURN
END
NEW SUBROUTINE GSTAR CALCULATOR 29/7/99 - Altered 17/7/00
SUBROUTINE GSTARC (GSTAR,DG,GAMMA)
DOUBLE PRECISION GSTAR,DG,GAMMA
GSTAR = 3.14159265359D0* (((1D0/2D0) * (GAMMA**3D0) * (DG**-2D0) ) )
CONVERTION FROM J m-6 mol2 to J mol-1
GSTAR = (GSTAR * 6.02214D23 * 7.06D-6 * 7.06D-6)

CLASSICAL NUCLEATION NOT APPLICABLE FOR RECRYSTALLIZATION - H&H 1996
Modified to reflect Delta G dependence 29/8/00
MOTHBALLED IN FAVOUR OF FIXED VALUE.

GSTAR = 1700000
END
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APPENDIX 2

MAP DOCUMENTATION

The FORTRANT7 code given in the previous appendix is documented so as to be consis-
tent with the Materials Algorithms Project (MAP), which is a perpetual source code library of
complete programs and simple subroutines and functions which are of relevent to the materials
sceintist. The sole perpose of the library is to freely distribute programs and their contained
theories to the scientific community. The MAP library is available over the internet at the
following URL:

http: //www.msm.cam.ac.uk/map/mapmain.html

A2.1 Provenance of code

G.J. Hopkin and H.K.D.H Bhadeshia, Phase Transformations and Complex Properties
Group, Department of Materials Science and Metallurgy, University of Cambridge, Cambridge,
England. Near Wales.

A2.2 Purpose of code

This code is for modelling the fraction recrystallized, grain size and number of grains
per unit area observed. It is based on Cahn modified overall transformation kinetics as
detailed in the PhD thesis “Modelling anisothermal recrystallization in austenitic stainless
steels” G.J. Hopkin, University of Cambridge (2001).

For a given set of input parameters as described in the following sections, it predicts
fraction recrystallized, grain size and number of grains per unit area observed and their devel-

opment as a function of time.

A2.3 References

CAHN, J.W. (1956), Acta Metallurgica, 4, 449

CHRISTIAN, J.W. (1975), The Theory of Transformations in Metals and Alloys: Equilibrium
and General Kinetic Theory, p.15-20, p.525-531, Pergamon Press, Oxford

SHA, W. & BHADESHIA H.K.D.H. (1997), Mat. Sci & Eng., A223, 91

HOPKIN G.J. (2001), PhD thesis, University of Cambridge, UK, Chapters 2 and 6

A2.4 Program arguments

A2.4.1 Input parameters
SIGFLOW - Double precision

175



Appenarx < — MALF DOCUMENTATION

The flow stress of the material (Pa)

G- Double precision

The shear modulus of the material (Pa)

D - Double precision

Undeformed grain diameter (m)

GAMMA - Double precision
The grain boundary energy (Jm™?2)

REDN - Double precision

The rolling reduction

T™WOQ - Double precision

Twice the activation energy for grain boundary motion (Jmol™!)

VOLFRAC -  Double precision

Volume fraction of included particles (redundant variable set to 0.0)

RADPART - Double precision

Radius of above particles (redundant variable set to 1.0)

EDSORT - Double precision
The naperian exponential of the activation entropy for grain boundary motion

divided by the ideal gas constant.

TIME - Double precision

The total annealing time (s)

T - Double precision

The furname temperature (°C )

GUAGE - Double precision
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The gauge of the material (mm)

ATC - Double precision
Indicate whether the sample toughes the furnace or not
A2.4.2 Output parameters

X - Double precision

The fraction recrystallized

TIMRUN - Double precision

Equivelent time in Scheil calculation

TOTTIM - Double precision

The actual time through the annealing process

TMPRUN - Double precision
The temperature at time given by TOTTIM

NRUN - Double precision

The number of grains per unit area (m~?)

RXDIA - Double precision

The recrystallized grain size (m)

VEL - Double precision

The final value of grain boundary velocity (ms™!)

NDOT - Double precision

The nucleation rate per unit area (m=2s—1)

AB - Double precision

The final value of the function «?

BB - Double precision

The final value of the function b8
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INT - Double precision

The final value of the integral f(lJ {1 — exp { (—%) (aB)S (1 —3=2 4+ 253) H d=

GBPUYV - Double precision

Grain boundary per unit volume after rolling

DG - Double precision

AG the driving force for recrystallization

A2.5 Error indicators

None

A2.6 Further comments

None

A2.7 Example

A2.7.1 Input text

Please input Time into recrystallization in s
1200

Please input Furnace Temperature in degrees centigrade
709

Input gauage of materials in mm
0.8

Please indicate whether sample touches furnace
1 for YES and 2 for NO

2

A2.7.2 Input file

124900000D0 SIGFLOW
84000000000D0 G

0.0001DO D

0.3DO GAMMA
0.75D0 REDN
900000D0O TWOQ
0.000D0 VOLFRAC
0.0000001D0O RADPART
6.8D15 EDSORT

178

)
—



Appenarx < — MALF DOCUMENTATION

A2.7.8 Program results

2.7.3.1 Output file 302A A_report

Ref Property Value
1 Flow Stress = 124.9000 M pa
2 Shear Modulus =  84.0000 G Pa
3 Grain Size before rolling = 100.0000 Microns
4 Incoherent Grain Boundary Energy = 0.3000 J m -2
5 Activation Energy for self diffusion = 900.0000 kJ mol~-1
6 Volume Fraction of Included Particles = 0.0000
7 Mean Radius of Included Particles = 0.1000 Microns
8 Temperature = 709.0000 Centigrade
9 Time of Recrystallization = 1200.0000 Seconds
10 Rolling Reduction =  75.0000 h
VEL = 1.6519089307945D-08
NDOT = 6.2048069910058D+14
AB = 605.89852299693
BB = 51012752.712435
INT = 1.0000000000000
GBPUV = 45150.005732118
DG = 2.6222873952381
2.7.3.2 Qutput file 302A A _observables
X Strip Temp RX Grain Di Time Grains/Micron~2
0.0000000000 536 0.0000000000000 12.00 0.000000000000
0.0000000000 689 0.0000000000000 24.05 0.000000000000
0.0000000000 790 0.0000000000000 36.10 0.000000000000
0.0000000000 856 0.0000000000000 48.15 0.000000000463
0.0000000000 899 0.0000000000000 60.20 0.000001418594
0.0000000000 928 0.0000000000000 72.25 0.000202827555
0.0000000000 946 0.0000000001546 84.30 0.004911940863
0.0000000000 959 0.0000000002808 96.35 0.040063703171
0.0000570035 967 0.0000001373107 108.40 0.120928008145
0.0117741157 972 0.0000007908323 120.45 0.127384871335
0.0275153490 975 0.0000010494619 132.50 0.127384871335
0.0451804333 978 0.0000012381078 144.55 0.127384871335
0.0636985324 979 0.0000013883047 156.60 0.127384871335
0.0821878422 980 0.0000015113934 168.65 0.127384871335
0.1002947162 981 0.0000016151059 180.70 0.127384871335
0.1178497567 981 0.0000017043203 192.75 0.127384871335
0.1348022306 981 0.0000017824089 204.80 0.127384871335
0.1511741014 982 0.0000018518286 216.85 0.127384871335
0.1670161774 982 0.0000019143786 228.90 0.127384871335
0.1823853078 982 0.0000019713857 240.95 0.127384871335
0.1973340366 982 0.0000020238376 253.00 0.127384871335
0.2119068875 982 0.0000020724784 265.05 0.127384871335
0.2261398833 982 0.0000021178769 277.10 0.127384871335
0.2400614506 982 0.0000021604744 289.15 0.127384871335
0.2536937692 982 0.0000022006193 301.20 0.127384871335
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.0000022385910
.0000022746173
.0000023088871
.0000023415590
.0000023727682
.0000024026310
.0000024312489
.0000024587110
.0000024850961
.0000025104748
.0000025349101
.0000025584591
.0000025811734
.0000026031002
.0000026242823
.0000026447592
.0000026645672
.0000026837397
.0000027023076
.0000027202997
.0000027377425
.0000027546609
.0000027710780
.0000027870154
.0000028024935
.0000028175312
.0000028321464
.0000028463559
.0000028601755
.0000028736201
.0000028867039
.0000028994401
.0000029118415
.0000029239200
.0000029356870
.0000029471532
.0000029583290
.0000029692241
.0000029798479
.0000029902092
.0000030003164
.0000030101778
.0000030198010
.0000030291935
.0000030383623
.0000030473141
.0000030560557
.0000030645931
.0000030729323
.0000030810792
.0000030890392
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0.7070041329 982 0.0000030968177 927.80 0.127384871335
0.7122235878 982 0.0000031044198 939.85 0.127384871335
0.7173500628 982 0.0000031118503 951.90 0.127384871335
0.7223852143 982 0.0000031191142 963.95 0.127384871335
0.7273306691 982 0.0000031262158 976.00 0.127384871335
0.7321880252 982 0.0000031331597 988.05 0.127384871335
0.7369588519 982 0.0000031399500 1000.10 0.127384871335
0.7416446907 982 0.0000031465909 1012.15 0.127384871335
0.7462470555 982 0.0000031530864 1024.20 0.127384871335
0.7507674334 982 0.0000031594401 1036.25 0.127384871335
0.7552072848 982 0.0000031656559 1048.30 0.127384871335
0.7595680444 982 0.0000031717374 1060.35 0.127384871335
0.7638511209 982 0.0000031776878 1072.40 0.127384871335
0.7680578984 982 0.0000031835107 1084.45 0.127384871335
0.7721897359 982 0.0000031892091 1096.50 0.127384871335
0.7762479686 982 0.0000031947863 1108.55 0.127384871335
0.7802339074 982 0.0000032002453 1120.60 0.127384871335
0.7841488405 982 0.0000032055889 1132.65 0.127384871335
0.7879940325 982 0.0000032108200 1144 .70 0.127384871335
0.7917707260 982 0.0000032159415 1156.75 0.127384871335
0.7954801411 982 0.0000032209558 1168.80 0.127384871335
0.7991234763 982 0.0000032258657 1180.85 0.127384871335
0.8027019088 982 0.0000032306736 1192.90 0.127384871335

A2.8 Auxiliary routines

None

A2.9 Keywords

Stainless steel , overall transformation kinetics , anisothermal, recrystallization
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