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The formation of austenite during the continuous heating of steels was investigated using neural network analysis with a
Bayesian framework. An extensive database consisting of the detailed chemical composition, Ac; and Ac; temperatures, and the
heating rate was compiled for this purpose, using data from the published literature. This was assessed using a neural network,
with the aim of modelling the austenite start and finish temperatures. The results from the neural network analysis were

consistent with what might be expected from phase transformation theory.
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Introduction

Most commercial processes rely to some extent on heat
treatments which cause the steel to revert to the austenitic
condition. This includes the processes involved in the
manufacture of wrought steels, and in the fabrication of
steel components by welding. It is useful, therefore, to be
able to model quantitatively the transformation of an
ambient temperature steel microstructure into austenite.!

The formation of austenite during heating differs in many
ways from those transformations that occur during the
cooling of austenite. For cooling transformations, the
kinetics of decomposition follow the classical C curve
behaviour, in which the rate goes through a maximum as
a function of the undercooling below the equilibrium
transformation temperature. This is because diffusion
becomes sluggish with decreasing temperature, but the
driving force for transformation increases with increasing
undercooling. Conversely, both the diffusion coefficient and
the driving force increase with the extent of superheat
above the equilibrium temperature, so that the rate of
austenite formation increases indefinitely with temperature
(Fig. 1).

There is another important difference between the
transformation of austenite, and the transformation to
austenite. In the former case, the kinetics of transformation
can be described completely in terms of the alloy compos-
ition and the austenite grain size. By contrast, the micro-
structure from which austenite may grow can be infinitely
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varied. Many more variables are therefore needed to
describe the kinetics of austenite formation. The extent to
which the starting microstructure has to be specified
remains to be determined, but factors such as particle size,
the distribution and chemistry of individual phases, homo-
geneity, the presence of non-metallic inclusions, should all
be important.

This discussion highlights the complexity of the problem.
A fundamental attempt at modelling the formation of
austenite is therefore unlikely to be of general value, except
at slow heating rates consistent with the achievement of
equilibrium. Some aspects of the difficulties involved have
been reviewed recently for a variety of starting micro-
structures.? Models of specific metallurgical approaches
exist for austenite formation from a mixture of cementite
and ferrite,> from bainite, and from ferrite.> However,
none of these are of general applicability for the reasons
described above.

In this work a different approach is adopted involving
the use of an artificial neural network to ‘blindly’ model a
large set of published experimental data on austenite
formation in steels. The results are then compared exten-
sively against what might be expected on the basis of
metallurgical theory.

Technique

Neural networks are parametrised non-linear models used
for empirical regression and classification modelling. Their
flexibility enables them to discover more complex relation-
ships between the data than traditional linear statistical
models.

A neural network is ‘trained” on a set of examples of
input and output data. The outcome of the training is a
set of coefficients (referred to as weights) and a specification
of the functions which in combination with the weights
relate the input to the output. The training process involves
a search for the optimum non-linear relationship between
the input and output data and is computer intensive. Once
the network is trained, estimation of the outputs for any
given inputs is very rapid.

One of the difficulties with blind data modelling is that
of ‘overfitting’, in which spurious details and noise in the
training data are overfitted by the model. This gives rise to
solutions that generalise poorly. MacKay®™! has developed
a Bayesian framework for neural networks in which the
appropriate model complexity is inferred from the data.

The Bayesian framework for neural networks has two
further advantages. First, the significance of the input
variables is automatically quantified. Consequently the
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significance perceived by the model of each input variable
can be compared against metallurgical theory. Second, the
network’s predictions are accompanied by error bars which
depend on the specific position in input space. These
quantify the model’s certainty about its predictions.

Database

The data set was constructed using information from
the published literature, particularly time-temperature—
transformation atlases.!?"1® The variables accessed are listed
in Table 1. The data set therefore consisted of 22 input
variables, and two output variables, the Ac; and Ac,
temperatures, which respectively describe the onset and
completion of austenite formation during continuous
heating beginning from ambient temperature. There were
788 cases included in the analysis.

It is expected that the measured Ac; temperature would
always be higher than the temperature at which the

Table 1 Data set of variables

Standard
Range Mean deviation
Concentration, wt-%
c 0-0-96 0-30 017
Si 0-213 0-39 0-41
Mn 0-3-06 0-82 0-38
S 0-0-09 0-007 0011
P 0-0-12 0008 0-012
Cu 0-2-01 0-046 013
Ni 0-9-12 1-01 1-48
Cr 0-17-98 123 2-38
Mo 0-4-80 0-32 0-37
Nb 0-017 0:003 0013
\ 0-2-45 0-05 013
Ti 0-0-18 0-0014 0014
Al 0-1-26 0-006 0-061
B 0-0-05 0-0005 0-003
w 0-859 0-06 048
As 0-0-02 0-0001 0-007

Sn 0-0-008 0-0001 0-0003

Zr 0-0-09 0-0001 0-003

Co 0-4-07 0-06 0-42

N 0-0-06 0003 0:012

(e} 0-0-005 0-0001 0-:0002
Heating rate, Ks ™" 0:03-50 10 116
Acy, °C 530-921 724 52:2
Acs, °C 651-1060 819 55-2

OUTPUT UNIT

HIDDEN UNITS

INPUTS

3 Typical network used in analysis: only connections
originating from one input unit are shown, the two
bias units are not shown'

austenite would become fully austenitic under equilibrium
conditions (i.e. the Ae; temperature). To demonstrate this,
the measured Ac; temperatures for each of the low alloy
steels were compared against the corresponding calculated
paraequilibrium Ae} temperatures.* The method for calcu-
lation has been described in a previous work.!” Figure 2
shows that the measured Ac; temperatures are almost
always larger than the corresponding Ae; temperatures,
often by several hundred kelvin. Thus, the Ac; temper-
atures in the data set are dominated by kinetic effects and
it is therefore important to include the heating rate as
a variable.

Analysis

The aim of the present work was to predict the austenite
formation temperatures for the steels as a function of the
variables listed in Table 1. Both the input and output
variables were first normalised within the range 40-5
as follows

Nym R 05 ()

Xmax — Xmin

where xy is the normalised value of x which has maximum
and minimum values given by x.,, and x.;,, respectively.

The network consisted of 22 input nodes, a number of
hidden nodes, and an output node representing either the
Acy or the Ac; temperature (Fig. 3). The network was
trained using 394 of the examples randomly chosen from a
total of 788 available, the remaining 394 examples being
used as ‘new’ experiments to test the trained network.

Linear functions of the inputs x; are operated on by a
hyperbolic tangent transfer function

hi=tanh<2w{j”xj+6§“> U AP 023

]

so that each input contributes to every hidden unit. The
bias is designated 6; and is analogous to the constant that
appears in linear regression. The strength of the transfer
function is in each case determined by the weight wy;. The
transfer to the output y is linear

y=Zw{jZ)hi+0‘2’ N )]

The specification of the network structure together with
the set of weights is a complete description of the formula

*The paraequilibrium Aej temperature is calculated in the same
way as the equilibrium Ae; temperature, but while maintaining
the iron to substitutional solute atom ratio constant everywhere.
This means that substitutional solute atoms do not partition
between the phases. The paraequilibrium temperature is easier to
calculate but always represents an underestimate of the Ae,
temperature.
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relating the inputs to the output. The weights are
determined by training the network; the details are
described elsewhere.® 1% The training involves a minimis-
ation of the regularised sum of squared errors. The term o,
used below is the framework estimate of the noise level of
the data.

The complexity of the model is controlled by the number
of hidden units (Fig.4), and the values of the 24
regularisation constants o, one associated with each of
the 22 inputs, one for biases, and one for all weights
connected to the output.

Figure 4 shows that for both cases, the inferred noise
level decreases as the number of hidden units increases.
However, the complexity of the model also increases with
the number of hidden units. A high degree of complexity
may not be justified, and in an extreme case, the model
may meaninglessly attempt to fit the noise in the experi-
mental data. MacKay has made a detailed study of this
problem and has defined a quantity (the ‘evidence’) which
comments on the probability of a model. In circumstances
where two models give similar results over the known data
set, the more probable model would be predicted to be
that which is simpler; this simple model would have a
higher value of evidence. The evidence framework was used
to control the regularisation constants and ¢,. The number
of hidden units was set by examining the performance on
the test data (Fig.5). A combination of Bayesian and
pragmatic statistical techniques was therefore used to
control the complexity of the model. Four hidden units
were found to give a reasonable level of complexity to
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represent the variations in the Ac; temperature as a
function of the input variables. A less complex model (two
hidden units) was needed for the Ac; temperature, presum-
ably because this should be less dependent on the starting
microstructure.

Once the optimum number of hidden units was estab-
lished for each analysis, the data were retrained to give a
more accurate model. This time, all 788 of the cases were
included in the training process.

The weights for the selected networks are presented in
the Appendix; these listings are sufficient to reproduce the
predictions described, though not the error bars. The levels
of agreement for the training data sets are shown in Fig. 6,
which shows good prediction. It should be emphasised that
all data were included in deriving the weights given in the
Appendix. It was established that good fit existed over the
range of data included in the analysis.

Use of model

The metallurgical significance of the preceding results is
now examined. Figure 7 illustrates the significance o, of
each of the input variables, as perceived by the neural
network, in influencing the austenite transformation temper-
atures, within the limitations of the data set. A high value
of a,, implies that the input parameter concerned explains
a relatively large amount of the variation in transformation
temperature in the data set (rather like a partial correlation
coefficient in multiple regression analysis). It follows that
o, is not necessarily an indication of the sensitivity of the
transformation temperature to that input parameter. The
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interpretation of a,, is therefore best considered alongside
the predictions of transformation temperatures presented
below.

Figure 8 shows the predicted effects of the carbon
concentration and heating rate on the Ac; and Acy
temperatures of a plain carbon steel. The data presented as
a function of carbon are calculated for a heating rate of
1K s ™ As might be expected, the Ac, temperature
decreases with carbon concentration, reaching a limiting
value which is very close to the eutectoid temperature of
about 723°C. This limit is expected because of the slow
heating rate and the fact that the test steel does not contain
any substitutional solutes. Note that there is a slight
underprediction of the Ac; temperature for pure iron,
although the expected temperature of about 910°C is within
the 95% confidence limits of the prediction (twice the
width of the error limits illustrated in Fig. 8).

By contrast, the Ac; temperature appears to go through
a minimum at about the eutectoid carbon concentration.
This is also expected because the Ae; temperature also
goes through a minimum at the eutectoid composition.
Furthermore, unlike the Ac; temperature, the minimum
value of the calculated Ac; never reaches the eutectoid
temperature; even at the slow heating rate it is expected
that the austenite transformation finishes at some superheat
above the eutectoid temperature, the superheat being
reasonably predicted to be about 25 K.

At slow heating rates, the predicted Ac; and Ac;
temperatures are in fact very close to the equilibrium Ae;
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and Ae; temperatures and insensitive to the rate of heating.
As expected, they both increase more rapidly when the
heating rate exceeds about 10K s~ ! Since the mean
heating rate in the experimental data set is only 1 K s™*
(Table 1), it is not surprising that the o, values associated
with the heating rate are relatively small in Fig. 7.

It is not at first sight expected that the transformation
temperatures would go through a maximum as a function
of the heating rate. This maximum appears to be significant
even when the error bars are taken into account. It should
be noted that the predicted errors become very large at
heating rates well outside the range of the experimental
database. The occurrence of a maximum is possible if
retained austenite is present in the microstructure, as might
be the case for many of the steels for which high heating
rate experiments have been conducted. This is because at
high heating rates, the retained austenite simply grows as
soon as the equilibrium Ae; temperature is exceeded.
However, slow heating allows the austenite to first
decompose into an equilibrium mixture of ferrite and
carbides, thereby making it necessary for new austenite
to nucleate when equilibrium permits. This is shown in
Fig. 9.

Figure 7 shows that the g, value for manganese is larger
for the Ac, data than for the corresponding Ac; data.
Noting also that the variation of manganese in the data
set is large, and that the data are likely to be reliable since
it is a key alloying element in steel, it is likely that the
difference in the two o, values is important. This is
confirmed by the predicted effect of manganese on the
transformation temperatures (Fig. 10a), since the Ac,
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temperature is indeed found to be more sensitive to
manganese than the Ac; temperature. This behaviour is
also expected from the Fe—~C—Mn phase diagram. Whereas
the effect of manganese on the Ac; temperature is simply
to lower the (x + 7)/y phase boundary on the temperature
scale (via the thermodynamic effect of manganese on
austenite stability), the influence on Ac; is much larger
since a three phase o+y+ M;C field develops. This is
confirmed by the phase diagram calculations carried out
using the MTDATA (1995) thermodynamic package.'®
Thus, the Ae; and Ae; temperatures for Fe-0-2C-1Mn
(unless otherwise stated all compositions given in this paper
are in weight per cent) alloy were predicted to be 696 and
823°C, respectively. This compares with the corresponding
equilibrium temperatures for a plain carbon Fe-0-2C steel
of 723 and 839°C. Thus, manganese should indeed influence
Ac; more than Ac; in the present context. The calculations
allowed for the existence of ferrite, austenite, and M;C,
where M refers to metal atoms.

Figure 10b shows that copper, over the concentration
range considered, has a negligible influence on the formation
of austenite. The difference between the Ac; and Ac,
temperatures decreases with increasing cobalt concentration
(Fig. 10c).

Boron has consistently small values of g, for both the
Ac, and Ac; temperatures (Fig. 7). Table 1 shows that there
is a significant concentration range of boron included in
the data set, the maximum boron content being 500 ppm
by weight. The concentration of boron can be precisely
controlled in steel to an accuracy of +5 ppm by weight,
and the accuracy of the chemical analysis is generally better
than +3. Consequently a low value of g, truly indicates
that the austenite formation temperatures are insensitive to
the boron concentration, and this is confirmed by the
predicted effect of boron in Fig. 10d.

Vanadium is an extremely strong carbide forming
element, with limited solubility even in austenite. Hence, it
is not surprising that both the Ac, and Ac; temperatures
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are very high for the Fe—0-2C-1V alloy. Austenite growth
is retarded if the carbon is tied up in the form of
vanadium carbide.

When compared with vanadium, molybdenum is a less
potent carbide forming element. Hence, at comparable
concentrations, the transformation temperatures are found
to be less sensitive to the molybdenum content. However,
at very large molybdenum contents the Ac;—Ac; gap
increases greatly. This is because the high temperature
¢ ferrite and low temperature « ferrite phase fields tend
to join up in the low carbon end of the phase diagram,
thereby raising the temperature at which austenite forma-
tion is completed (Fig. 11). These results are verified by the
phase diagram calculations presented in Table 2.

Predicted data for the effects of nickel and chromium
are illustrated in Fig. 12. Nickel is an austenite stabiliser,
and judging from the phase diagram both the Ac, and Ac,
temperatures should decrease with increasing nickel concen-
tration. This clearly is not the case with the predicted Ac;
temperature, which seems to exceed the predicted Acs
temperature for nickel concentrations greater than about
1% (although the data beyond about 6% are not reliable,
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a predicted variation of Ac, temperature with nickel concentration; b predicted variation of Acs temperature with nickel concentrztnion; c predicFed
variation of Ac, temperature with chromium concentration; d predicted variation of Acs temperature with chromium concentration; e illustration
of y loop, portions ab, bc, and cd represent (& + )/y, (y + Ma3Cg)/y, and y/(y + «) phase boundaries, respectively

Predicted variation in Ac, and Ac; temperatures of Fe-0-2C (wt-%) steel as function of concentrgtion of given
alloying element at heating rate of 1Ks™": lines represent +1s error bars about calculated points; effect of

chromium on y loop is also shown
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with large error bars). This behaviour reflects the poor
quality of the Ac, data for the nickel steels.

The predicted data for chromium are more interesting.
The Ac; temperature appears to go through a minimum
with increasing chromium concentration, a behaviour
which is replicated to some extent by the calculated Ae;
temperatures for the same alloy system. The trend for
Ac, is different, but follows what is expected from the
calculated phase diagram. At about Fe-0-2C-7-5Cr, the

Ae, temperature becomes virtually identical to the Aes
temperature. This is because of the existence of a y loop
in the phase diagram, as shown schematically in Fig. 12e.
The results for chromium are therefore consistent with
what is expected from the phase diagram: there are some
results where the calculated Ac; exceeds Acz, but this is
not significant when the error bars are taken into account.
The work emphasises that there will be difficulties at
high chromium concentrations since the difference between
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the two transformation temperatures becomes rather
small.

Disregarding the effect of silicon on the Ac, temperature
(due to the unreliability of the predictions with large error
bars), its influence on the Ac; temperature is consistent
with the fact that it is a ferrite stabilising element (Fig. 13).
Titanium raises the transformation temperatures, presum-
ably because it is combined with carbon in the initial
microstructure. The effect of niobium is similar to that of
molybdenum. Nitrogen and phosphorus, at the concen-
trations studied, have no significant effects on austenite
formation, consistent with their small o, values (Fig. 7).

Further tests of model

Substitutional solutes affect transformations in steels by
two mechanisms:

(i) a solute can alter the relative thermodynamic

stabilities of the parent and product phases, e.g.
solutes like nickel which stabilise austenite might be
expected to lower the Ae; temperature, which is an
equilibrium transformation temperature
the solute is likely to have different solubilities in the
parent and product phases. When transformation is
diffusion controlled, the necessity for the solute to
partition is expected to reduce the rate of transform-
ation. This kinetic effect is independent of the
thermodynamic effect emphasised in (i).
It is possible, using the trained neural network model, to
examine both of these issues, and hence test whether the
model behaves correctly from a metallurgical point of view.
Figure 14 contains comparisons between the kinetic Ac;
temperatures and corresponding thermodynamically calcu-
lated Ae; equilibrium transformation temperatures. Any
difference between these represents some kinetic hindrance
to transformation.

Figure 14a shows clearly that the Fe—C alloys transform
easily to austenite, at temperatures which are not very
different from equilibrium. The superheat needed for the

(ii)

Table 2 Phase equilibrium calculations conducted for a

higher carbon Fe—C alloy is larger because the extra carbon
depresses the transformation temperature, leading to a
reduction in the mobility of iron atoms. The addition of
manganese clearly leads to much larger deviations from
equilibrium, even when the transformation occurs at
temperatures higher than for the Fe-3C (at.-%) steel.
Furthermore, the deviation increases disproportionately
with the concentration of manganese. This confirms the
fact that the presence of a substitutional solute greatly
retards the transformation to austenite because it is
necessary for the solute to diffuse during transformation.
To show that it is the diffusion of solute which retards
the formation of austenite, Fig. 14b shows cases where the

series of Fe-02C-Mo (wt-%) alloys using
MTDATA (1995)"
Alloy composition, wt-% Ae,, °C Aez, °C
Fe-0:2C-1Mo 727 845
Fe-0-2C-4Mo 727 897
Fe-0-2C-6Mo 715 955
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G Ha
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2
5 oo}
«®
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E 800 Measured Ac,
750 : . !
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avariation in calculated and measured Ac, temperatures; measured
temperatures refer to samples with untempered martensitic
microstructure; b illustration of variation in austenitisation
behaviour as function of initial microstructure, tempering time =
1Th: @ Ac,, B Acz, x Ac10%, ® Ac50%, [ Ac90%

15 Calculations for steel T91: heating rate of 50 Ks™
used to measure Ac; and Ac; temperatures

1
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addition of molybdenum or vanadium raises the transform-
ation temperature, but nevertheless increases the deviation
from equilibrium.

Application to steel T91

Steel T91 is an alloy of chemical composition (wt-%)
Fe-0-105C-0-43Si-0-37Mn—8-2Cr-0-97M0-0-13Ni-0-051N
—0-075Nb-0-2V which was designed for power plant appli-
cations and for use in the nuclear industry. It is of particular
interest to the present authors and a number of experiments
have been conducted to measure the austenite formation
temperatures as a function of the initial microstructure.!®
The initial microstructure has not been included as a
variable in the neural network model, because of the
absence of data. The following results therefore illustrate
the level of error in prediction, which can be attributed to
microstructural effects.

Martensite was obtained by directly quenching the alloy
after austenitising at 1050°C for 30 min, to room temper-
ature. A number of tempered martensite microstructures
were also generated from the quenched samples. In addition,
microstructure consisting of allotriomorphic ferrite and
alloy carbides of pearlitic appearance was obtained by
isothermal transformation of austenite at 725°C for 6 h
before cooling to ambient temperature.

The calculated Ac; temperature is compared with the
value measured for the untempered martensite, as a function
of the heating rate, in Fig. 15a. The calculation over-
estimates the transformation temperature by 15-50 K,
which is within the error limits of the neural network
model. Consistent with the experimental data, the model
predicts that the transformation temperature does not
increase with the heating rate. If anything, there is a slight
decrease predicted.

Figure 15b shows the variation in transformation temper-
atures with the starting microstructure. It is evident that
the variation can be as large as 75 K, a value comparable
with the overall error implied by the o, noise for the
optimised neural network models (Fig. 4).

Conclusions

The temperature at which austenite first begins to form
during heating, and that at which the transformation to
austenite is completed, have been modelled as a function
of the steel chemical composition and heating rate. The
model is based on a neural network analysis of an
experimental database compiled from published data.

The model is found to be capable of estimating the
transformation temperatures to an accuracy of about
+40K (95% confidence limits). The neural network

technique used is based on a Bayesian framework and
hence is capable of associating different error bars
depending on the location in the input parameter space.
This has demonstrated that the predictability of the Ac,
temperature is in many cases less reliable than that of the
Acy temperature. This is probably a reflection of the fact
that in many cases the Ac, temperature is more difficult to
measure experimentally. The predictions of the model have
been assessed against metallurgical theory and found to
be reliable.
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Appendix

Table3 Weights for Ac,; model*

—0-273272 —0-584284 1-42725 —0'675013 —0-297617 0-149305 —2:09248 0558102
1-16302 0136662 0:00893805 0:0271082 0-0482528 0-285341 0-0135071 0-0350339
—0-074152 —0-0884704 —0:0661309 —0-133209 —0-224594 —0-102685 0-810902 —3-:00552
—1-58987 0515423 —7-77932 —1-22046 —0-294707 —0-160822 0-844392 —1-54547
—0-0628648 0-0217054 0-138556 0-0306007 0-124344 0:00430856 0-00473683 1-566578
1-85985 1-57345 0221986 0:179021 1-77703 —0'646938 0902249 0677717
—1-55427 0638917 0:424401 0-232198 3:09303 —0-533354 0:0072862 —0-120021
—0-0700783 0:415026 0-0173118 —0:0489667 0:00607633 —0:196499 —0:476342 — 0658654
—0-475611 0:177044 0-44253 —0-574891 —0-266723 —0-512698 0303814 —0:779683
0-417492 0:0995294 —0-542185 066351 —0-846634 —1-68699 —0'146489 0-0761116
—0-270882 —0-0883608 —0-413762 4-99285 x 10° 0162749 0215546 0238404 0221876
0-0765538 0-0192461 0-227757 —0-918695 0416309 272348 1-33381 1-82862
1-8775
*Data are arranged in a continuous horizontal sequence in the following order:
0, wilh ... wilky
08", will ... wilk,
00, Wl .. wile
0, Wik ... wilh
9(2)’ WSIZ) WS;Z)-
Table 4 Weights for Ac; model*

—1-41522 —0:811777 0-292749 —0-212523 —0:086742 6-22651 x 107° —0-0097287 —0-224123
—1:03976 0-466825 0-849595 —0-250228 0123227 —0-56492 0-215049 —0-938616
0309341 0-0687889 0255502 —0-129074 0:0229901 0:069863 —0-479553 113112
070752 —0-241007 0-203091 0129634 58642 x 107° —0-00661998 0:103754 1-16011
—0-422398 —1-07388 0545212 —0-131634 0711098 —0-287479 1-46768 —0:639086
—0-142399 —0'532336 0:171956 0:0100161 —0:143582 0661583 1:62705 413134

2:53442

*Data are arranged in a continuous horizontal sequence in the following order:

1 1 1
0, Wil ... wilh,

M M (1)
03", wai ... waz

2) (2) (2
09 w2 W@,
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